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This paper proposes a quantum-fluid density-functional theory (an interlinking of quantum-fluid

dynamics and density-functional theory) for dealing with molecular collisions, in order to incorpo-
rate both time dependence and excited states. Using a new kinetic energy density functional for
ion-atom collisions, we have derived a single-particle time-dependent single density equation for
many-electron systems. The equation is a new generalized nonlinear Schrodinger equation whose
solution directly yields the time-dependent charge density, current density, and a pulsating effective
potential surface on which the process occurs. The new equation is also derived through Nelson's
stochastic interpretation of the single-particle Schrodinger equation. A "thermodynamics" of the
entire time-evolving system is suggested in terms of space- and time-dependent quantities. New al-

gorithms have been devised for solving the above equation in one and two spatial dimensions, in a
succession of time steps. Results have been obtained and analyzed in the approach regime for
proton-neon high-energy (25-keV) collisions, which permit excitation but not ionization. These re-

sults show distinct nonlinear features.

I. INTRODUCTION

During the last two decades, density-based theories'
of many-electron systems, in particular, density-
functional theory (DFT), have been very successful in ex-
plaining the electronic structure, binding, and properties
of atoms, molecules, and solids, including surfaces. How-
ever, these developments have largely been restricted to
time-independent situations and to the ground state. For
example, molecular reaction dynamics, involving atomic,
molecular, and gas-surface' collisions, have remained
outside DFT. It has been our view' ' ' ' that DFT
and quantum-fiuid dynamics (QFD), i.e. , the hydro-
dynamical analogy to quantum mechanics, should jointly
form a quamtum theory of many-electron systems in
which the many-electron wave function is replaced by the
single-particle charge density and current density. This
method has the advantage of treating dynamical process-
es evolving in time in terms of a single, one-particle
time-dependent (TD) equation which is essentially a gen-
eralization ' of time-independent single-density equa-
tions derived by several workers. Because of the hy-
drodynamical analogy, it has also a bearing on "classical"
interpretations of quantum mechanics as well as on a
"thermodynamic" description of an individual many-
electron system.

Apart from the problems of time dependence and ex-
cited states, the absence of a satisfactory kinetic energy
density (KED) functional with proper local and global
behavior as well as a proper functional derivative poses
difhculties. All these three problems are incorporated in
this paper. In Sec. II A we describe the KED functional
employed in the present work on proton-neon high-
energy collisions. Section II B uses this functional along
with QFD equations to derive the TD single-density
equation (SDE) for the collisional process. The equation
is a new generalized nonlinear Schrodinger equation

(GNLSE). Section II C derives the same TDSDE from
a stochastic interpretation of the single-particle
Schrodinger equation. Section III deals with certain
"thermodynamic" implications for the electron cloud
whose motion is governed by the TDSDE. Section IV de-
scribes the finite-difference (FD) schemes employed for
solving the TDSDE in one and two spatial dimensions.
Results are discussed in terms of the TD charge density,
current density, effective potential (pulsating potential),
and chemical potential. Finally, Sec. V summarizes the
new features presented in this work.

II. TIME-DEPENDENT SINGLE-PARTICLE
DENSITY EQUATION FOR A MANY-ELECTRON

SYSTEM
A. New KED functional for the proton-neon colliding system

Figure I depicts the colliding system (proton energy,
25 keV) in a rotating coordinate frame. In view of the
high energy, a straight-line approximation is adopt-
ed in order to fix the classical trajectory on which the two
nuclei move. The trajectory R (t) is given by

R (t) =[6'+z'(t)]'~',
z(t)=[z(0) —u t], (lb)

where the "time" t is a positive semidefinite parameter;
z (t) is positive when the proton has not reached 0 and
negative when it has crossed 0. However, when the pro-
jectile energy is of the order of, say, 50 eV, as happens in
reactive collisions, the straight-line approximation is not
valid. One may then solve classical equations of motion,
incorporating the quantum-mechanical electron density,
in order to obtain the nuclear trajectory.

The kinetic energy of the interacting system (a "super-
molecule" ) consists of an atomic and a molecular part,
v1z.
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the corresponding double-g values (except for H2 for
which the Weizsacker term itself gives a good estimate of
the kinetic energy); (iii) a comparison between the behav-
ior of

b T(R)=T(R)—T( oo )= f t ~dr= f (R,N),

with respect to R, for a diatomic molecule with % =10
(Fig. 2), and that for the Hz molecule shows that (a)
the qualitative nature of the 6T curve is the same in both
cases, (b) limz o hT(R) exhibits the same behavior,
and (c) the position of the minimum in 6T (Fig. 2) is
physically reasonable. Thus, there are excellent reasons
for employing Eqs. (2)—(4).

FIG. 1. Physical model of the proton-neon atom scattering
system in a rotating coordinate frame. The proton moves in a
straight line with velocity u~ and impact parameter b. The tar-
get Ne nucleus is placed at the origin and the z(t) coordinate of
the proton is measured relative to the point 0. b has been taken
as either 1 a.u. (one-dimensional case) or 0 (two-dimensional
case); v~

= 1 a.u. (energy, 25 keV). R is the internuclear distance
and r is the distance of a point P from the Ne nucleus.

