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Radiation effects from two-level atoms caused by the presence of a Fock-state field in a damped
single-mode cavity are examined. An exact recurrence differential equation for density-matrix ele-
ments valid for any number of atoms or photons is derived. Numerical solutions for different cavity
dampings (low- and high-Q cavities) and different photon numbers of the Fock-state field being
present initially in the cavity are presented. Collective effects caused by the presence of many atoms
are investigated. It is shown that new quasistationary states as well as collective radiation inhibition
appear in the time behavior of the atomic energy expectation value. These effects arise from averag-
ing over an ensemble of which each member consists of N identical two-level atoms placed into a
resonant single-mode cavity. A comparison of the obtained results with those for an initial coherent

or thermal field is also given.

I. INTRODUCTION

The radiation effects from two-level atoms caused by
the presence of a Fock-state field inside a cavity have not
been examined sufficiently in the literature. The reason
for this is that until very recently no experimental reali-
zation of photon-number (Fock) states was in sight.

However, recently Hong and Mandel' have described
the realization of a one-photon state. Later, Filipowicz
et al.? suggested a method for creation of high photon-
number (Fock) states. The method consists in the injec-
tion of two-level atoms into a lossless single-mode cavity.
The inverted atoms are injected at such a low rate that at
most one atom at a time is present in the cavity. If the
injected atoms spend a quite definite time interval in the
cavity, namely, T=(27/g)/(1/Vp +1) (g is the atom-
field coupling constant), then after a large number of
atoms has passed through the cavity a Fock state with p
photons will be created.

This and the fact that within the scope of a stimulating
action of the European Communities the experimental
groups of the Laboratoire de Spectroscopie Hertzienne de
PE.N.S. in Paris and the Institut fir Quantenoptik in
Miinchen are concentrated on production of photon-
number states, indicates to us that the experimental reali-
zation will be possible in the near future.

Since in experiments with Rydberg atoms?’ the interac-
tion of two-level atoms with a single-mode radiation field
is realized, it seems to us important to examine this prob-
lem theoretically in the case of a Fock-state field inside a
realistic cavity with damping.

The single two-level atom in a damped cavity has been
already treated extensively in the literature.*> In our
previous work® we have treated the many-atom spontane-
ous emission in a damped cavity. Therefore in our
present paper we examine the influence of the Fock-state
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field being present initially in the cavity on the many-
atom radiation processes. By comparing these results for
the average atomic energy with those obtained for the ini-
tial vacuum field (spontaneous emission) the new effect of
the quasistationary states as well as some new aspects
(collapse and revival phenomena) of the already known
effect of the cooperatively inhibited average radiation (see
the results in lossless cavities given by Senitsky’ in analyt-
ic form and Abate and Haken® in numerical form) are
pointed out.

In Sec. II we derive an exact recurrence equation for
density-matrix elements which is valid for an arbitrary
number of atoms and photons in the Fock state; further-
more it is also valid for any cavity damping. In Sec. III
numerical results for different cavity dampings (low- and
high-Q cavities) and different initial number of photons
are presented.

In Sec. IV we discuss the statistical aspects of the ob-
tained quantum-mechanical results. Such discussions are
not made often enough in the literature. Senitzky”® was
the first to point out that a quantum-mechanical expecta-
tion value (EV) does not necessarily give even a qualita-
tive description of a single experiment. Namely, EV’s de-
scribe an average over an ensemble of identical systems,
where the differences among the members (quantum fluc-
tuations) may add up in such a way as to make the aver-
age behavior appear greatly different from the behavior
of an individual member of the ensemble.

In Sec. V a discussion of the obtained results is given.
Moreover, the appearance of quasistationary states in the
case of an initial coherent field and their nonappearance
in the case of an initial thermal field is also demonstrated.

II. EXACT RECURRENCE EQUATION OF MOTION
FOR DENSITY-MATRIX ELEMENTS

Since Dicke’s original paper'® great interest has been
awakened in treating a sample of N identical two-level
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atoms occupying a region of dimensions small compared
with the wavelength A of the atomic transition. Howev-
er, conditions which are very close to this model have
been achieved only recently in experiments with Rydberg
atoms inside a resonant single-mode cavity.’ The
Rydberg-level transition wavelength falls in the millime-
ter range and therefore it is not difficult to prepare many
atoms lying in a volume small compared with A°.

