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Higher retardation and multipole corrections to the dipole angular distribution
of 1s photoelectrons at low energies
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We perform a nonrelativistic calculation of the first retardation and multipole corrections to the

dipole angular distribution of 1s photoelectrons from light elements. A simple formula for this

correction is obtained which compares well with the results of exact relativistic numerical calcula-
tions, for Z ~ 40 and final electron energies between 1 eV and 2 keV. These effects are small for the

lightest Z, but their magnitude in general increases with increasing Z, reaching as much as 0.2 —0.3
for Z =20—30. The correction can change signs one or more times. The relatively large values of
the first retardation-multipole correction to the sin 0 dipole angular distribution results in some ten-

dency towards forward or backward peaking of the final electron angular distribution with respect
to the direction of the incident photon.

I. INTRODUCTION
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where k and p are, respectively, the incident photon and
outgoing electron momenta, 0 is the angle between p and
k, and A is independent of the angle 0 [throughout the

We present results of a calculation of the first retarda-
tion correction to the dipole angular distribution of 1s
photoelectrons, for low-energy final electrons (1 eV —1

keV), in the framework of the independent-particle mod-
el. We understand the first retardation correction to be a
contribution to the photoeffect amplitude corresponding
to the term linear in k-r in the expansion of the photon
plane wave. Replacing exp(ik. r) by unity gives, as is well

known, the dipole approximation in the standard form.
It has been shown previously' that, contrary to com-

mon belief, deviation from the dipole shape of the photo-
electron angular distribution may persist down to thresh-
old, especially for higher-Z elements. We find, as we dis-
cuss in this paper, that the magnitude of the first retarda-
tion correction is determined basically by a product of
three factors. One of these is n2/n, , where nI is the ratio
of screened to point-Coulomb continuum normalization
of the Ith partial wave, in this case the d and p ~aves.
Second is the cosine of the d- and p-wave phase-shift
difference, cos(5z —5&); the third factor is Za. The retar-
dation effect persists down to threshold when neither of
the first two factors is small at small energies. On the
other hand, the first retardation correction will be small
at threshold when either n~/n, &&1,' or (5z —5, ) =~/2
(as in the Coulomb case, where 5z —5,~ tr/2 at thres—h-

old).
Retardation corrections to the angular distribution of

1s photoelectrons in the point Coulomb case can be ob-
tained from a formula derived long ago by Fisher (cf.
also Ref. 1),

—4

paper we use atomic units (m, =A'=c =1)]. From con-
servation of energy we have 2pk/(Z a +p )=v/c, so
that the first retardation correction describing deviations
from the sin 0 dipole angular distribution is
—4(v /c)cos0. The coefficient 4(v/c) is small ( &0. 1) for
most of the energies in the region considered in this paper
and, of course, goes to zero at threshold.

This may be contrasted with the estimate obtained
looking at the values of k-r that are relevant for the
determination of the transition matrix element. For
inner shells the bound-state wave function is basically
Coulombic, i.e., screening effects do not have much
influence on its shape. This means, for example, that for
the 1s subshell the maximum distance which is relevant
in the integral determining the matrix element is of the
order att /Z, where att is the Bohr radius. (At higher en-

ergies the relevant distance may be significantly smaller,
due to rapid oscillations of the continuum electron wave
function. ) Therefore the relevant values of k r are
—ka& /Z, which near threshold is approximately given by
—,'Za in the Coulomb case and is smaller, particularly in

light elements, when screening is present (since the bind-
ing energy, and so the threshold k, is then smaller). The
values of 4(v/c) and Za for energies from 0.2 eV to 2
keV and Z =6, 10,26, 36 are shown in Table I.