(2)

B. Time-dependent generalized nonlinear Schrodinger
equation in three-dimensional space

In this section we derive an SDE for calculating the
TD charge density and current density so that one can, in
principle, follow the collisional process from "start" to
"finish. " In view of the current status of TDDFT, we
assume the validity of the QFD equations, involving fa-
miliar DFT quantities, in three-dimensional (3D) space,
viz. a continuity equation and an equation of motion

t„[p]=Ckp ~ +— +a(N) —
—,'V p

1 (Vp)' r Vp

T
(3)

where p is the electron density of the interacting system
at the internuclear distance R. The atomic and molecu-
lar KED's are taken, respectively, as (N is the total num-
ber of electrons)

Bp
at

+ V (pVy) =0,

56 [p] p(r', t)+ —,'(Vy) + ' ' + ', dr'+U(r, t)=0,
at '

np Ir —r'(

f(R,N)t .i[P]=
N P,

f (R,N)=, —(N/10)' R exp( —0.8R),1

(4a)

(4b)

where Ck =(3/10)(3n ) and a (N) is taken from
Ghosh and Balbas. In Eq. (3) the first term in square
brackets is the "first gradient" correction discussed by us
before; ' in particular, it leads to excellent atomic ki-
netic energy, both locally and globally. In (4b), f (R, N)
satisfies the following properties: (i) t „[p]—+0 when
R ~ ~; (ii) diatomic molecular kinetic energies at R,q,
calculated by using Eqs. (2)—(4) and double-g molecular
densities, are in fairly good agreement (Table I) with

TABLE I. Molecular kinetic energies calculated according to
Eq. (2) using double-g wave functions (Ref. 46). All values are
in atomic units.

Kinetic energy

-02-

8 -0.4-
I

CL'

-0.6-

Molecule

H2
HF
N2
BF
CO

'Reference 46.

Eq. (2)

1.4791
99.8495
94.2594

130.3136
111.2529

Double-g '

1.128
100.01
108.74
124.17
112.65

-0-8-

15

FIG. 2. Change in electronic kinetic energy on molecule for-
mation, according to Eq. (5), as a function of the internuclear
distance for a diatomic molecule containing ten electrons.
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where G[p] consists of kinetic and exchange-
correlation (XC) contributions, v(r, t) is an external po-
tential in one-to-one correspondence with the density
p(r, t) for all t; p(r, t) is written in terms of a complex-
valued function P(r, t) and a real-valued velocity potential
y(r, t) as

y=p'"exp(iy), (8a)

c.e.,

p=y'exp( —2ty) = IyI' . (8b)

The initial density vanishes at infinity, the time-
dependent potential is bounded, and its derivatives are
well-behaved:

G[p]= T[p]+Exc[p] (9)

Exc [P 1
=E.[P]+E, [P]

E„[p]=—C„fp dr, C„=(—,'ir)(3ir )'

(10)

In the present work, E,[p] is neglected in order to reduce
nonlinearity in the final SDE although a local correlation
functional can be incorporated, in principle. Also, for
proton-atom collisions,

v (r, t) = v (r, R, t)= — —+Z 1

r IR(t) —rI
(12)

(13)

where v, ft(r, t) = v, ft(r, R, t) is a pulsating potential surface
governing the TD process under consideration and is
written as

5 C 2/3 4C ]/3 a(N)
eff 3 kp 3 xp r

1 f(R,N)
IR —r N

Q(r)

(14)

with the screened nuclear charge Q (r) given by

Q(r)=Z —r f ', dr' . (15)

In molecular collision theory, Macias and Riera have
discussed the use of reaction coordinates which depend
both on nuclear and electronic coordinates.

Equations (13)—(15) form the backbone of the present
QFDFT (quantum-fluid density-functional theory) ap-
proach. It is obvious that while Eq. (13) maintains time-
reversal symmetry, its solution P does not obey the super-
position principle. Equation (13) may be formally regard-
ed as describing the dynamics of a "noninteracting" sys-

where Z is the nuclear charge of the atom and R(t) is the
Coulomb trajectory on which the two nuclei move (Fig.
1). In general, v(r, t) may also contain an external TD
perturbation.

As shown in the Appendix, if one uses Eqs. (8) and
eliminates y between Eqs. (6) and (7), there results the fol-
lowing new GNLSE of a type and complexity never en-
countered:

tern of particles where the kinetic energy part is
represented by the Laplacian operator and all relevant in-
teractions are incorporated in U,ff. Note, however, that
the Laplacian in Eq. (13) does not arise from a "nonin-
teracting" kinetic energy but from the Weizsacker term
in Eq. (3). Nevertheless, the above interpretation is con-
sistent since the partitioning in Eq. (9) neglects the cou-
pling between kinetic energy and electronic interaction.