The Liouvillian for a pointlike Dicke model inside a
resonant single-mode cavity in the rotating-wave approxi-
mation reads as

L=Ly+L x+iAg , (1
Lo=[Hy,... ), Lyg=[Hug ---1, (2)
with corresponding Hamiltonians (£=1)
Hy=H,+Hy=ow(R*+a'a), (3)
H,x=ga®R*+a'9R "), 4)
N N
R*= 3 Ri, R"= 3 R/, (5)

1=1 =1

and the field-damping Liouvillian

Ag( - )=Kf{la( - )a"l+[a,(--)a"]}, (6
where R7 R, are the population inversion and dipole-
moment operators of the /th atom, respectively, o is the
frequency of the atomic transition and the resonant field
mode, aT,a are the photon creation and annihilation
operators for the resonant field mode, g is the atom-field
coupling constant, and K is the cavity damping factor.

The statistical density operator p(t) obeys the Liouville
equation

dp(t) _

—iLp(t) . )
dr iLp(t)

I
dPn(k»,ltm)

dt :_ig{[(N_”)(”+1)(k+1)]l/2P,11+11k+1),1<m;
—[(N

—[(N =1 +1)1m]’/2P»11<k),1 1m0}

DU+1)m +1)]V%p!

Pt +1om + 1T
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In this paper we shall treat the special initial case where
the atomic system ( 4) and the radiation field (R) are sta-
tistically independent

p(0)=p (0)®pg(0), (8)
the atoms are initially totally inverted
N N N N
0)= = s = =, = s 9
PalO)= r=m 2>“<r 2" ©
and the radiation field is in a Fock state
pr(0)=1p)rripl, (10)

where p is the number of photons.

As a consequence of the special form of the Liouvillian
[cf. Egs. (1)-(6)] and the special initial condition (8), the
time evolution of the statistical density operator

plt)=exp(—itLy)exp[ —it(L ;g +iAg)]p(0 (11)

is restricted to the subspace spanned by the state vectors:

In(k))=lr,r—n) ®k)g=In) & k),

(12)
r=7,n=0,l,...,2r,k=0,1,...,n+p
<n(k)‘n’(k,)>:6un'6k1\"’

N n+p (13)
S z ln(k)){n(k)=1
n=0k=0

where the total number of state vectors is

(N+1)XN/2+p+1),5,,,0, are the Kronecker deltas,
and [ is the unit operator in the subspace.

By using the Liouville equation (7) in the interaction
picture and the relations (12) and (13) a closed set of ex-
act linear differential equations for the density-matrix ele-
ments in the interaction picture can be obtained:

N—n +1)”k]1/2prlz 1tk = 1),1(m)

HF2K[k +1m A D208, 4, =8, donik om0~ KK+ mplia 1im) 5
n—kn—k+1,...,N forn —k=>0
n=0,1,...,N, k=0,1,...,n+p, I= 0,1,...,N forn—Fk <0,
m=Il—n-+k . (14)
The total number of equations (which is equal to the number of unknowns)
(p+1D)(N 1)
=2 N+1 + +1 (15)
N 2 J—2> v —1n ) P

can be reduced by introducing new unknowns:
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I I —
[pn k), 10m T PIm, 0] for n—1 even
X, =
(k),1{m) — 1
l[pn(k),ltm)
—( __1\n—1
Xn(k),l(m)—( 1) Xl(m),n(k)’

X, 10m) =Xnro,10m) -
Namely, using Eq. (16), E

an(k),I(m)

—n)(n +1)(k +1)]'72X,
y n)n+1)(k+1)]

" g {[(N
—[(N =D +1)(m
—[(N—1 +1)1m]]/2Xn(k),l—l(mAl)}
+2K [(k +1)(m +D]72(1-8, 1, (1

+1D]'%x,

~Pliminii] for n —1 odd,

wiiol +1m+ 1 FI(N —n +1)nk]' X,

=814 pm Xnk +100m+1)

q. (14) can be transformed to real equations with a reduced number of unknowns:

n+1(k+l),!(m)

=1k —1),l1(m)

K(k +m)X, k) 1(m) >

n—kn—k+1,...,n forn—k=0

n=0,1,...,N, k=0,1,...,n+p, I= 0,1,...,n forn—k<0
m=Il—n+k, (19)
[
with the initial condition (8)—(10)
Xn(k),l(m)(o):28n08108kp8mp (20)
and
N _NEH !
ot & 22
N
+(p+ DN+ DN +(N+1) | S +p+1
(21)