Here we report a calculation of the correction to the 1s
photoelectron angular distribution, corresponding to the
term linear in k.r in the expansion of the photon plane
wave, which is the low-energy limit of the quadrupole
term. This correction is basically and generally of the or-
der Za (contrary to the Coulomb result) and is therefore
much bigger than the relativistic correction, which is
—(Za) or (v/c) . In the total cross section, however,
this Za term does not contribute (its integral over angles
vanishes), and the first term beyond dipole approximation
is —(Za), i.e., of the same order as the first relativistic
correction. It is thus plausible to calculate the retarda-
tion correction to the angular distribution using nonrela-
tivistic electron wave functions, whereas in the case of
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TABLE I. Values of the Coulomb retardation corrections 4(v/c) for energies 0.2 —2 keV and of the
parameter kaz /Z for the same range of energies and Z =6,10,26,36.

(keV)

0.0002
0.001
0.005
0.01
0.02
0.05
0.1

0.2
1.0
2.0

v4—
C

3.54 x 10-'
7.91 x 10-'
1.77 x 10-'
2.50 x 10-'
3.54 x 10-'
5.60 x 10-'
7.91 x 10-'
1.12 x 10-'
2.50x 10
3.54 x 10-'

kab /Z

(Z =6)

1.30x 10
1.30x 10
1.32 x 10-'
1.34 x 10-'
1.39x 10-'
1 ~

52x10-'
1.75 x 10-'
2.19x 10-'
5.77 X 10
1.02 x 10- '

kab /Z

(Z = 10)

2.30X10 '
2.3QX 1Q

2.31 x 10-'
2.33x10 '
2.35x10 '
2.43 x 10-'
2.57x10 '
2.84 x 10-'
4.98 x 10-'
7.66 x 10-'

kab /Z

(Z =26)

7.30x 10-'
7.31x 10-'
7.31 x 10-'
7.31 x 10-'
7.32 x 10-'
7.36 x 10-'
7.41 X 10
7.51 x 10-'
8.34 X 10
9.37 X 10

kab /Z

(Z =36)

1.06 x 10- '

1.06 x 10- '

1.06 x 10-'
1.06 x 10- '

1.06x10 '

1.07x10 '

1.07 X 10
1.08 x 10-'
1.14x 10-'
1.21 x 10- '

the total cross section both types of corrections have to
be considered simultaneously.

Our (approximate) analytic formula is described in Sec.
II, while Sec. III contains a comparison of this formula
with the results of numerical calculation and some dis-
cussion.

II. A FORMULA FOR THE FIRST
RETARDATION CORRECTION

The nonrelativistic matrix element for the bound-free
transition from an initial nl state of the atomic electron
to a final continuum state characterized by asymptotic
momentum p can be written as

M = f d x P*e'"'e PP„I, (2)

where g~ is the full continuum (outgoing) wave function
of the final electron, P„I is the bound-state wave function
of the initial electron, e is the photon polarization vector
and k its momentum, and P is the momentum operator.
We want to find the amplitude (2) in the approximation
in which only first two terms in the expansion of
exp(ik. r) are kept, for the case that the initial electron is
in the 1s state, i.e.,

l(r) R10(r)

where R]0 is the 1s radial function.
The angular distribution of final electrons can be sim-

ply determined with the use of the partial-wave expansion
of the continuum wave function g~ and photon plane
wave (i.e., not a true multipole expansion),

M =g(2L +1)(21 +1)i 'e

1,L

dR ~o(r)
X drr RI T jL kr

0 dr

X f dQ, PI(p. r)e rPL(p r) .

Performing the angular integration

E pM =4+i
sin 9

l(l +1) m,X g e '[P(+,(p k) P( )(p.k)—]2l +1
dR ~0(r)

X f dr r R((r)
0 dr

X [J,+,(kr)+g(, (kr)], (6)

where 0 is the angle between p and k. Using recursion
formulas for the spherical Bessel functions and Legendre
polynominals, we can write (6) in the simpler form

;s a, (k)
M =4mi(e p) g (2l +1)e ' PI'(p k),

I=] k

where the radial matrix element

dR, O(r)
aI(k)= f dr rRI(r) jr(kr) .

