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The theory presented in the preceding paper is extended to account for incident optical beam
breakup into multiple self-focused channels and to deal with multiple reflection and transmission at
multiple interfaces. Beam breakup is explained by examining the decomposition of the channel in
one medium, into its soliton and radiation components after it has crossed into the new medium. A
formula is derived which gives the criterion for the number of channels appearing as a consequence
of breakup. This formula also provides analytic expressions for the individual self-focused channel
powers and the amount of radiation generated. An important observation here is that the amount
of radiation generated at the interface shrinks rapidly as a function of increasing channel number N.
Each new component generated can be treated as a separate equivalent particle moving in its own
equivalent potential. The theory of the preceding paper [Aceves, Moloney, and Newell, Phys. Rev.
A 39, 1809 (1989)] can therefore be applied directly to show that low-power channels generated in
the breakup will suffer reflection while higher-power channels will undergo transmission. An added
ingredient to allow for mutual-channel interaction is the soliton-collision formula. The multiple-
interface extension of the single-interface problem results from patching individual single-interface
equivalent potentials together. The theory is illustrated with two applications: (i) a nonlinear ver-
sion of a directional coupler requiring just two interfaces and (ii) trapping of a channel at an inter-
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face by a ramped linear refractive index.

I. INTRODUCTION

The equivalent-particle theory presented in the preced-
ing paper,! hereafter labeled paper I, is only valid in the
nonlinear regime when the nonlinear optical coefficient
ratio a =ay,/a, is greater than 3. There we established
that the equivalent-particle theory was valid in a wide re-
gion of physical parameter space. The study in the
present paper is confined to this fully nonlinear regime.
As the nonlinear optical coefficient in the right-hand
medium increases, the larger self-focusing nonlinearity
leads to breakup of the incident channel into multiple
channels after its peak has crossed the interface. This
breakup should be contrasted with the phenomenon of
partial transmission and reflection well known in the
linear and confined to the hornlike intermediate regimes,
as discussed in paper I. In the linear case, this latter
phenomenon is associated with the Fourier decomposi-
tion of the linear wave packet and subsequent trajectories
of individual Fourier plane-wave components spanning
the critical angle for total internal reflection. In the in-
termediate nonlinear regime, the interface, as a perturba-
tion, excites other nonlinear modes or radiation leading
to a splitting of the incident wave packet. The behavior
to be described below lies in a region of parameter space
remote from the latter linear or intermediate regimes.
The asymptotic behavior of each new channel will now
depend on its individual power, being reflected if
v3/2<U(®) (see paper I) or transmitted if
v3/2>U(w). This breakup behavior will be quantita-
tively explained in Sec. II by considering the incident
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channel at the interface as the initial data for evolution
under the nonlinear Schrodinger (NLS) equation ap-
propriate to the new medium, using results developed in
Ref. 2. In effect, we find that the incident channel
behaves as an N-soliton bound state for the new medium.
The interface acting as localized perturbation on this
bound state, lifts the degeneracy of its eigenvalue, split-
ting the N-soliton wave packet into N individual propaga-
ting components. Each component is now a soliton solu-
tion in the new nonlinear medium and its subsequent
asymptotic behavior can be read off from its associated
equivalent potential or phase portrait. Experimental evi-
dence for such beam breakup has already been obtained,’
following observations of such behavior in an earlier nu-
merical study of a Gaussian beam incident at an angle
close to critical at a linear-nonlinear interface.* This op-
tical beam breakup is insensitive to the specific shape of
the initial data, so our theory presented here, which for
convenience adopts a sech-like initial profile, provides a
quantitative description of the phenomenon.

The equivalent-particle theory valid for + <a <1, is ex-
tended to multiple interfaces in Sec. I, by patching to-
gether individual equivalent-particle potentials in order
to construct a global composite potential. Our only as-
sumption is that the characteristic self-focused channel
width is narrower than or comparable to the individual
interface separations. Two cases will be considered. In
one the interface separation is much larger than the self-
focused channel width and the single-interface theory ap-
plies with minor modifications. The second case involv-
ing interface separations comparable to the channel
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width is the thin-film waveguide limit and introduces an
additional important scaling parameter, namely, 7d,
where 7 is proportional to the power in the channel and d
is the thin-film width. In this latter case we recover the
nonlinear waveguide picture including global bifurcation
features® and stability.®’

Two applications presented in Sec. IV highlight the
very special properties of solitons, namely, their particle-
like properties and resistance to perturbations. We
demonstrate how an end-fire coupled channel, propaga-
ting as a stable trapped nonlinear surface wave along the
interface, can be switched to a neighboring interface by
an additional channel incident at an angle close to critical
for total internal reflection. This switching action ex-
ploits the elastic particle-collision properties of solitons.
Trapping at an interface is achieved by a linearly ramped
refractive index, which acts as a decelerating force on the
particle. Section V illustrates briefly how an N =2 soli-
ton wave packet splits due to the effect of the perturba-
tion by an interface.