III. TIME EVOLUTION OF THE ATOMIC POPULATION
INVERSION AND THE MEAN PHOTON NUMBER

Since Eq. (19) cannot be treated analitically, we solve
this equation numerically. In Figs. 1-7 we plot the
time-dependent results for the EV’s of the atomic popula-
tion inversion operator

1( N n+p 1
Z(7)=—(R? (N —
() N n§0k20 4N 2n)X, (k,n (k) T=81
(22)
and photon number operator
+ N n+p
n(r=(a'a),=1+3 3 kXyu,nk >
n=0k=0
(a'a),
a(r)y=——. (23)
P

In Fig. 1 for large and small cavity dampings
(k=K /g=35, 0.5), we plot the time evolution of the
atomic population inversion for different numbers of

FIG. 1. (R?),/N as a

Atomic population inversion Z(7)=
function of the scaled time r=gt for different numbers of atoms,
N=1,5, 10 and cavity dampings, k=35, 0.5. The radiation field
in the cavity is initially in a Fock state with different photon
numbers, p =0, §, 15.
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FIG 2. Time evolution of the atomic population inversion Z(7) in the case of a single atom (N =1) interacting with an initial
Fock-state field (with the photon number, p =0, 10, 15) inside a cavity with damping, k=0, 0.005, 0.05.

atoms, N=1,5,10 and initial photon numbers, p =0, 5,
15. In the case of large cavity damping k=K /g=>5
(low-Q cavity), the collective radiation effects cause a
more rapid decay of the EV of the atomic population in-
version. The rapidity of the decay increases with the
number N of atoms. This can be seen particularly in the
case of spontaneous emission (p =0), where
superfluorescent effects arise. In addition to these effects,
induced emission occurs in the case of an initial Fock-
state field (p =5,15). At the beginning induced emission
(which is proportional to the initial number of photons p)
predominates over spontaneous emission to such an ex-
tent that all collective radiation effects are suppressed.
This means that the atomic system begins to radiate by
normal induced emission (no correlations between
different atoms exist initially). Much later, after almost
the half of the atoms has decayed on the average
(p =15), dipole-dipole correlations will be created which
give rise to cooperative radiation effects (cf. Fig. 1). At
the same time the spontaneous emission begins to con-
tribute appreciably and predominates at later times,
where in consequence of the strong cavity damping the
mean number of photons has decreased almost to zero.

In the case of smaller cavity damping, k=0.5 (cf. Fig.
1), the photons are stored long enough in the cavity to be

reabsorbed by the atoms and thus the EV of the atomic
population inversion undergoes damped Rabi oscilla-
tions. In the case of spontaneous emission (p =0) the col-
lective effects cause a higher Rabi oscillation frequency.
Furthermore, collective inhibition effects of the average
energy radiated appear. These effects prevent a total
deexcitation of all members of the ensemble to the
ground state (Z= —1) during the Rabi oscillations (see
Refs. 7 and 8 for k=0). However, an individual member
consisting of N atoms placed into the cavity may be total-
ly deexcited (more about this in Sec. IV). In the case of
an initial Fock-state field (p =15), as can be clearly seen
from Fig. 1, induced emission predominates and at least
during the first oscillation period no collective effects
occur, i.e., the frequency will neither be increased as
compared to the single-atom case, nor will energy inhibi-
tion effects be caused.

We now analyze the numerical results for different
numbers of atoms, N =1, 5, 10 and initial photon num-
bers, p =0, 10, 15 in the case of an ideal cavity («=0) and
high-Q cavities (k=0.005, 0.05). The corresponding re-
sults for the EV of the atomic population inversion
Z=(R?),/N and mean photon number 7#=<{a'a),/p
we plot in Figs. 2-7.