0 QT

Formula (7) is suitable for the analysis of successive
terms in the retardation expansion. To obtain the dipole
approximation in the standard form one has to take the
limit k ~0. This leaves only first term in (7), with the ra-
dial matrix element

f = g(21+1)i'e 'RI(r)P&(p r), .
1=0

(4a)
dR, O(r)

M '~"'= dr r R (r)rad I
dT

(9)
e'"'= g (2L +1)i jl (kr)PI (k.r),

L=0
(4b)

where 5& is the phase shift, R& the continuum radial func-
tion, and P& the Legendre polynomial. Substituting (4)
into (2) we find

This can be reduced to the standard expression by using
the relation ip„= [r,H], where p„ is the radial component
of the momentum operator

p„=i '(Blur r+') .
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We are interested in the expression for the amplitude
M including first retardation corrections, which corre-
sponds to keeping terms at most linear in k in (7). It is

easy to see that in this case only the first two terms in (7)
survive. We obtain

M =4mi (e p)(a, e '+a2e 'k cos9),

where

dR, O(r)
a, = ™drr'+'R, (r)

0 dI

(10)

In general, the expansion in powers of k (which we call
the retardation expansion) will cause mixing of various
multipoles in the multipole expansion of the amplitude,
i.e., a term of given order in k will contain contributions
from many multipoles. The only exceptions are the first
two terms, where the contribution of zeroth-order corre-
sponds to the small-k limit of the dipole terms and the
contribution of order one to the small-k limit of the quad-
rupole amplitude. By contrast, the term proportional to
k contains a next-to-leading term of the dipole ampli-
tude as well as the leading term of the octupole. The
number of multipoles contributing to a term of given or-
der in k increases with increasing powers of the photon
momentum.

It proves convenient to parametrize the correction to
the amplitude in terms of the velocity of the final elec-
tron, in analogy to the point-Coulomb matrix-element
case. This can be done using the energy conservation
equation, from which it follows that

v pk
c E+Cg

(12)

where E is the energy of the continuum electron and ez is
the (positive) binding energy of the initial electron. We
write now (10) as

5, &2 E+&g (6 —5, ) v
M =4rri (e.p)a, e ' 1+ e ' ' —cosO

p C

(13)

Deviations from the dipole angular distribution are mea-
sured by the product of u/c, cos(52 —5&), and b, where b

is defined as

a2 E+e~b=
a& p

(14)

The real radial integrals aI are proportional to the con-
tinuum normalizations Xl. This allows us to express b in

terms of the ratios of screened to point-Coulomb normal-
izations nI —=X& /Xt' as

n2
cb set

n)
(15)

where b' is the limit of b when screening is removed and
b"", which goes to unity in the limit of vanishing screen-
ing, describes the screening effects in b beyond the screen-
ing correction to point-Coulomb norrnalizations. Now,
b' is given by

c

2 p &/2 v '(6 6 )
X 1+ (v +4)'~2 —e ' ' cosg

cn&
(17)

where we have put b"'=1. The unpolarized differential
cross section calculated up to and including the first re-
tardation correction is then given by

= 3 sin 8(1+ Ircos9),do
(18)

where

Jr=2 (v +4)' —cos(5 —5 ),
1

(19)

and 3 is independent of the angle 0, and is equal to
( 3 /8 ~ )a diPole

In the point-Coulomb case 5, —5, = —tan '(2/v)
and at low energies when v&&1, 5, —5, = —

m /2 —2/v,

so that cos(5, —5, ) =2/v and a.-u/c in agreement with

(1). If, however, screening is present then 5z —5i often
differs significantly from —~/2, so that

~
cos(5z —

5& ) ~

—1.
It follows then from (19) that at low energies x-Za rath-
er then v —u/c.

III. COMPARISON WITH NUMERICAL RESULTS
AND DISCUSSION

To begin the discussion of formulas (18) and (19) we

again note that there are three main factors which deter-
mine the magnitude of the first retardation correction to
the dipole sin 0 angular distribution of 1s photoelectrons.
These are cos(52 —5i), n2/n&, and (v +4)' (u/c). Ac-
cording to the discussion in the preceding section we
have set b"'=1, which is justified for qualitative pur-
poses for inner shells where screening effects in b"' are
not large. We may expect b"' to differ significantly from
unity for outer-shell photoelectrons.