The nonlinearity in Eq. (13) arises from both nonin-
tegral powers of P (or p) and the integral in Q(r). As
shown in Sec. IV, the numerical solution of Eq. (13)
yields v, ft(r, t) and the TD single "orbital" P(r, t) for the
many-electron system, whose modulus square yields the
charge density p(r, t) and whose phase leads to the
current density j(r, t) Inv. estigations into the mathemati-
cal significance of Eq. (13) may have an important bear-
ing on the theory of nonlinear equations; especially, stud-
ies on the integrability properties of such an equation
may indicate the possibility or otherwise of quantum
chaos in certain TD phenomena. It is also conceivable
that when the time-evolving dispersive and nonlinear
terms balance each other, solitons or solitary waves may
be generated. In other words, Eq. (13) provides a new
way of extracting information about dynamical processes
through p(r, t), j(r, t), and v, tt(r, t), or any suitable parti-
tioning of these quantities. Thus, p(r, t) describes the dy-
namics of charge reorganization in the system due to the
perturbation, in particular, the flow of charge from one
region to another (local accumulation or depletion), col-
lective density oscillations, etc. Initially (t =0), if the
system is in the ground state, the current density j(r, t)
vanishes. However, as the interaction progresses with
time, j(r, t) will generally be nonvanishing since, under
the influence of the perturbation, excited states can mix
with the ground state. Since j=pVg, it can also convey
information about streamlines, vorticities ("quantum
whirlpools"), magnetic effects, ' ' etc. , generated by the
perturbation. Earlier proposals ' for directly calcu-
lating p through a single equation corresponded to only
static (time-independent) cases and in only two in-
stances ' were such equations actually solved. Howev-
er, the phase part of the "orbital" function P was not cal-
culated before; the present work reports the first DFT
calculation of both the amplitude and phase of P. Note
that, for a general excited state, the phase function (or
the velocity potential) y is not constant in space. Thus,
any attempt to deal with excited states in a DFT frame-
work should include both p' and g. Although there
have been extensions of the Hohenberg-Kohn theorem to
excited states, such extensions are valid only for static
(zero current-density) stationary states' and ensembles of
states. Kohn and Vashishta " concluded that self-
consistent Kohn-Sham (KS) equations generally do not
exist for excited states. However, such equations exist for
ensembles of states. ' ' ' ' In the present work
, v(ri,tt) ~0 as r ~ ~, for all t, like the static KS potential

and the v,z(r) defined by Deb and Cihosh and Levy
et al. This means that in the present ion-atom collision
process, excitation is permitted but ionization is not. The
approach here also satisfies the conditions of theorems 2
and 3 of Runge and Gross, required for the calculation
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of p and j from QFD equations and an action principle,
respectively. However, their theorem 4 describes p(r, t)
as a sum over occupied orbitals each of which satisfies a
TDKS equation in which v, ff(r, t) consists of a TD exter-
nal potential v (r, t), Coulomb, and XC terms (this was an
extension of the earlier TDKS equation of Deb and
Ghosh' ). The present TDSDE appears preferable to the
usual TDKS, TDHF (Hartree-Fock), and TDTF
(Thomas-Fermi) (Refs. 39—42) approaches, all of which
require the solution of more than one equation for many-
electron systems.

P(r, t)=p' (r, t)exp[i'(rt)],
where

(8a')

electron, moving under a Newtonian force arising from
an effective potential v, ff(r, t), then one can obtain Eq.
(13), as shown below. In other words, the two
viewpoints, QFDFT and stochastic (Markovian), become
equivalent making it possible to pass from one viewpoint
to the other.

In order to obtain Eq. (13), define a complex-valued
function P(r, t) as

C. Derivation of Eq. (13}from forward and backward
Fokker-Planck equations

v=cr Vg.
We also have

(22)

Following Nelson's stochastic mechanics, we will now
show the correspondence between the single-particle
QFDFT Eq. (13) dealing with the motion of a generalized
Madelung fluid and the classical dynamics of a particle of
mass m undergoing diffusion in a medium with diffusion
coefficient v according to a Markov process.

Let the state of the system at a time t be characterized
by a random position variable r(t) given by the Langevin
equation

~2

2 p
F= —Vv, z .

(23)

(24)

Using Eqs. (8a') and (22)—(24) and eliminating y (as in
Sec. IIB) between Eqs. (20) and (21) lead to an equation
governing the dynamics of the given Brownian quasipar-
ticle of mass m,

dr(t)=b(r, t)dt+dw(r, t), (16)

where b is a forward diffusion function (drift) of space
time and dw is a random variable normally distributed
with mean zero and variance o (r, t)dt The pr. obability
density p(r, t) satisfies both forward and backward
Fokker-Planck equations

2
V2+

2
. ay

p ueff
m cr Ot

Taking o =2v=fi/m, Eq. (25) becomes (in a.u. )

[ —
—,
' V +Ueff]g=t

=-a
at

(25)

(13')

Bp = —V (bp)+vV p,Bt

Bp = —V (b.p) —vV'p»
at

(17a)

(17b)

where b, corresponds to backward diffusion in time.
Taking the current velocity v(r, t) and the stochastic
(osmotic) velocity u(r, t) as

v= —,'(b+b, ),
U= 1(b—b ),

(18)

(19)

and using Nelson's definitions of the mean derivative
and the mean acceleration (F/m), one can show that
Eqs. (17a) and (17b) lead to two fiuid dynamical equations

Bp = —V (pv),
at

(20)

Bv

at
F 02

+(u.V)u —(v V)v+ V(V.u),
m 2

(21)

where F is the Newtonian force acting on the particle.
The diffusion process being considered here differs from
classical diffusion processes in two respects (i) It is non-
linear. (ii) The drift b(r, t) is not a preassigned vector
field, but depends on the solution of Eqs. (20) and (21) at
some initial time ta.