In the ideal cavity case («k=0) the single-atom Rabi os-
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FIG. 3. Time evolution of the mean photon number, in n(7)={a"a ), for initial vacuum field (p =0) and 7(r)={a'a ), /p for ini-
tial Fock-state field (p =10, 15) in the case of a single atom (N =1) inside a cavity with damping, k=0, 0.005, 0.05.
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FIG. 4. Same as Fig. 2 for N =5.
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FIG. 5. Same as Fig. 3 for N =5.
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FIG. 6. Same as Fig. 2 for N=10.
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FIG. 7. Same as Fig. 3 for N=10.

cillations are sinusoidal and their frequencies are in-
creased by a factor of (p +1)!/2 (cf. Fig. 2 for p =0, 10,
15). In the many-atom case (N =35, 10) the Rabi frequen-
cies increase with the number N of atoms also (cf. Figs. 4
and 6). Since the average number of photons in the cavi-
ty is of order of N +p, the average field amplitude is pro-
portional to (N +p)!/? and therefore the Rabi frequency
is approximately proportional to (N +p)!/? (see Ref. 11).
At the same time collectively inhibited average-radiation
effects which destroy the symmetry of the single-atom
case regarding the average energy oscillation between ex-
cited (inverted atomic system, Z=1) and ground state
(total deexcitation , Z= —1), occur (the average radia-

tion emission is inhibited and the ground-state value — 1

cannot be reached). The larger the number of atoms, the
stronger the average energy inhibition becomes. Howev-
er, as already mentioned above, these effects are totally
suppressed by the induced emission (p =10,15) during
the first Rabi oscillation period. Afterwards, the collec-
tive inhibition effects become increasingly pronounced
and cause a decay (collapse) of the envelopes of the Rabi
oscillations in spite of the fact that the model is exactly
lossless (k=0). However, a subsequent revival of the en-
velopes occurs quasiperiodically. The increasing number
of atoms makes the revival periods of the envelopes
shorter, whereas the increasing number of photons p
makes it longer (cf. Figs. 4 and 6 for k=0, p =0, 10, 15,
N =35, 10 and also see Fig. 9 in Sec. V).

In the ideal cavity (k=0), because of the energy bal-
ance equation [which follows from the Liouville equation
(D]:

d(R?), d{(a'a),
+

=—2K{a'a),, (24)
dr dr (a'a),
it holds that

<RZ>,+<a”a>,=g+p for K =0 . (25)

Therefore the time evolution of the mean photon number
n=(a'a),/p (cf. Figs. 3, 5, and 7) is quite analogous to
that of the EV of the atomic population inversion (cf.
Figs. 2, 4, and 6).

In the case of small cavity damping (x=0.005, 0.05)
the field damping operator A, begins to play a role, and
therefore novel effects can be observed. First, under the
influence of the interaction Liouvillian L ,z on the states
[n(k)) of the density operator p’(t), Rabi oscillations
arise. However, these oscillations are damped by the field
damping operator

e K (k)Y (n (k)|

X(1—e XY n(k —D)Y{(ntk —1)|
~e k) (n(k)| for Kt <<1 . (26)
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The damping increases with the number of photons k be-
ing present in the state |n(k)). Therefore, despite small
cavity damping, if the number of photons is large enough,
the Rabi oscillations of the EV of the atomic population
inversion will be damped to a quasistationary state after a
short time interval Az, where KAt <<1 and Eq. (26) still
holds. The numerical results for average atomic popula-
tion inversion and mean photon number are plotted in
Figs. 2—7 for k=0.005 and 0.05.

The lifetime of the quasistationary state of the EV of
the atomic population inversion can be explained by ex-
amining the energy balance equation (24). Under the
influence of damping « and large photon number [cf. Eq.
(26)] the Rabi oscillations of the EV of the atomic popu-
lation inversion will be damped to the extent that its
time-change rate will be negligibly small compared to the

time-change rate of the mean photon number
d{a'a ), /dt caused by the cavity field damping:
d{(R?)
2K<aTa>,>> _dt—’ (27)

This leads to the conclusion that the mean number of
photons decays exponentially in the quasistationary state.
The numerical calculations in Figs. 3, 5, and 7 confirm
this conclusion. By looking at Egs. (24) and (27) the life-
time of the quasistationary state can be also explained.
That is to say, the quasistationary state begins to decay
when the number of photons has decreased to a value
where the above relation (27) is not valid any more.
Therefore, the increasing initial number of photons leads
to an earlier appearance and longer lifetimes of quasista-
tionary states (compare p =10 and p =15 in Figs. 2, 4,
and 6 for k =0.005, 0.05).