II. BEAM BREAKUP INTO MULTIPLE
SELF-FOCUSED CHANNELS

This section is devoted to a study of incident channel
breakup in the new medium. The relevant equations
from I are reproduced here for convenience. The scaled
transverse electric (TE) field amplitude A (x,7) obeys the
following perturbed NLS equation:
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where, in terms of the original unscaled variables, we
have

F(x,z)=\/2/a0A (x,r)exp[i([)’z—n(z, )z ]
and 237=2z. The perturbation potential V(X ) is given by

B —A—2a"'=1D]4]}, x<0
Vx)=1o, x>o0.
The asymptotic behavior of a wave packet with a soliton
shape in the left-hand medium as it crosses the interface
into the right-hand medium will now be investigated. In
particular, we wish to know whether it remains as a sin-
gle entity or breaks up into multiple self-focused channels
in the new medium. We also wish to measure the amount
of radiation (nonsoliton components) generated as a
consequence of the interaction with the interface. A gen-
eral initial-value problem of this sort was studied origi-
nally in a classic paper by Satsuma and Yajima.? Here
we adapt their results to our specific problem. Details of
the soliton analysis are given in the Appendix. The main
results are noted here.

If the wave packet with modulus

|F(x,2)|=v"2/ay2nsech[29y(x —X )]

crosses the interface from left to right and if the speed of
the equivalent particle at the time it crosses the interface
is v, it will decompose into a sequence of N solitons with
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and radiation. Observe that the number of new soliton
wave packets increases as the nonlinear refractive index
of the right-hand medium, «a,, increases. The initial ve-
locity of each of the new solitons is also v but the ampli-
tudes are given by

1 1
N, =27 —‘/?a—r-i-? , r=1,...,N . (3)

The amount of radiation can be calculated using the trace
formula (see Appendix)

[ Adtdx—4 S 1, ~2 [ “Im(1—|R s, @)

e r=1 ’ m=0
where R (g) is the reflection coefficient obtained from the
scattering data of the linear eigenvalue problem (A1). It
measures the amount of radiation in the mode g. In the
limit of small |R(¢)|, —In(1—|R|?>)~|R|?, and in the ab-
sence of soliton components, (4) is simply Parseval’s iden-
tity.

Since the total power P= f * FF*dx=8ny/a, is con-
served, we have that o

8m 8§ X 4 = )
v a El N fo In(1—|R[?)dg .

The difference between 87,/a, and (8/a) 3 ¥ _ 1, is the
amount converted into radiation. From Eq. (3), this
difference is equal to 87y/ay(1—NV'a)’. Observe then
that if L <a <%, N =2 and at most 4% of the incident
power goes into radiation; if 5 <a=<%, N=3 and at
most 2% goes into radiation, and for large N it is at most
1/(2N +1)? of the power in the incident beam. Also ob-
serve that, as a tends to 1, the amount of radiation pro-
duced is negligible as we are in the strongly nonlinear re-
gime (see Sec. III of paper I). In fact, if a > £, then N=1
and 7,=27,(1/Va—1). Now the amount of power
P;=8m,/a, carried by the new wave packet in the right-
hand medium is 2V'a—a)P,, where P;=87,/a, is the
power of the original wave packet. This means that the
amount of power converted into radiation is

4
a,mT

2 810
Qg ’

J (= RPds=(1-Va)

For the worst possible case a= 4%, (1—V'a)?~0.11; there-
fore, in all cases the N =1, the amount of power lost into
radiation is less than 11% and goes to zero as a tends to
1.

In the new medium, a single wave packet will propa-
gate as an equivalent particle in a potential defined by the
material properties and its own power. However, if a
bound state of N solitons is produced, the problem be-
comes one of NN interacting particles in a composite po-
tential. Eventually the bound state is broken into N indi-
vidual packets, each traveling in its own effective poten-
tial. When the breakup occurs depends on the velocity of
the equivalent particle at the interface. The smaller the
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velocity, the sooner the breakup will occur, and in most
cases studied here with the initial velocity always of the
order of V'A, breakup always occurs immediately after
crossing the interface. In particular, the packets with the
smaller amplitudes will have higher S values and this may
very well mean that they will reflect back into the left-
hand medium. The N-particle theory will not be carried
out in this work.

At this point we present some data which support the
accuracy of our decomposition computation. Table I
compares the predicted and observed values of 1,,. The
agreement is very good. Figure 1 shows two cases of a
single wave packet decomposing into multisoliton com-
ponents in the right-hand medium. In the first case two
sizeable wave packets are transmitted to, and remain in,
the right-hand medium and one very small one is
reflected. Since the latter does not have enough power to
create a soliton wave packet in the left-hand medium
when it recrosses the interface, it eventually disperses as
radiation and decays. In the second case, the angle of in-
cidence of the incoming wave packet is big enough to
guarantee that all three transmitted wave packets remain
in the right-hand medium.

When a wave packet which has a perfect soliton shape
for the right-hand medium crosses to the left, the number
of wave packets N lies between \/a—é- and 1/a+%.
Since a =1, this means that a wave packet entering from
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the right will decompose into at most one soliton whose
initial _velocity is » and whose amplitude 7, is
27,(Va—1). Again note that as a—1, ny—mn,. The
trace formula now gives

8
N gVa—1)

a,

B0 _ & [ on— (R,

a, aym Yo

where H is the Heaviside function. For a>, the
amount of radiation created is proportional to
(1—V'a)*/a, which is again small for a close to unity.
In Fig. 2, we show a situation in which a=, which as
we said above, is too small to create a soliton packet in
the left-hand medium. The packet of radiation which is
created disperses and decays.