It is worthwhile to note the striking formal similarity
between Eqs. (20), (21) and the QFD Eqs. (6), (7). If one
takes the mass of the diffusing quasiparticle as that of an

This makes the interconnections between stochastic
mechanics, fluid dynamics, and quantum mechanics
transparent and interesting.

III. TOWARDS A "THERMODYNAMICS"
OF AN INDIVIDUAL MOLECULAR SYSTEM

t, (r;p(r, t)) =—,'p(r, t)kO(r, t),
PV =NkO

U =
—,'XkO

(26)

(27)

(28)

As an extension of the time-independent work of
Ghosh et al. ' ' for ground-state DFT, one may look at
the dynamics of the problem in terms of a space-time-
dependent temperature, " entropy density, and chemical
potential for the entire time-evolving system. In particu-
lar, it may be worthwhile to study the changes in the
chemical potential p(r, t) which is related to both u, ff(r, t)
and p(r, t) Thus, u, ff ac. ts as a bridge between molecular
reaction dynamics and molecular thermodynamics. "
For this purpose, one recalls that through Eq. (13) one
may consider the ¹ lectron system as an ideal system of
N noninteracting particles moving under the potential
u, ff(r, t) and, by analogy, bring in the required classical
relations for an ideal monatomic gas by replacing the
average number density %/V locally by p(r, t). Thus, one
may use the following "thermodynamic" relations (O is
the temperature while k is the Boltzmann constant; atom-
ic units are not employed in this section):
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dS =—(dU+PdV),1

0
E =U+ V~, (30)

We will use the ansatz

v, (r, t) =v(r, t) (41)

(31)
and employ a phase-space Maxwellian distribution func-
tion f (r, p, t) of the form

OdS =dE +Pd V —pdN, (32) f (r, p, t) =L (r, t)exp[ p —/2mk8(r, t)], (42)

S =
—,'Nk +Nk ln

2~mkO
h2

G =—'Nk 0+ V,~
—OS,

3/2
V—e
N

(33)

(34)

where

L(r, t)=
3/2

h
p(r, t) .

2irmk0(r, t)
(43)

BG
BN ~p

(35)
This form for L(r, t) may be obtained in two ways: (i) by
taking f (r, p, t) as

2 k

h
(36)

2amkO
p(r, t) =u,&+kO lnp ——', k8 ln (37)

Equations (36) and (37) may also be obtained from infor-
mation theory by constructing a generalized Shanon en-

tropy in terms of p(r, t) and then maximizing the entropy
subject to appropriate constraints. Note that no thermal
property is being ascribed to the temperature O.

Since the time evolution of the system is envisaged in

terms of the "classical" flow of a quantum fluid, the flow
of p(r, t) may be utilized to define microscopic rate con-
stants (c.f., Parr's definition of a distorted chemical po-
tential in a static framework). According to ground-state
DFT, the chemical potential of the entire system is con-
stant all over space at both the beginning and the end of
the process; therefore, p(r, t) describes the dynamical
evolution of the system from p;„;„,] to pz„,~.

%'e now push the thermodynamic analogy further by
bringing in a local entropy current density j,(r, t) and a
local entropy production cr(r, t) such that the following
relation holds:

Bs(r, t) +V j,(r, t) =cr(r, t),
Bt

(38)

where s(r, t) is given by Eq. (36). Below, we obtain an ex-
pression for o(r, t).

Define a velocity field v, for entropy flow as

Below, we will obtain a more general expression than Eq.
(26). For the present, replacing N/V by p(r, t), Eqs.
(26)—(35) lead to the following expressions for the entro-

py density s (r, t) and the chemical potential p(r, t)
through alternative routes:

—:—s(r, t) =
—,
' kp lnO —kp lnp

S
V

and using Eq. (37) for p(r, t), and (ii) by taking f (r, p, t)
as

N exp[ —p /2mkO(r, t)]
r, p, t =

jIexp[ —p /2mkO(r, t)]dr dp
(45)

then replacing N/V locally by p(r, t) and 8 by 8(r, t).
Here h is the phase-space volume element and N occurs
due to the normalization constraint