In the case of a single two-level atom there is a symme-
try in the Rabi oscillation («k=0). Namely, the EV of the
atomic population inversion oscillates between values 1
(upper level) and —1 (lower level) in an ideal cavity.
Therefore, the leakage of photons from the cavity causes
a damping to the quasistationary state, which lies in the
middle between these two values and corresponds to the
zero value of the atomic population inversion, (R?), =0
(cf. Fig. 2). As easily can be seen (and is confirmed by nu-
merical calculations) the density operator in the quasista-
tionary state has the following form:

1 p+1
pl(t)z E 2p{l(kl,nlk)(t)ln(k)><n(k)‘ ’
n=0k=0 (28)

I _ 1
Ptk n ol =Py — 1k — 1 — 1k — (1)

where p! ) ,ix)(1) is the probability to find an individual
member of an ensemble of identical systems, consisting of
a single atom placed in a resonant single-mode damped
cavity, in state |n(k)). Therefore, during the lifetime of
the quasistationary state, which arises from averaging
over an ensemble, the probabilities p/ 4, ,x)(f) remain
constant and it holds that

L zp'(1)=0. (29)

In the many-atom case the situation is more complex
because the number of states |n(k)), n =0,1, ..., N with

a fixed photon number k increases appreciably as com-
pared to the single-atom case (N =1). This gives rise to
collective inhibition effects destroying the symmetry of the
single-atom case regarding the average energy oscillations
between upper and lower states (compare Figs. 2, 4, and 6
for k=0). As already mentioned, the collective inhibition
effects prevent a total deexcitation of all individual
members of the ensemble (Z=—1). Therefore, the
quasistationary value of the EV of the atomic population
inversion, which corresponds to the time-averaged value
over many Rabi oscillations, lies in the middle between
the maximum value (Z_, =<) and certain minimum
value (Z;, > —1). The larger the number of atoms, the
stronger the average-energy inhibition becomes and
therefore the shift of the quasistationary state above the
zero value, Z >0, becomes also larger. The increasing
number of initial photons p may weaken this effect a little
(compare Figs. 4 and 6 for p=10,15). Since inhibition
effects of the average radiation damp the Rabi oscilla-
tions additionally to the already existing damping
through cavity losses and the presence of photons in the
field, the quasistationary state will be reached much ear-
lier than in the single-atom case.

IV. STATISTICAL ASPECTS OF OBTAINED
QUANTUM-MECHANICAL RESULTS

As Senitzky”? has pointed out, a quantum-mechanical
EV does not necessarily give even qualitatively a good
description of a single experiment. Only probability pre-
dictions can be made about the result of each single ex-
periment. If one carries out a measurement of a dynami-
cal variable on an individual system being member of the
quantum-statistical ensemble, usually large quantum fluc-
tuations of the result of each measurement around the
EV arise.

Our EV of the atomic population inversion (energy)
Z={R?),/N describes the average over an ensemble of
which each member consists of N identical two-level
atoms placed in a resonant single-mode damped cavity.

The invariance of the Dicke Hamiltonian [cf. Egs.
(1)=(5)] and our initial conditions [cf. Eq. (9)] with

respect to the permutation of indices i =1, ..., N of the
operators R7, R;" leads to the relations:
(R?)
R ==
N (30
2 <Rlerzn >1
Im=1
Ipzy — lsm . .
(R/R}), NN

The total atomic energy (population inversion) fluctua-
tions are given by

z,-<r>=7vl—2[<<RZ>2>,—<<RZ>,>2]

ZV(r) —
_or +.Ll_zé2)(7) ,
N N 31
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where
ZV()=(R)?),—(R}),)? (32)
are the single-atom fluctuations, and
Z2(r)=(RR}) —(R7) (R}),, i%j (33)

are the atom-atom (two-atom) correlations. As can be
seen easily the contribution from two-atom correlations
dominates for large number N of atoms:

Zf(T):f’ZC(Z)(T) for N>>1 . (34)

To demonstrate the statistical aspects of the results ob-
tained in Sec. III, we treat the five-atom case in more de-
tail. For N=5 we have six atomic levels: |n ) a5
n=0,1,...,5 [cf. Eq.(12)]. The corresponding occupa-

tion probabilities we denote by Wy, ..., W, where
n+p
Woir=3 2 Xotkonih - (35)
k=0

In the case of a lossless cavity («=0) the sum reduces to
only one term: k =n +p.