Although the dynamics is more complicated when
there is a large nonlinear refractive-index mismatch, one
can carry out the decomposition calculation of each
packet as it crosses the interface and follow the dynamics
of the different components. However, care has to be
taken because the different new components can interact
with each other and produce phase shifts, a property we
will describe and exploit for application purposes in Sec.
IV. Nevertheless, in principle, the total dynamics can be
reconstructed by piecing together the trajectories of each
wave packet.

TABLE I. Comparison between the predicted values of the amplitudes (7;) of the solitons that are
created after breakup in the right-hand media, with the obtained values computed from the numerical
integration of (1.1), for different initial velocities (angles of incidence). The blank spaces indicate that
we were not able to numerically determine the values of the amplitudes of those solitons.

Normalized Numerical 7;’s of transmitted wave packets for
power Theoretical 7,’s three different initial velocities
of initial of transmitted Initial velocity
a wave packet wave packets 0.40 0.20 0.160
0.125 2 7,=0.292 0.33 0.313
7,=0.166
7,=0.038
4 7,=0.584 0.50 0.46
7,=0.332 0.33 0.30
7,=0.076
0.25 2 7,=0.375 0.38 0.372 0.373
7,=0.125
4 7,=0.750 0.65 0.630
7,=0.250 0.26
0.375 2 7,=0.425 0.442 0.435 0.410
7,=0.050
4 7,=0.850 0.790 0.770
7,=0.100
0.5 2 7,=0.457 0.460 0.464 0.46
4 7,=0.914 0.860 0.870
0.625 2 7,=0.482 0.483 0.483 0.496
4 7,=0.964 0.93 0.93
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FIG. 1. Soliton breakup in the right-hand medium. In (a) an
incoming wave packet breaks into three as it crosses the inter-
face, with the smallest one being reflected back to the left-hand
medium where it eventually disperses into radiation. In (b) the
angle of incidence is bigger, so that no wave packet is reflected.
In both cases, the amplitudes of each soliton are very close to
the theoretical predictions. Here P =4, v;=0.4in (a) and 1.0 in
(b); A=0.1and a=0.125.

III. MULTIPLE INTERFACES

Consider a geometry for a waveguide where three
different media are separated by two interfaces at x =x,
and x =x,. The refractive indexes in the various media
are given by

n(x,|FI*)=n}+a,|F]?, j=1,2,3

where we only consider the case in which the ratio of

smaller to bigger a; on two neighboring materials is al-
ways bigger than ¢, so that a single wave packet prevails

9
in all media. These refractive indexes appear as

e

FIG. 2. Evolution of a wave packet that initially is in the
right-hand medium and, once it crosses the interface, it loses its
soliton shape, becoming a dispersive wave as predicted by the
theory. The parameters are the same of that of the previous
figure, except that the wave packet is initially in the right-hand
medium and v,= —1.0.

coefficients in the original unscaled nonlinear partial
differential equation (1) of paper I.

To construct the equivalent potential we proceed as in
I by assuming first that a wave packet propagates in one
medium, say medium 2, and does not cross any interface.
We define the field F to be of the form

_ i 2__ 2
Fx,2)=V2/a,A(x,r)e 0 """

’

then A (x, ) satisfies Eq. (1), where now Vis

AV —2(a,— DI A%, xo<x<x,
Vix)= {0, x;<x<x,

AP =2(a,— 1A%, x,<x<x,

where A‘zj)Zn%—nj-z, ap=a;/a,, xg=—oo,and x, = .
In (1) we use for A4 a soliton form and, following the

steps of Sec. IV in paper I, the new effective potential for

and equivalent-particle dynamics of a wave packet travel-

ing in medium 2 is
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U,(x)=—AY tanh[27,(X —x,)]
(l)
3Smtanh [279,(X—x )]
1
+AS I—S— tanh[27,(X —x,)]
(3)
+ 3S(Z)tanh3[2n2 —x,)]+C,, (5)

where SY' =AY'a,/4(a;
total power.

If all the nonlinear mismatches are close to 1, we
neglect radiation as we did in the case of the single inter-
face, and write a composite potential to describe the glo-
bal dynamics of a wave packet propagating in such a
waveguide,

az)nﬁ, 7}2=a2P2/8, and P the

$)=[1—H(%—x,)]U,(%)
+[H(X—x,)—H(X—x,)]
X U,(%)+H (X —x,)U3(X) ,

where H is the Heaviside function,

Ux)~[1—H(x—x;)] | Ay " |1—

(j+1)
S;

+H(Xx—x;)

J 1-

AJ+1 (j

J 1

where G(X) accounts for the contributions from (6) not
included in (7), all of which are slowly varying functions
of X or, in other words, |dG /dx| <<1. This is true be-
cause when the wave packet is narrow and propagating in
the neighborhood of a particular interface, other inter-
faces, in effect, do not perturb its evolution. In terms of
the equivalent particle, what we are saying is that the lo-
cal potential in the neighborhood of an interface is like
that of the single-interface case; thus the composite po-
tential can be constructed for this particular case by sim-
ply “patching” potentials like that of Fig. 12 of paper 1.
In Figs. 3 and 4, we examine two situations, each with
three interfaces, and in both cases there are three minima
in U(x) corresponding to three stable stationary solu-
tions. We confirmed the existence of these solutions by
numerically integrating the full equation, with wave
packets centered at the location of the local minima used
as initial conditions. Figure 5 shows one of these solu-
tions when the potential is as shown in Fig. 3. The exact
form of the stationary solutions for this case are also
sech-like solutions in each medium with the particular
parameters obtained from the continuity conditions.

tanh[27,(X —x;)]+

tanh[27; , (X —x;)]—

é A(l)

)
!