1

3 r, p, t d r d p = p r, t d r =N . 46

If one defines the current density as

j(r, t)= I f (r, p, t)dp,1
(47)

then j(r, t) vanishes for f (r, p, t) defined as above. There-
fore, this distribution f (r, p, t) corresponds only to states
with zero current density, e.g. , the ground state. For a
dynamical state, with nonzero current density, it is neces-
sary to define f (r, p, t) as

f (r, p, t) =L (r, t)exp[ —a(t)(p+po) /2mkO(r, t)],
(48)

where a(t) is a TD scalar variable and po is a constant ad-
ditive factor having the dimension of momentum. po
vanishes for states with zero current density while a(t)
turns out to be unity if normalization is preserved [this
may be seen by putting (48) into (46)]. Thus,

f (r, p, t)=L (r, t)exp[ —(p+po) /2mkO(r, t)] . (49)

Since f~0 as ~p~~ ~, 8(r, t) &0 Vr, t. Substituting
(49) into (47), we find

f(r, p, t) =exp[@(r, t)/kO(r, t)]

XexpI —[p /2m +u, tt(r, t)]!k8(r,t)I (44)

j, (r, t) =s(r, t)v, (r, t)

and recall that the current density j(r, t) is defined as

(39)
Po

j(r, t)= — p(r, t) .
m

(50)

j(r, t)=p(r, t)v(r, t) . (40) The KED t, (r,p) may be obtained as
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2

t, (r,p)= J f(r, p, t)dp

2

2
=—'p(r, t)kO(r, t)+ p(r, t)

Po
277l

=
—,
' pk 0+ [!i'm

2p
(51)

po
(52)

Using the continuity equation

a +V j=0,
at

(53)

which is more general than Eq. (26). Using Eqs. (40) and
(50), the velocity vector v turns out to be

IV. NUMERICAL SOLUTION OF THE TDSDE (13)

A. Solution in one spatial dimension

There does not appear to be any general numerical or
analytical method for solving GNLSE's and therefore
each such equation has to be treated individually. For
convenience, we approach the solution of Eq. (13) in two
steps. The first step assumes Eq. (13) to have only one
spatial dimension (apart from time), i.e., the colliding sys-
tem is assumed (unrealistically) to have spherical symme-
try. The second step considers the actual cylindrical
symmetry of the system by taking two spatial dimensions;
the third spatial variable, an azimuthal angle, is averaged
out. The methods of solution adopted in the two cases
are different, the second method being more general.

Taking the origin of electronic coordinates at the Ne
nucleus and using the transformations

and taking s (r, t) from Eq. (36), one obtains

as , kp BO=kpV v —s V.v —v Vs+ —' v.VO+ —'
at 2 2

y (r, t) =rP(r, t),
T —x

Eq. (13) takes the form

(60)

(61)

Using (39) and the ansatz (41), Eq. (54) becomes

(54)
1

+Veff y =i
8 2 g 2 8 3

(62)

3kp 3kpBO
dt ' ' 2 0 ' 2 0

(55)

We have solved Eq. (62) by a Crank-Nicolson-type
explicit-implicit finite-difference scheme. The final
set of difference equations, for any mesh point in t, is

Since po is a constant additive factor,

pV'. v, = — V.po=0 .

Hence, Eq. (55) takes the form

(56)

c y, +a y +b y +, =d

j =1,2. . . ,M,
C] bM 0

(M is the number of mesh points in x) where

(63)

Bs +V.j,=a,
Bt

(38') cJ
1 1

16x b,x 8x, (hx )
(64)

where the entropy production o. is given by = 2 1
aJ = +iVeff+ 2 2At 4x, (bx )

(65)

3 kp BO
CT— v -V8+

2 0 at

For a "static" stationary state

(57)
b =i 1

16x Ax

1

8x (bx)
(66)

(58)
d. ——

J 8x.

n n
ym+& ym —

&

and then o. becomes

3 ke=——(!, VO).
2 0 (59)

l

8xJ

y + &

—2y +y —1 2
it y+ —lV

(67)

Thus, it is worthwhile to note that although no thermal
property is being ascribed to the quantity O(r, t), it is
possible to write down an internally consistent set of
"thermodynamic" relations involving p, j, v, ff, p, and O.
Interestingly, the last term in Eq. (51) also occurs in the
TD transient KED functional derived by Kohl and
Dreizler [see their Eq. (9)].

In Eqs. (64)—(67), b,x and b, t are the step sizes while m
and n are the mesh points in x and t, respectively. The
mesh sizes adopted are hx =0.01 a.u. and At =0.01 a.u.
In Eq. (67), the first two terms set within large
parentheses denote the explicit finite difference approxi-
mations of (By/Bx) and (B y/Bx ), respectively.

The resulting matrix equation is tridiagonal and has
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been solved by using a modified Thomas algorithm. The
matrix equation is

a, b,

c2 a2 b2

[0]

lOl

bM-1

cM aM yM M

(68)

y~0 as r~0 oo Vt . (69)

The modified Thomas algorithm consists of the follow-
ing three steps:

(i) Compute P as follows:

c-b
P =a, —', j=2, . . . , M . (70)

(ii) Compute yj as follows:

Xl d1

J~J
y =d —,j=2, . . . , M . (71)

(iii) Compute y as follows:

3 M
3'M

- —bJ J J+ ' ~ 1 3 (72)

n + 1 )new —n + 1+(y n + 1 )old( 1 (73)

where the fraction a is a mixing coefficient (0.5 in the
present case). At this point we apply the following self-
consistent criterion:

[( n+1)old —n+1[
&5 Vm—n+1

ym
(74)

where 6 is a preassigned small positive number (0.01 in
the present case).