In Fig. 8 we plot the numerical results for N =35 and
different initial photon numbers p =0 and p =10 in the
case of lossless (k=0) and damped (x=0.005) cavities.
From these results it can be seen that for p =0 and k=0
the EV of the population inversion does not reach the
lowest eigenvalue — 1 (the lowest value lies at about
—0.36). This is also exhibited in the time behavior of
probabilities for finding the atomic system in any one of
the six levels. In contrast with the two-level case, the
probability of finding the atomic system in the lowest
state never reaches the value 1 [W (7)< 1 for all times,
cf. Fig. 8]. As compared with the single two-level atom,
where only probabilities for upper or lower state exist,
here we can speak statistically about collective inhibition
of the average energy radiated. This is exhibited in the
fact that in higher than two-level systems, the atomic sys-
tem does not go completely into the lowest state, as was
earlier pointed out by Senitzky’ analytically and by Abate
and Haken® numerically. In other words, for spontane-
ous emission in lossless cavities (x=0,p =0) the maximal
emitted average radiation Z(7) in a three-level system is
(N =2) about 94.45% (cf. Ref. 7), in a six-level system
(N =5) about 95.05% (cf. Figs. 4 and 8) and in an
eleven-level system (N =10) about 91.65% (cf. Fig. 6) of
the initial energy Z(0)= 1, respectively.

Statistically speaking, there is an energy inhibition if
we average over an ensemble of identical multilevel sys-
tems interacting with a single-mode resonant radiation
field inside a cavity. But there is no radiation inhibition
in a single multilevel system, since a finite nonzero proba-
bility for reaching the lowest state exist in every single ex-
periment (0 < W, <1 in Fig. 8 for k=0,p =0).

The collective inhibition of the average energy is
caused by strong energy fluctuations Z (7), which, as Eq.
(35) shows, arise from strong atom-atom correlations Z >’
[see Z,(7) for k=0,p=0 in Fig. 8]. These atom-atom
correlations prevent a total deexcitation of all individual
systems contained in the ensemble and cause quasiperiod-

ical collapses and revivals of the envelopes of Rabi oscil-
lations of the atomic energy EV [cf. Z(7) in Fig. 8 for
k=0,p =0].

We now discuss the influence of the initial Fock-state
field with p photons on the collective radiation effects.
From Figs. 8 (p =10), 4, and 6 (p =10, 15), it can be seen
that the induced emission effects compete with the collec-
tive inhibition effects in lossless cavities. Initially all col-
lective effects are suppressed. The greater the number of
initial photons p is, the more the collective effects become
suppressed. However, as time goes on strong atom-atom
correlations causing large energy fluctuations will be
created. This leads to the collapse of the envelopes of the
Rabi oscillations. Since these energy fluctuations oscil-
late quasiperiodically between the zero value and some
maximum value, the collapse will occur at the maximum
value and the revival at the zero value [compare Z(7) and
Z,(7) in Fig. 8 for p =0, 10 and k=0)]. By comparing the
numerical results for the spontaneous (p =0) and in-
duced emission (p =10), we see that the induced emission
(p =10) may cause the creation of the atom-atom correla-
tions to be approximately 15 times slower than in the
spontaneous emission case. (see also Fig. 9 in Sec. V).

As can be seen from Fig. 8, the cavity damping «
damps the Rabi oscillations to a quasistationary state.
This means that the energy fluctuations as well as the
probabilities for finding the atomic system in any one of
the six levels remain constant in time during the lifetime
of the quasistationary state. However, since there are
constant nonzero energy fluctuations, it is obvious that
energy values measured in a single experiment may differ
from the quasistationary EV appreciably. In other words
the quasistationary effect is an effect which arise from
averaging over an ensemble of identical systems. Such
effects do not appear in an individual system. Collective
effects do not play any significant role in the creation of
quasistationary energy EV’s. These effects cause only a
shift of the corresponding energy EV above the zero
value. This shift means only that the probability to find
the atomic system in upper levels is a little greater than in
lower levels: W, +W,+W,>W,+ W+ W, (cf. Fig. 8
for k=0.005).

It should be mentioned that Senitzky”® has shown that
in lossless cavities the statistical aspects introduced by
the quantum mechanics are preserved in the classical
solution. He has pointed out that in a single experiment,
the atomic population inversion oscillates approximately
like the classical energy. Namely, at # =0 both the atom-
ic system as well as the radiation field are in an energy
eigenstate (atomic system in the highest energy eigenstate
and radiation field in the vacuum state), therefore quan-
tum mechanically there exists an uncertainty in R *,R ~
and a ,a, respectively. The uncertainty in R *and R~
will produce an uncertainty in the oscillation amplitudes
of the radiated field, whereas the uncertainty in a and a
produce an uncertainty in the oscillation amplitude of the
initial field. The effective field acting on the atomic sys-
tem is the superposition of the initial field and the radiat-
ed field. There exists, thus, an uncertainty in the effective
field, which will produce an uncertainty (or spread among
the members of the ensemble) in the frequency of RZ.
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FIG. 8. Time evolutions of energy EV Z(7), energy fluctuations Z,(7) and occupation probabilities W, , (1) of atomic levels

|n )A, n=0,1,...,5for N=5, p=0,10, and xk=0,0.005.