We show in Table II values of these three factors for
Z =6, 10,26, 36 and energies ranging from 0.2 eV to 1

keV. This table contains also values of the retardation
correction Ic as calculated from formula (19) and its exact
values obtained with the use of the numerical program

b c
( 2+4)1i2

where v=Za/p. Note that at threshold b'(u/c) =Za.
We have performed an analytic calculation of b"'

based on the analytic perturbation theory (APT) for
screened Coulomb potentials, in which the screening
effects are treated perturbatively. We have also con-
sidered numerical calculations. We find that screening
effects in b"' are small in the case that an electron is
ejected from an inner shell, so that for qualitative pur-
poses b"' can be approximated by unity. The main
screening effects in the retardation correction are due to
the continuum normalizations (n z /n i is significantly
different from 1 though usually not small) and to the
phase shifts.

We can write the amplitude (10) as

iblM =4vri(e p)a, e
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FOTO, calculating parameters characterizing the pho-
toelectric e8'ect. ' The shape of x as a function of the
continuum electron energy for Z =6, 10,26, 36 is shown
in Fig. 1, together with the point-Coulomb result
v =4( v /c) which is independent of Z.

For low values of Z (Z =6 and 10) the first retardation
correction at low energies (0.2 eV to —20 eV) is of the or-
der of 4(v/c) or smaller. This is due to small values of
the ratio n2/n, ( —10 ) in this case and to small values

of (v +4)' (v/c), which at low energies is =Za. The
parameter ~ is negative close to threshold, then its abso-
lute value increases with increasing energy toward a
minimum (maximum of the absolute value). The absolute
value of ~ then decreases toward a zero and at higher en-
ergies the screened and point-Coulomb values of the first
retardation correction converge, with the screened result
smaller than the Coulomb one. The position of both the
minimum and of the zero of ~ increases with increasing

TABLE II. First retardation correction as a function of energy as obtained from formula (19) and

from the numerical program FQTo. The intermediate columns contain values of the three factors which

determine ~ for inner-shell photoelectrons.

(keV) cos(62 —
6& ) n, /n

&
( 2+4)1/2 U

(num. ) [Eq. (19)]

0.0002
0.001
0.005
0.01
0.02
0.04
0.1

0.6
1.0
2.0

—1.00 X 10
—9.52 x 10- '

—6.67 x 10- '

—4.05 x 10-'
—4.04 x 10-'

3.45 X 10
6.48 X 10
9.16x 10-'
9.47 x 10-'
9.72 x 10-'

7.22 x 10-'
8.27 X 10
1.32 x 10- '

1.90x 10- '

2.86 x 10
4.01 x 10
5.67 x 10-'
8.65 x10-'
9.12 x 10-'
9.21 X 10

Z=6
4.38 x 10-'
4.40 x 10-'
4.47x10 '
4.55 X 10
4.72 x 10-'
5.04 x 10-'
5.90x10 '
1.06 x 10- '

1.33x10 '

1.82 x 10-'

—5.89x10 '
—6.44x10 '
—7.35 X 10
—6.54 X 10
—1.02x10 '

1.30x10 '
4.06x10 '
1.62x10 '

2.22x10 '

3.3lx10 '

—6.33x10 '
—6.93x10 '
—7.89x10 '
—7.02x10 '
—1.09x10 '

1.39x10 '
4.33x10 '

1.69x10 '

2.29x10 '

3.27x10 '

0.0002
0.001
0.005
0.01
0.02
0.05
0.1

0.2
1.0
2.0

—7.99 X 10
—9.35 X 10
—9.92 X 10
—9.24 x 10- '

—7.60 X 10
—3.22 X 10

1.23 X 10
4.64x 10-'
8.60 X 10
9.24 X 10

2.86X10 '
3.24 x 10-'
5.01 X 10
7.15x 10
1.14x 10
2.34 x 10-'
3.63 x 10-'
5. 11 x 10
8.09 X 10
8.90x 10-'