The inner iteration is continued until condition (74) is
satisfied. In the inner iteration, (y

"+ ' )"' is taken as

The process of solution is launched with a trial value of
y" (in the present case, this is taken from a near-
Hartree-Fock wave function for Ne) in order to first ob-
tain v,z and then d . Next, the tridiagonal matrix equa-
tion (68) is solved self-consistently subject to the bound-
ary conditions (69) in order to obtain y"+' for ail m. The
existence of a variational minimum for all t is tacitly as-
sumed. At a particular t, we first obtain the (y"+')"
from the previous t; the matrix equation is solved by us-
ing this (y" + ' )" . If this solution, (y" + '

), is far removed
from (y"+')" . If this solution, (y "+'), is far removed
from (y"+')" then we take a suitable mixture of the two
as

(y"+')" and the entire process is repeated. Throughout
the inner iteration, v,z in d is kept fixed whereas v,~ in
a is recalculated using the new (y"+')"'". For a particu-
lar t, when the self-consistent solution from the inner
iteration (y "+') is obtained, we increase the time by b, t
in order to go to the next point of time. After calculating
v,z and then d, using y "+', the whole process of inner
iteration is again repeated until self-consistency is
reached. For four time steps, we have also checked the
calculations with 6=0.001; this increases the number of
iterations required, with very little change in the final
self-consistent solution. In every iteration, normalization
(i.e., the total number of electrons) is conserved within
the computation grid. This permits excitation but not
ionization. The whole scheme is rapidly convergent.

The Crank-Nicolson scheme applied here is uncondi-
tionally stable and consistent with the original parabolic
partial differential equation (62). As a preliminary physi-
cal test, using the same algorithm, we have solved the
well-known cubic nonlinear Schrodinger equation '
where a sech-type soliton pulse is moved forward by 41
time steps and then taken back to its initial position
where the original profile is reproduced within the
prescribed tolerance limit. In this backward evolution in
time, there is no cancellation of errors with those from
the forward evolution.

We have performed rigorous stability, consistency and
convergence tests for the finite difference scheme adopted
here. The stability analysis was performed using both
Von Neumann's Fourier series method and the matrix
method. It was found that for quantum-mechanical
equations of motion, stability of FD schemes depend on
both spatial and temporal zoning and thus the usual
Fourier series method is inadequate whereas the matrix
method is satisfactory. The consistency analysis was per-
formed through the Taylor expansion of the variable con-
cerned at different mesh points and the calculation of
truncation error. The truncation error is of second order
in both Ax and b t, going to zero as Ax and At go to zero.
Thus, the FD analogue (63) is consistent with Eq. (62),
stable, and convergent.

We have solved the spherically symmetric case for 61
time steps to calculate p(r, t), the radial density
4rrr p(r, t), and v,s(r, t). The current density and chemi-
cal potential have been calculated only for the cylindri-
cally symmetric case.

B. Interpretation of one-dimensional results

One may visualize the entire collisional process as con-
sisting of approach, encounter, and departure regimes.
Since R =10.05 a.u. at t =0 and At =0.01 a.u. in these
calculations the proton is essentially in the approach re-
gime. Figures 3 and 4 depict the TD radial density and
v ff at selected intervals of time.

1. TD radial density

Figure 3 shows that the initial two peaks in the radial
density of Ne, characteristic of its shell structure, tend to
give way to only one peak. This occurs because the ini-
tial input of near-Hartree-Fock density is not a solution
of the TD density equation (13) and is transformed over
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4&r2 g
(a.u.) 6.25

& =p.pp a.u.
Rsvp. 05 a.u.

&=0.1 0 a.u.
R=9.95 a,u.

ta0.2)au.
Re9-e4a. u.

& i0.30 a.u.
R = 9.7 5 a.u.

possibility of a solitary-wave solution to Eq. (13). In oth-
er words, although there arises strong density oscillations
when the proton approaches the target Ne atom more
closely, the envelope over these fluctuations may be a sol-
itary wave. ' This can happen if the strong dispersive
effect of the Laplacian operator is counterbalanced by the
highly nonlinear effective potential in Eq. (13). A
definite conclusion on this requires a detailed mathemati-
cal analysis which is beyond the scope of the present
work.

&2.5 0.0 J r (a.u)
t = 0.40 an't.
R =9.65 a.u,

J r (a.u) 25 00
t = 050 a.u.
R= 9.55 a.u.

J r (a.u.) 2.5 00 Jr (a.u.) '2.5
& =0.6l a.u.
R=9A4 a.u.