S”) {tanh[27 (X —x;_,)]

J

by
—tanh[27;(X —x,)]}
o

+ 33(” {tanh’[29,(X —x,_,)]

J

—tanh’[27,(X —x)]} +C; (6)

and AY'=nl—n}, n;=a;P/8, S;"=Aa; /4(a
We choose the constant C in (6) SO that U(
ous at each interface.

—q )7’1
) i 1s continu-

In general, if we have N interfaces located at xj,
j=0,1,2,...,N+1 with xo=—, and xy,,= oo, the
composite potential is

N+1
x)= Y [H(X—x;_)—H((Xx—x)]U;(x), (T

j=1
where Uj(f) is as in (6) where now [/ runs from 1 to
N +1, omitting / = .

We now consider two cases involving multiple inter-
faces. First, we have that if the wave packet width is
small compared to the distance between interfaces, then
if the wave packet is close to one interface, say, Xj, the
equivalent potential is of the form

(j+l

—3S‘j+1)tanh [21]1 X — xj)]

(j)

SS( tanh [27; (X —x;)] | +G(X), (8)

f

One can also expect that in this approximation, if we
put two equivalent particles, each in a different well of
the composite potential, they will not interaction with
each other and remain in their original positions. Figure
6 shows one such case where two narrow wave packets
propagate undisturbed, each near a minimum of the
equivalent potential. Although we did not consider other
cases with three or more packets, the same should be
true. In fact, we have found new multipeak stable sta-
tionary wave packets in a multiple-interface waveguide
by simply locating each peak at the minimum of a com-
posite potential. These are the fully nonlinear generaliza-
tions of the well-known supermode solutions in multiple
layered linear waveguides.®

The approximation used above fails when the distance
between interfaces becomes of the same order as the
width of the wave packet. This we call the thin-film
waveguide limit. We present here as an example, a sym-
metric waveguide with two interfaces, one at x = —x,
and the other at x =x,. For x < —x,; and x >x,, the
nonlinear index of refraction is n2=n? +a?|F|?, whereas
for the dielectric between the two interfaces n? is
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n3+ay|F|®>. We will only consider the case n2>n3,
ay<ay, since any other combination could be studied in a
similar way. Also we only consider narrow wave packets
and ay/a; > %, so that again we neglect radiation. This
problem is similar to the thin-film waveguide where
a,=0, which has been studied in some detail earlier.>%°
In order to characterize the different behavior of the

(@) °r

u(x)

(b)°r

-10
-10 0o 10

FIG. 3. Potential and phase plane for a nonlinear waveguide
with three interfaces located at x =—12, 0, and 12. In (b) we
show three typical trajectories of a wave packet initially propa-
gating parallel to the second interface, after a second wave
packet collides with it (see Fig. 8). In the first one, trajectory
ABCD, the equivalent particle oscillates between the first and
second interface. In the second one, AB'C'D’, the particle
ends up at o, and in the third one, AB""C""D" B’ the particle
oscillates about the center to the right near the second interface.
Here n3=n3=0.13, n3=0.23, n;=0.01, and a,=a;=2.0,
a,=1.5, and a;=2.5. The power of the corresponding wave
packet is P =2.

composite potential, a new parameter will be introduced;
it is nod, where d =2x, is the distance between the two
interfaces. We will now show how U(x) behaves as a
function of this parameter and in particular how the sta-
bility properties of the stationary surface waves change as
nod changes; the nonlinear wave localized between the
two interfaces could equally well be referred to as a non-

-
-

-030 —L

10 -

(b)

-10 o 10

FIG. 4. Potential and phase plane for case study 2. The pa-
rameters of the media are the same as for Fig. 3, but the power
of the corresponding wave packet is now P=1.6. Now the local
maximum of U near the third interface is bigger than the local
maximum near the second interface. In the phase plane we
show again the trajectory of a packet initially propagating
parallel to the second interface, after a second wave packet col-
lides with it and shifts its position to B" (see Fig. 9). After that,
the particle starts moving to the right until it has another col-
lision at C”, with the displacement now happening in opposite
directions, and with the second particle ending up at — .
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FIG. 5. Evolution of a wave packet propagating parallel to
the second interface, where the equivalent potential has a
minimum. As we can see, this wave packet is stable, as predict-
ed by the theory. The power of the wave packet is P=2.0, and
the parameters of the media are the same as those of Fig. 3.

linear guided wave. The fact that we are considering a
symmetric waveguide considerably simplifies the analysis.
First, as one can expect, the composite potential is sym-
metric; therefore, we only need to look at its behavior for
X >0 and it has a simpler form than the general case,

Ux(f):[l——H(f-Fxl)+H(f—x1)]U51(f)

+[H (% +x,)—H(X —x,)]U,o(X) ,

FIG. 6. Two narrow wave packets each propagating near and
parallel to an interface. In the equivalent potential [see Fig. 7,
regime (IV)], a minimum of U is located at the peak of each
wave packet. The total power of the field is P=4.0, twice that
of the single-peak wave packet of Fig. 5.