Z =10
7.30 X
7.31 x
7.35 x
7.41x
7.51x
7.82 x
8.30x
9.20x
1.45 x
1.92 x

10
10
10
10
10
10
10
10
10-'
10

—3.15x10 '
—4.18x 10-'
—6.92x10 '
—9.26 X 10
—1.24x10 '
—1.12 x 10-'

6.94x10 '
4. 14x 10-'
1.94x10 '

3.06 x 10-'

—3.34x10 '
—4.43x10 '
—7.32x10 '
—9.79x10 '
—1.31 x 10-'
—1.18x10 '

7.42x10 '
4.36x10 '
2.02x10 '

3.15x10 '

0.0002
0.001
0.005
0.01
0.02
0.05
0.1

0.5
1.0
2.0

—9.01 x 10-'
—3.56 X 10
—7.42 X 10
—9.00 X 10
—9.95 X 10
—9.32 X 10
—7.42 x 10- '

1.86 x 10
3.43 x 10-'
5.95 x 10-'

2.77 x 10- '

3.00x 10
3.77 x 10-'
4.30x 10- '

4.69 x10-'
4.73x10 '

4.88 x10-'
5.78 X 10
6.50 x 10-'
7.36 x 10-'

Z =26
1.90 X 10
1.90 X 10
1.90x 10- '

1.90 X 10
1.91 X 10
1.92 x 10- '

1.94 X 10
2.09 X 10
2.27 X 10
2.60 x 10- '

—8.38 x 10-'
—3.85x10 '
—1.03 x 10
—1.43 X 10
—1.73x10 '

—1.65x10 '

—1.37x10 '

2.82 X 10
9.73x10 '
2.20 x 10- '

—9.48x10 '
—4.05 X 10
—1.06x10 '

—1.47x10 '

—1.78x10 '

—1.69x10 '

—1.40x10 '

4.50x10 '
1.01 x 10
2.27 X 10

0.0002
0.001
0.005
0.01
0.02
0.05
0.1

0.5
1.0
2.0

9.27 X 10
6.81 x 10-'

—2.28 X 10
—7.36x 10- '

—9.66 X 10
—9.83 x 10-'
—8.63 X 10
—2.72 X 10

5 93X10
3.59 X 10

3.92 X 10
4.47 x 10- '

5.91 x 10-'
5.89 X 10
5.36x 10- '

5.28 X 10
5.43 x10-'
5.90 X 10
6.35 X 10
6.97 x 10-'

Z =36
2.63 X 10
2.63 x 10-'
2.63 x 10-'
2.63 x 10-'
2.63 x 10-'
2.64 x 10- '

2.66 x 10- '

2.77 x 10- '

2.91 x 10
—'

3.17x 10- '

1.86 x 10-'
1.59 x 10-'

—6.71 x 10-'
—2.21 x 10- '

—2.66 x 10- '

—2.69 X 10
—2.46 x 10-'
—8.91 x 10-'

1.55 X 10
1.51 x 10-'

1.91 x 10- '

1.60x10 '

—7.11 x 10-'
—2.28x10 '

—2.73 x 10-'
—2.74 x 10- '

—2.49 x 10-'
—9.09 x 10-'

2.01 x 10-'
1.59 x 10-'
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Z=6
0.4

0.2

TABLE III. First retardation correction at threshold, as a
function of Z.

Z

g 0.2-
0

0.4 10-2
I

(a)

I

-0.2
0.4—

c)
1

I I

0.2—
0.2

-0.2

10 4
I l ~ I . I

10
E (keV)

-04
10

I . I

10 2

E(kev)

FIG. 1. Numerical values of the first retardation correction
(curve 1) for (a) Z =6, (b) Z = 10, (c) Z =26, and (d) Z =36, as
a function of photoelectron energy E. The Coulomb retardation
correction 4(U/c) (curve 2) is also shown for comparison with
the screened case.