The average over the members of the ensemble gives the
EV (R%),.

V. SUMMARY AND DISCUSSION

In the preceding sections we have examined the
influence of the Fock-state field on the many-atom radia-
tion processes in a cavity. First, we have demonstrated
some new aspects of cooperatively inhibited average radia-
tion emission, namely, the appearance of collapse and re-
vival phenomena in the Rabi oscillations of the energy
EV in a lossless cavity. In Fig. 9, to show that the re-
vivals of the envelopes occur quasiperiodically, we plot
the energy EV Z(7) and the energy fluctuations Z (1) for
N =10 and p=10,70 for longer time intervals. This
figure shows that the larger number of initial photons in-
creases the revival periods of the envelopes. The collapse
and revival of the envelopes is similar to that in the
coherent Jaynes-Cummings model'? with the difference
that there is no total collapse to the time-averaged value
taken over many Rabi oscillation periods (this value is
shifted above zero in the many-atom case), but a com-
plete revival occurs. However, as can be seen from Fig.
9, the increasing number of initial photons p causes a
more complete collapse.

Moreover, as was already pointed out in the Sec. IV,
from Fig. 9 it can be seen that the strong energy fluctua-
tions Z, cause quasiperiodical collapses of the envelopes
of the Rabi oscillations of Z. The collapse and revival
occurs at times where the average value of the energy
fluctuations Z, has its maximum or its minimum, respec-

tively. In other words, collapse and revival phenomena
arise from averaging over an ensemble of identical many-
atom systems placed into a resonant single-mode cavity.
A single many-atom system does not exhibit such a be-
havior.

Second, to our knowledge we have demonstrated for
the first time that small cavity losses damp these Rabi os-
cillations of the energy EV to a quasistationary value.
This effect arises from averaging over an ensemble of
identical systems and does not appear in the time behav-
ior of a single member of the ensemble. In the single-
atom case this quasistationary value equals zero, whereas
in the many-atom case, as a consequence of collective in-
hibition effects, this value lies above zero. The mean pho-
ton number decays exponentially:

(a'a),~e *a'a),, 0<t—1,<h1, (36)

during the lifetime At of the quasistationary state.

The question about the appearance of quasistationary
states in the case of initial field distributions differing
from the Fock-state field arises certainly. This question
will be discussed here in the case of an initial coherent
field and an initial thermal field.

The initial density operator pp(0) for a coherent state
field reads as

pr(0)=la){al
=3 pkP0)+ 3 p&P(0), (37)
p=0 p;)P’:P
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FIG. 9. Time evolution of the energy EV Z(7) and energy
fluctuations Z,(7) for longer time intervals for N =10 and
p =10,70 in the case of an ideal cavity (k=0).

p‘;{’P(O):wp‘\P><P]va:e;\mz(lcjf)[i ,
- (38)
pgowp 1,
\ * '
p’k”'<0>=e"‘“2%1p><p'\ , (39)
where w, is the Poisson distribution of photons over

Fock (number) states |p) and |al>=(a’a),=n, is the

initial mean photon number. The expectation value of
the atomic population inversion operator and photon-
number operator then reads

(L o ti

(R*),=Tr 4z [R% M b 1(0)@pg(0)]

=3 w,(RHPP, (40)
p=0
(a'a),= > wp<a+a Yo (41)
p=0
where
(R#PP'=Tr g [R7%e T, (0)p57'(0)]
(42)

and
(a'a)r?' =Tr ;z[a ae TR AR )pA(O)®p‘,’5”'(O)]
(43)

are the atomic population inversion and mean photon
number, respectively, in the case of an initial field density
matrix p%”(0). In obtaining Egs. (40) and (41) we took
into account that

(R)PP'=0, p+£p' (44)

(a'a)rr'=0, p£p’ 45)
because

Tr [R?LY: 'p ,(0)]=0, [=0,1,... (46)

Trg[LYrp%?P (0)]1=0, 1=0,1,... (47

TrrlaaL ¥R piP (0)]1=0, 1=0,1,... (48)

Tr, (LY 'p4(0)]=0, [1=0,1,... (49)

where p ,(0) is given by Eq. (9).