U,=A, [1— {tanh[27,(X +x )]

s

g
—tanh[27n;(X —x )]}

s

+ 3s(i)

{tanh®[27,(X +x,)]

—tanh’[27;(X —x,)}+C;, i=0,1

n,=a,P/8,S""=A;a; /May—a,;)m} and A,=n3—nk

We observe first that from its symmetry properties, U,
must have a critical point at X =0. Whether it is a max-
imum or a minimum depends on d*U,/dx% We have
that

[

where
J
d*U,(x=0) R 2 R
3 = —8moA tanh(ned)sech*(nd) |1— 5 sech™(ned) | ,
dx S
therefore X=0 is a minimum (maximum) if

S'922 sech?nqd.
For 0 <X <x, there is at most one critical point of U,
(this result was confirmed numerically since we have no

proof of it). Instead of explicitly finding it, when it exists,
it is easier only to prove its existence by looking at the be-
havior of dU,/dx at the interface x,. After
simplifications,
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dU,

N

1+sech?27,d
S0

therefore dU,/dx <(>)0 if S'9>(<)(1+sech?2nyd).
This result combined with the behavior of U, at X =0
gives as necessary conditions for having two symmetrical
critical points inside the interfaces that S'©'>1
+sech?2n,d and S <2sech?2n,d, then the critical
points are minima; or that S'®<1+4sech?2n,d and
S'9> 2 sech?n,d with the critical points being maxima.

The behavior of U, in the outer media can be analyzed
similarly. We have observed from numerical evaluations
of U, for different parameter values that again there is at
most one critical value of U, for X >x,. Since U, is an
increasing function of X as X — oo, we will infer the ex-
istence of the critical point from the behavior of U, at
x . We have that

dU.(x{)
dx

= —2nA,(1—sech?n,d) [1— )

=—2m,A,[1—sech*21,d)]

X

1+sech?(27n,d)
o s :

Using the fact that 9, =(a,/ayn, and S'V=(a,/ay)S'?,
the condition for existence of critical points in the outer

media is
] ’
and they are always minima.

We show in Fig. 7 in an S'%,5.d plane all the regions
of different potentials for fixed values of A; and ay/qa;.
From here we can extract to a first approximation the ex-
istence and stability properties of surface and guided
waves in such a configuration. Note that the scaling of
our problem allows us to extract very general information
regarding bifurcation of new branches and their stability
under widely differing physical conditions. For example,
keeping the power which is proportional to 7, fixed, and
reducing the thin-film waveguide width d corresponds to
moving along a horizontal line at constant S;; both a and
the linear mismatch A are also fixed. For example, at
S, =0.25 as the guide width d reduces, the stable sym-
metric nonlinear guided wave solution in region (VI) loses
it stability as one crosses the curve into region (IV). On
the other hand, keeping the power 7, and guide width d
fixed, we can move vertically by increasing the linear
refractive-index mismatch A. At 7,d =1.0 the unstable
symmetric guided wave regains stability as one crosses
from region (IV) into region (I). These features were
confirmed numerically and are consistent with exactly
computed nonlinear guided-wave bifurcation diagrams.
In fact, all of the essential features of these bifurcation di-
agrams including the existence and stability of the non-
linear waves on the surface polariton branch are evident
from the potentials sketched for each regime in the
figure. Consistent with the single-interface case, we ex-
pect that corrections of those potentials in regions (III)

dU.(x{) a
— =71 20 or §'9 <=2 [1+sech?

dax a,

24 d
aono

2 2 2
ny, a,|Ne | Ny, @,

~—d—
C = corner at interface
Co= minimum outside
Ci = minimum inside

S = maximum inside

A

C,SC; (1)

csC ()
N
A%
CoSCo (IV) | CoGi SCo (V1) W
. 1 1

csc;sC (v~
o 1 2 3 4 5

7,d

So

G ()

FIG. 7. S,,nd parameter representation of the different po-
tentials in a symmetric waveguide. Here a=0.5. Six different
regimes are obtained and each is characterized by the critical
points of the equivalent potential. In our notation C,, means
that there is a minimum between (outside the interfaces), S
means that there is a maximum at ¥ =0, and C means that there
is a corner at the interface.

and (V) having corners will lead to a smoothing of the
latter into local minima. We also observed that when
nod >>1, U, indeed looks like “‘patched” potentials of the
single-interface problem.

IV. APPLICATIONS: A SOLITON SWITCH
AND DIRECTIONAL COUPLER

In this section we are going to show two applications
of the theory: a switch based on soliton collision and a
directional coupler which relies on a linearly ramped re-
fractive index. In both cases, what we will do in effect is
to destabilize stable stationary wave packets propagating
close to one interface, by making it collide with a second
wave packet.