2. Time depe-ndent effective potential

4llr g
( u ) 6.2 5'

0.0 As

0.0 J r ( a.u. ) '2.5 00 ff ( a.u.) '2.5 0.0 Jr (a.u.)
' 2.&

FIG. 3. Multiwindow plot of radial density against &r for
the proton-neon scattering system (V~ =1, b =1 a.u. ) up to 61
time steps, in the spherically symmetric approximation.

the course of time into a shell-structureless, almost stable,
TFD-like profile. The change occurs by a reduction in
height plus shifting to right of the first peak and gradual
subsiding of the second peak. Interestingly, a crownlike
structure of the surviving peak persists, seemingly as a re-
minder of the shell structure. The crown separates the
inner part ("core region") from the outer part ("valence
region") which becomes progressively more diffuse due to
the attraction by the incoming proton. The smooth inner
part (to the left of the crown) hardly undergoes any
significant change from 21 to 61 time steps. Even the
peak height remains almost the same after 30 time steps.
Thus, a distinct nonlinear feature is revealed in these ra-
dial density plots, with the inner part remaining smooth
and practically unchanged (at least between 30 and 61
time steps) while the outer part becomes more diffuse and
develops structures. In other words, as the projectile ap-
proaches, the inner part of the Ne density does not oscil-
late while the outer part does. Earlier plots of time-
evolving electronic probability density for a-H collisions
at high energies had revealed "significant unphysical
noise. " However, the outer structures in the present
25-keV collisions cannot be interpreted as either noise or
artifacts of the calculations because the magnitudes of
such density oscillations are quite outside the error limits
for the present consistent and stable calculations. Also,
such structures were not found during the forward and
backward propagation of the soliton pulse, using the
same algorithm. Note also that in relatively low-energy
a-H collisions (I-keV) density plots do not reveal any
noise.

Since a TFD-like profile of the radial density persists
over the time steps considered, there arises the interesting

ig, + —,'@„„—o. (P( /=0, (75)

where the subscripts denote partial differentiation, the
repulsive interaction (cr &0) gives rise to modulational
stability in which any initial data that vanish as
~x ~

~ oo evolve into decaying oscillations whereas a soli-
ton solution results in the case of modulational instability
(cr (0). If we write Eq. (13) as

ig, + —,'g„, — (76)

From Fig. 4, one can discern three distinct zones in v,ff,
viz. an attractive zone (negative u, s ) near the Ne nucleus,
then a repulsive zone (positive v, tr), followed by ano(her
attractive zone (negative v, tr). The occurrence of these
zones and their relative movement over a course of time
are consequences of the density-dependent attractive and
repulsive terms in v,s in Eq. (14). The logarithmic plots
show discontinuities at the boundaries separating the
different zones. Two main aspects of the time evolution
of v, ft are the following. (i) The r values separating the
three zones oscillate in a nonlinear way. The inner and
outer parts oscillate differently; sometimes they move in
opposite directions and sometimes in the same direction.
(ii) The entire potential curve oscillates (pulsating poten-
tial). Such nonlinear perturbations of the target atom
density by the incoming proton may be explained as fol-
lows: as the proton approaches the target Ne atom, the
outer "loosely bound" part of the electron density tends
to gravitate towards the proton. As a consequence, the
inner electron density is inadequately screened from the
Ne nucleus and tends to accumulate near the nucleus.
Charge accumulation in these two regions is -accom-
panied by charge depletion in the intermediate region in
order to preserve normalization. This picture is con-
sistent with the fact that electronic charge tends to flow
into the regions of negative (attractive) potential and flow
away from a region of positive (repulsive) potential. Of
the two largest dips in the effective potential plots, the
first corresponds to the inner part of the radial density
(see also Fig. 3). Note again that the three potential
zones oscillate as the interaction gradually builds up.
The oscillations of the two attractive zones may be
likened to those of a set of two nonlinear coupled oscilla-
tors. Table II gives the radial density and effective poten-
tial at the 61st time step as functions of r.

It is worthwhile to make a comment on the possibility
of solitary-wave (or soliton) solution of Eq. (13). In the
usual cubic NLSE,
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where v,a/p plays the role of rr and compare Eq. (76)
with Eq. (75) then, p being always positive, the negative
values of v,z are capable of yielding a soliton solution.
The persisting crownlike structure in the radial density
may be due to the repulsive zone of U,z causing a "modu-
lational stability. "

C. Solution in two spatial dimensions

p, ;„d(t)=fzp(r, t)dr .

Using the transformations

y=H
p=x

Eq. (13) assumes the form

(77)

(78)

(79)

The target Ne nucleus is placed at the center of cylin-
drical polar coordinates, 0 p ~, —oo ~z ~ ~, for a
proton-neon headon (b =0) collision. (See Table III.) As
in the one-dimensional case, U =1 a.u. , i.e., proton ener-

gy is 25 keV. The azimuthal angle 0~/ 2' has been
averaged out. Equation (13) is then solved by using an al-
ternating direction implicit (ADI) version of the
Crank-Nicolson FD scheme, to calculate TD charge den-
sity, current density, effective potential, and chemical po-
tential. The electronic part of the TD-induced dipole
moment is calculated as (see Table III)

3 r)y 1 r) y r) y . 1+i —2v, a y
4x Qx 4x gx gz x

(80)= a
cjj

Equation (80) is an initial boundary value problem which
has been solved by the ADI method using the following
set of boundary conditions:

At t =0, y(x, z) is known Vx, z

i OOOQQi
t = O.ppau.