Eqgs. (40) and (41) mean that the atomic population in-
version (R?), as well as the mean photon number
(a'a ), are simple linear combinations of population in-
versions (R?)?? and mean photon numbers (a'a)??
corresponding to initial Fock-states fields with p photons,
respectively. Therefore, we can use our Eq. (19) for nu-
merical calculations in the case of an initial coherent
field.

In Figs. 10 and 11 we plot the numerical results for an
initial coherent field with the mean photon number
(a'a >o=10 in the single- and five-atom case for small
cavity damping «=0.005, 0.05. The obtained results
show that quasistationary states appear. There is much
analogy to the quasistationary states appearing in the
case of an initial Fock-state field. This can be well under-
stood by considering the Poissonian distribution w,,
which is the probability for finding p photons in the Fock
state |p). Namely, in calculation of the population in-
version the contribution of Fock states with small p’s
(where no quasistationary states appear) is extremely
small (e.g., wy=4.5X 1077, w,=4.5X 1074, ws
=3.7X 1072 for {(a'a),=|a|*=10). Therefore, only the
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FIG. 10. Time evolution of the atomic population inversion
Z(7) and mean photon number 7i(7)=n(7)/n, in the case of a
single atom (N =1) interacting with an initial coherent field
(with the mean photon number n,=|a|>=(a'a )¢=10) inside a
cavity with damping, k=0.005, 0.05.

contribution of Fock states with higher photon numbers
(where quasistationary states already appear) play a role.
In Figs. 10 and 11 two kinds of quasistationary states
can be distinguished. After a short time interval the so-
called coherent Jaynes-Cummings quasistationary state,'?
which is due to the special Poissonian photon distribution
of the field, appears. That is to say, in the EV of popula-
tion inversion (R ?), there is a sum over all EV’s (R*)??
corresponding to different initial Fock states, But since

k=0.05

0.5 ] k=0.005 1

2 I

0 40 80 0 40 80

FIG. 11. Same as Fig. 9 for N =5.

each (R?)PP oscillates with a different Rabi frequency
after some time interval destructive interference causing
a collapse of the envelope occurs. This is the first kind of
quasistationary states. Since these states are not a conse-
quence of the cavity damping, a subsequent revival of the
envelope can be observed.

The second kind of quasistationary states, which has
been already discussed above, appears later as a conse-
quence of cavity losses. Despite small cavity losses, the
Rabi oscillations corresponding to higher photon number
states [which give the only relevant contribution at small
times, cf., Eq. (26)] will be damped to a quasistationary
value after some short time interval. Therefore no revival
can occur any more. The exponential decay of the mean
photon number can be observed in both kinds of quasista-
tionary states (cf. Figs. 10 and 11). Moreover, the com-
parison of Figs. 10 and 11 shows that collective average-
energy inhibition effects shift the quasistationary value of
the population inversion above zero.

In the case of an initial thermal field the photon distri-
bution reads as

"0

W, — >

_ +
P g ny="<a'a), (50)

and the corresponding field density operator reads as
pr(0)="3 wlp)pl, I wi=1. (51)
p=0 p=0

From the thermal photon distribution over Fock states it
follows that the contribution of photon number states
with no or lower number of photons predominates (e.g.,
wo= 1 for (a'a)y=n,=10). Since according to Eq.
(26) the Rabi oscillations corresponding to lower number
Fock states are weaker damped, no quasistationary states
appear for such initial states. Therefore, it can be con-

0.5 k=0.005 I k=0.05
Z N=1
-0.5 , -
0.5 j
Z N=5
o AN AAA I Arrnen
-0.5 T
0 40 80 0 40 80

FIG. 12. Time evolution for the atomic population inversion
Z(7) for N=1,5 inside a cavity with an initial thermal field
(no={a'a),=10) and damping, x=0.005, 0.05.
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cluded that since the contribution of terms (R ?)?? for
p >>1 is small, no quasistationary states can appear in the
case of an initial thermal field. This is also confirmed by
numerical calculations which are plotted in Fig. 12 in the
single- and five-atom case for ny=10 and «=0.005, 0.05.
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