It is well known that in NLS, solitons have the remark-
able property that when two of them with different am-
plitudes 7, and velocities v;, i =1,2 collide they remain
unchanged and each will continue propagating with the
same velocity v;. The net effect of the collision is that the
center of mass X; of each is displaced by an amount 8X%;,
i =1,2 where

(m+m)*+ 1w, —v3)
In 9)
(771_772)2'1"%(”1 —v,)?

v, D,

8_ =
i \Ul_vzt‘*’?]

and 86X, = —(7,/7,)8X,. Observe that the sign of 8%, is
the same as that of the relative velocities. Since we will
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consider collisions between wave packets with relative ve-
locities, such that the collision time is small, we will ap-
proximate its effect by ignoring the perturbation terms
due to the interfaces; thus the wave packets will suffer a
displacement that will be given by (9). Therefore, if a
small moving wave packet collides with a stationary large
one, i.e., 1, <1, ¥, —V, = —v, <0, the phase shift experi-
enced by the larger packet is negative, and the amount of
this shift depends on v,. These assumptions were tested
using waveguides whose parameters are that of Figs. 3
and 4. In all cases studied, the stationary wave packet
before the collision propagates parallel and to the right of
the second interface (see Fig. 5). Its evolution after the
collision is obtained by first calculating, using (9), its
phase shift due to the collision; the equivalent particle is
thus displaced to the left by the computed amount. By
ignoring other effects during and after the collision, the

(a) = B
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FIG. 8. Evolution of two wave packets in a nonlinear
waveguide with the parameters of Fig. 3. The equivalent poten-
tial of that figure corresponds to the bigger wave packet. The
three cases correspond, respectively, to the three trajectories
shown in Fig. 3(b). The power of the bigger packet is P=2.0
and that of the smaller is P=1.2.
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subsequent dynamics of the equivalent particle will be
determined from its new location. Consider, for exam-
ple, the case corresponding to Fig. 3, where there are
three possibilities of subsequent behavior. First, the dis-
placement is sufficiently large so that the equivalent parti-
cle originally located at the bottom of the well to the
right of the second interface, is displaced to the left of the
nearby maximum and its subsequent dynamics consists of
oscillations in the deep potential well between interfaces 1
and 2. The whole trajectory follows 4ABCD in Fig. 3. A
numerical solution of (1) shows the corresponding evolu-
tion of the wave packet in Fig. 8. The other two possibil-
ities occur if the displacement leaves the particle between
the maximum and its original position. In these cases, ei-
ther the new potential energy of the particle is sufficient
to carry it past the new maximum to its right [trajectories
AB’'C’D’ in Fig. 3(b) and AB"”'C"C’'D'"E’’ in Fig.
3(b)], or if it is not large, it will simply oscillate about its
original equilibrium position [AB"'C""D"”B" in Fig. 3(b)].
As in the previous case, the corresponding evolution of
the wave packets was obtained from direct integration of
the governing equation (1), and we show the results in
Figs. 8 and 9. Note that, in some cases, there can be

HL \\\/N

|
\

|
|
o

D

o
x

FIG. 9. Evolution of two wave packets in a nonlinear
waveguide with the parameters of Fig. 4. The equivalent poten-
tial of that figure corresponds to the bigger wave packet. Here,
the packet originally propagating parallel to the second inter-
face with power P = 1.6 evolves according to the theoretical tra-
jectory shown in Fig. 4(b). For the incident wave packet P=1.2
and v, =0.36.
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more than one collision between the two wave packets
and each collision changes the trajectory according to (9).
Although our main focus has been the evolution of the
originally stationary wave packet, one can also describe
the small incident wave packet. Figure 10 shows the po-
tential and phase portrait of its equivalent particle, where
the theoretical trajectory abcdef contains all the features
of the actual evolution seen on Fig. 9. We can think of
this effect as that of a scanner where the parameters of
the second wave packet determines the asymptotic loca-
tion of the first one.

Looking back to the case shown in Fig. 9, where the
wave packet that originally was propagating near the
second interface ends up in the far right, if in the medium
next to the third interface, we add a suitable x depen-
dence on the linear refractive index, we can design a
switch.

It is known that if there are no interfaces but instead
the refractive index of the dielectric n? has the form
n3+a,|F|>—yx, then

JEN— i(RE— 2
A (x,T)Z\/al/ZF(x,z)el(B niz/28)

will satisfy

oY

(a)

U(x)

-0.10}H

-020 +
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FIG. 10. Potential and phase plane of the equivalent particle
corresponding to the smaller wave packet of Fig. 9. Again, in
the phase plane we show the theoretical trajectory of the
equivalent particle.
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Using perturbation theory as we did earlier in I to obtain
the equivalent-particle description for beams, or by calcu-
lating the solution exactly,'” one finds that 4 has the soli-
ton shape where now

dx dv

dr v dr Y
that is, the equivalent particle experiences a deceleration
of 4y.

Having introduced this new behavior, the designing of
the switch becomes very simple. We now assume for the
case shown in Fig. 9 that the dielectric at the right of the
third interface has a refractive index that starts decreas-
ing by yx after some x’ to the right of the location of the
minima in the equivalent potential. Then, the equivalent
particle, once it crosses x’, will start decelerating and
with the proper choice of parameters, the idea is to even-
tually have the particle oscillating about the well next to
the third interface. We achieved this by choosing x’ to
be one unit distance from the location of the minima and
v =0.05 (see Fig. 11). The whole experiment describes a
switch of a wave packet initially propagating parallel to
the second interface, to a new trajectory parallel to the
third interface. The switching mechanism was triggered
by a second wave packet.