6
8

10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40

—5.77 X 10
—4.19X 10
—2.92x10 '
—1.30x 10

1.21 x 10-'
3.37x10 '
5.08 x 10-'

—2.60 x 10-'
—1.72x10 '
—3.24 x 10-'
—1.24x10 '

5.39 x 10-'
1.10x10 '
7.98x10 '
1.36x 10- '

1.89 X 10
—4.54 X 10
—3.58 x 10-'

Z. In general, for low atomic numbers the first retarda-
tion correction at lower energies is smaller than U/c. Its
value increases after passing through zero and at higher
energies (1—2 keV) approaches the point-Coulomb result.

For Z =26, which is the next case considered in detail
in this paper, the value of the first retardation correction
is also small close to threshold. However, this is now due
to 5z —5, having values close to ~/2 for very low energies
(cf. also Ref. 11). With increasing energy ~v~ increases
rapidly toward a minimum of w (maximum of the abso-
lute value) at E =20 eV. The value of Ir at the minimum
is about —0. 18. For Z =36 the first retardation correc-
tion to the angular distribution is positive at threshold
and of the order of 0.2. It has two zeros now —the first
for E=3 eV and the second one between 0.9 and 1 keV.
The value of ~ at the minimum is = —0.27. In general,
when the parameter ~ is not small it is of the order of
ka~ /Z.

The values of a. as obtained from formula (19) compare
well with the exact numerical values and reAect the same
type of behavior with energy. The error of Eq. (19) does
not exceed 10%.

The sign of the first retardation correction depends on
the sign of cos(5~ —5, ). Whether the number of zeros of
~ is odd or even depends on its sign at threshold and at
high energy. As we have seen, the first retardation
correction approaches the positive point-Coulomb result
as energy increases, so that what matters is the sign at
threshold, determined by cos(52 —

6& ). If x is positive for
E~0+ it will have an even number of zeros (e.g. , two for
Z =36), while if cos(52 —5, ) is negative at threshold w

will pass through zero at least once. The values of the
first retardation correction at threshold are shown in
Table III. We see that the sign of ~ at threshold changes

b ((0)=51(0)—5((0), (20)

where 51(p) is the Coulomb phase corresponding to the
long-range Coulombic tail of the potential, can be related
to the number of bound states N&, with the angular
momentum I, below some (small) energy —e with e &0.
The expression is'

Xl =E((1/7r)b, I(0)+co), 0 ~ co (1 (21)

where E(x) is the largest integer not exceeding x. When
the number of bound states increases by one, the phase
shift at threshold, 6&(0), increases by n.. These changes
occur at different Z for different l, " so that the difference
of phase shifts oscillates.

The first threshold sign change of ~, in the vicinity of
Z = 10 (neon), corresponds to the increase of the number
of bound states with l =1, when the 3p level dives deeply
enough and starts to be filled. The next change of sign
occurs near the next rare gas (Z = 18), when the 3d level
becomes bound by the short-range part of the potential
with the 2p and 3p subshells already filled. The third
change of sign takes place when the 4p subshell becomes
bound by the short-range potential well, and the last
change displayed in Table III corresponds to the situa-
tion when the 4d level dives deeply enough.

We cannot be a priori sure that, performing an expan-
sion in powers of k-r, we have obtained the entire leading
correction to the dipole cross section, since we have no
bound on the magnitude of contributions from successive
terms in an expansion in k.r. A perturbative calculation
of the next term [i.e., the one proportional to (k r) ]

several times when going from lower to higher values of
Z.

The value of this non-Coulombic part of the phase shift
at threshold



39 HIGHER RETARDATION AND MULTIPOLE CORRECTIONS TO. . . 1779

yields a result an order of magnitude smaller than that
discussed here, but we lack a proof that there are no oth-
er terms of a similar or greater order of magnitude.

To summarize, we have obtained a simple semi-
analytic formula which can be used to find the value of
the first retardation correction to the 1s-photoelectron
angular distribution at low energies and for lighter ele-
ments. This formula shows also the role of various fac-
tors in determining this correction. Results of our calcu-
lations can be checked experimentally, since in the cases
when ~ is not small, the retardation effect cause a
significant forward or backward peaking of the angular

distribution, depending on whether ~ is positive or nega-
tive.
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