FIG. 11. Trapping of the wave packet originally propagating
parallel to the second interface located at x =0. For x > 13.8,
the linear refractive-index coefficient decreases linearly in x.
The constant of proportionality y is 0.05. The parameters of
the media are those of Fig. 4, and of the wave packets, are those
of Fig. 9.
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V.BOUND SOLITONS

For most of this work, we have considered initial wave
packets that have the sech-like shape typical of the one-
soliton solution of NLS. However, interesting phenome-
na can occur for different initial conditions. As stated
earlier, if initially the wave packet is of arbitrary shape
and far away from an interface, it will decompose into its
soliton and radiation components, and if each soliton has
different velocity, they will eventually separate before
reaching the interface and evolve as individual wave
packets. After that, the dynamics of each component is
determined by its own potential, as we have just shown.
Possible collisions between wave packets can now be un-
derstood in the context of the equivalent-particle dynam-
ics. If, instead, our initial wave packet is a bound-N soli-
ton state, that is, N soliton components each with the
same parameter v, the dynamics is more complicated
since the nonlinear interaction between solitons, so far ig-
nored in the analysis, is essential for this case. We
present here some numerical simulations for the simplest
case of a bound two-soliton initial condition!! as it ap-
proaches an interface.

In the absence of an interface, the soliton components
interact in a periodic fashion, as we can see in Fig. 12.
There the two solitons, each with different 7, oscillate
about the center of mass which moves with velocity v.
We now put in the interface. Since each soliton com-
ponent has a different 1, we can expect that the effect of

FIG. 12. Evolution of an initial bound two-soliton wave
packet in a nonlinear medium with no interface. The soliton pa-
rameters are 77, =0.35, 1,=0.25 and the center of mass velocity
is —0.2.

the interface is different for each one (one has to
remember that in the single-soliton dynamics the
equivalent potential was 7 dependent). The question is
whether this different effect is enough to cause the soli-
tons to split. Two cases are shown in Figs. 13 and 14;
both cases have the same parameters except for the veloc-
ity of the center of mass, which is bigger in Fig. 14.
Indeed, we see splitting occurring at the interface in both
cases, and in the second case we see that one of the com-
ponents seems to be trapped near the corresponding
minimum of its equivalent potential.

To understand the dynamics with an equivalent two-
particle description, we follow the same approach used in
Sec. IV of paper I and, using the conservation laws, ob-
tain a nonlinear system of equations for the soliton pa-
rameters v;7;. The first is (d /d7)(p;+7,)=0. Alterna-
tively, one can use the perturbation theory on the scatter-
ing data of the linear problem associated with NLS
(A1).!2 A set of four equations, one for each parameter is
obtained. The first two are d7;/d7=0, i=1,2 and the
last two

dv;

1

0 :—fwamwg,,—A*w%,)dx, i=1,2
where ,;, n =1,2 are the eigenfunctions of (A1) when
A (x,0) in the exact two-soliton solution of NLS.'

In contrast with the one-soliton case, we cannot solve
these equations analytically; one would have to do it nu-
merically. This approach was used by Kodama and No-
zaki in Ref. 13, to describe soliton splitting in an optical
fiber. We are not going to do it for this case here; in-

FIG. 13. Evolution of an initial bound two-soliton wave
packet with parameters as in Fig. 12 approaching an interface.
Splitting is observed, with one soliton staying in the right-hand
medium. Here, A=0.1 and a=0.75.
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FIG. 14. Evolution of an initial bound two-soliton wave
packet approaching an interface. Here, the velocity of the
center of mass is now —O0.3, bigger than in the previous figure.
Even though splitting still occurs, both packets cross the inter-
face.

stead, we will only say that once they are separated the
propagation of each component can be described from its
equivalent potential.

VI. CONCLUSIONS

In this second paper of the series we have illustrated
how concepts well known in soliton theory can be extend-
ed in a straightforward fashion to study a variety of prob-
lems which would otherwise be intractable if one had to
rely solely on full-scale numerical simulation. The resis-
tance of spatial solitons, which are the mathematical real-
ization of self-focused light channels in the present con-
text, to perturbations or collisions with other solitons,
makes a classical particle description possible. In effect,
the small amount of radiation generated due to interac-
tion with the interface acts as a weak dissipation in an
otherwise conservative problem. The results illustrate
how global inferences can be drawn about the trajectory
of a self-focused channel as it encounters one or more op-
tical interfaces. If it should break into multiple channels,
the number created and amount of radiation generated is
known a priori, without recourse to numerical study.
Whether it stays as a single entity or breaks up after
crossing an interface, the channels trajectory (or those of
its components in the event of breakup) can be traced ac-
curately. Its subsequent behavior due to interaction with
another interface or collision with another component

(usually reflected) can also be predicted. In all cases we
have confirmed the validity of the theory with extensive
numerical computation.

The question of the stability of the nonlinear surface
and guided waves is very important from a physical
standpoint. If a nonlinear surface or guided wave is un-
stable then any experimental attempts to couple light into
it will fail. Stability analysis of these waves is very com-
plicated, requiring consideration of the stability of global
orbits in phase space rather than fixed points in more
conventional cases. With the exception of the analytic
stability result presented here, there exists only two ana-
lytic stability predictions for nonlinear waveguides.®’
The earliest prediction relied on a topological argument®
while the later one combines this with a variational ap-
proach.” Our results for the thin-film waveguide in Sec.
IIT confirm these stability predictions and, moreover,
provide a very natural global picture in terms of particles
in potentials and their equilibria. The main inference to
be drawn from our work in both papers is that the re-
stricted concept of stationary nonlinear surface or guided
waves is too limited and is of little use in analyzing or un-
derstanding the nonlinear behavior of propagating opti-
cal beams in multi-layered structures.
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APPENDIX

It is well known that for the NLS equation there is an
associated linear eigenvalue problem, first obtained by
Zakharov and Shabat,'! which determines from the
scattering data, the soliton and radiation components of a
given initial condition A4 (x,0). The associated linear
problem is

3¢,

IK—*- A (x,O)i,bz:glﬁl ,

Y,
_34— A *(X,O)lbl':@lpz )

and Satsuma and Yajima?® obtained the scattering data of
(A1) for the class of potentials

A (x,0)= A(sechx)e™™"?

(A1)

They found that there are N discrete eigenvalues of
(AD) g, =—v/4+i(A—n+1), n=1,...,N, where
A—1<N=A4+1 and there is also some continuous
spectrum. For NLS this means that the outcome of this
initial condition is a bound N-soliton component plus a
radiation component. The bound state propagates with
velocity v and in the evolution it shows periodic behavior
as in Fig. 12. We now relate this result to our problem.
The question that was left open in Sec. IV of paper I was,
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what happens to a wave packet when it crosses the inter-
face? We already explained in Sec. IV of I that in the
nonlinear regime, which is the case of interest here, the
wave packet suffers no initial changes as it crosses the in-
terface. However, once it has crossed, it will no longer be
a perfect soliton of the new medium and it will conse-
quently decompose into the normal modes associated
with the new medium. The way we will find these new
modes is by solving the corresponding linear eigenvalue
equivalent to (Al) for the nonlinear Schrodinger-like
equation in the right-hand medium, where the potential
in the linear problem will be the incoming wave packet.
The result will be, after a proper scaling, similar to the
one shown above.

Suppose that one has an initial condition for the field in
the right-hand medium where the nonlinear refractive in-
dex is a; a ‘*‘natural” soliton of the left-hand medium
given by

F(x)=12/ay2nsech[2n,(x —%)]e'(?x/227)

If, as we did in Sec. IV of I, we define the field to be
i(BE—ni)r

=1"2/a,A(x,7)e L.

then A (x,7) satisfies for the right-hand medium the ex-
act NLS, and from (A?2) its initial condition would be

(A2)

i(vx/2+20)

L_Znosech[Zno(x —X)]e (A3)

Va
Now the question of finding the normal-mode decomposi-
tion of a “‘natural” soliton of the left-hand medium in the
right-hand medium translates into find the scattering
data of (A1), with Eq. (A3) as potential. But this is now a
simple problem, since if we make the following transfor-
mations,

x'=2nyx—X),

l,[/l _di e—z’[u(i/2l+200]
1= ¥ ,

, i[v(X/2)+20,]

Y, =1e ”,

(A1) becomes

11’1 ’ I

8 5 A X =¢"Y),

av (A4)
2

—im AT =S

where now

A'(x")=1/V a(sechx’)e and ¢'=g/27, This is
exactly the case mentioned at the beginning of this sec-
tion, and if we translate the result shown above to this
particular problem one has that (4) will decompose into N

vx' /27,

solitons and radiation where now 1/Va—1<N=<1/Va.
Each  soliton has parameters ¢,=—v,/4+in,
=—v/4+i(1/Va—n+1)2n, n=1,...,N. Observe

that since a=ay/a,; =1, N> 1.

We can also quantify the amount of power transferred
into radiation modes using the trace formulas which are
the nonlinear analogue of the Parseval’s relations.'®
These formulas relate the conserved quantities of NLS,
C,, with the scattering data of (A1) and they are

=2 % —Ql\ Sk Sk 1 f

k=1
where g, are the discrete eigenvalues of (A1) and R is the
reflection coefficient given in terms of the contin-

¢" n(1—|R?)dc,

uous spectrum of (Al). For n=1 one has C,
=—f°° A A *dx; therefore
~cl—4§; m—Af In(1—|R[}ds . (AS)

k=1
If 4(x,0) is an almost reflectionless potential, which, as
we will see, is the case in our problem, |R|<<1, and in
this case the amount of power in the radiation modes
given by the integral of |R|? simply is

f lRlde #f AA*dx 477'277,‘ .
k=1
If instead one has the case of a soliton initially in the
right-hand medium and crossing the interface, to deter-
mine the decomposition of this soliton in the new medi-
um, one can proceed as before to find that, for this case,
the number of soliton components is
Va—Ll<N<Va+ 1. Therefore, if 0 <a <0.25 the field
in the left-hand medlum will contain no soliton com-
ponents and (A6) is for this case Parseval’s identity. If
0.25 =a =1, a single soliton will prevail but with new pa-
rameters ;= —v /4+(a—1)27, and radiation, with the
powers carried by each part given by (A3). The interpre-
tation of these results in terms of the original wave pack-
ets and the subsequent dynamics of each new component
is explained in Sec. II of this paper.

(A6)
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