R= J0.05 a.u.

1

t =0.10o.u. ~

R-9,95o.u.

t=p 2t o.u.
R= 9.95o.u.

t = 0.30o.u.
R"-g.75o u

D.O

0

t a &

0
W

a i L

4.0 00)
s

4.0 00

0.000&.-
10000.0 J r ( o.u.)

t =0.40 o.u.
RI9.65 a. u.

J r (o.u-)
t =0.SO~~.
R=g 5&a.u.

Jr (u)
t=p. 6~ o.u
R =9.44'

Jr (au. )

C)

O

00 $ 4.0 00 4.0

0.000& '

J r ( a.u. ) Jr ( a.u.) jr (a.u.)

FIG. 4. Multiwindow plot of log, 0~v, fr~ against &r for the proton-neon scattering system (v =1, b =1 a.u. ) up to 61 time steps, in
the spherically symmetric approximation.
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0.0004
0.0400
0.1521
0.1764
0.2209
0.2704
0.3025
0.3844
0.5041
0.5184
0.7396
1.0201
1.4641
1.4884
1.8769
2.6244
4.4944
4.5369
5.6169
5.7600

4nr p

7.889 X 10-'
4.007
8.828
8.699
9.213
8.599
8.766
8.124
7.228
7.167
5.786
4.281
2.671
2.526
1.283
0.626
3.715 X 10-'
1.682 X 10-'
0.163
0.0315

Ueff

—1.229 X 10'
—1.860 X 10'
—8.604
—6.715
—2.871
—2.201
—1.134
—0.473
—0.0319

0.0260
0.235
0.164
2.62 X 10

—2.061 X 10-'
—0.179
—0.221
—0.236
—0.248
—0.314
—0.310

(input density near-Hartree-Fock, Dirichlet data)
(81)

TABLE II. Radial density and effective potential of the
proton-neon atom scattering system, in the spherically sym-
metric approximation, as functions of r. Here t =0.61,
R =9.44, proton velocity is equal to 1, impact parameter is

equal to 1. The input density profile for a Ne atom at t =0 was
taken from Clementi and Roetti (Ref. 70). All values are in

atomic units.

&&expt —k /z
—z'/ Idk, (82)

so= l, e =2 for m =1,2, 3, . . . .

After integrating over 0~ /~ 2m, the only nonvanishing
term from the above infinite series is that with m =0.
The final numerical integration has been done according
to Gauss-Legendre quadrature. This entire procedure
was tested by calculating the Coulomb energy of the Ne
atom; our calculated value was 244.6 a.u. , in comparison
with the Hartree-Fock value of 245. 1 a.u.

An effective alternative (not employed in these calcula-
tions) to the expansion (82) is to employ an integral trans-
form, viz. either

used, the solution of the resulting (N —1) unknowns per
line in the (N —1) equations can be obtained at the
(n + 1)th time step via the tridiagonal Thomas algorithm.
The second approximation is obtained by reversing the
Crank-Nicolson-explicit terms and using the Thomas al-
gorithm again. Thus, the solution to Eq. (80) is obtained
by alternating between rows and columns in the (x,z)
space and then solving tridiagonal equations.

The integral in the screened nuclear charge Q, given in
Eq. (15) has been calculated in the following manner.
The Coulomb repulsion potential I ~r —r'~

I
' can be con-

sidered as the Green's function of the Laplacian operator.
In cylindrical polar coordinates (z,p, P) it is given by

1
E cos m

m=0

X J kp J kp
0

y(0, z) =O=y ( ~,z), Vz, t,
y(x, +~)=0, Vx, t .

ds s ' exp( —s ~r
—r'~ )

r —r' ~ 0
(83a)

In the ADI approach, the FD equations are written in
terms of quantities at two different time steps. Two
different FD approximations are used alternately: the
first advances the calculation from the nth to the
(n +1)th time step while the second advances the calcu-
lation from the (n +1)th to the (n +2)th time step. The
second approximation does not require any information
about values at the nth time step. The first approxima-
tion is obtained by replacing all x derivatives by Crank-
Nicolson analogues and z derivatives by an explicit
scheme. Taking X to be the number of steps in the direc-
tion (either x or z, in turn) in which the implicit scheme is

TABLE III. Time-dependent electronic induced dipole mo-
ment along the internuclear axis of a Ne atom being approached
by a proton in a straight line for a headon collision. The proton
velocity is equal to 1, impact parameter b =0; R is the internu-
clear distance. All values are in atomic units.

or

= f "ds exp( —s ~r
—r'~ ) .

0
(83b)

By interpolating the TD density p(r, t) in terms of
Gaussian-type functions in the case of (83a) and Slater-
type functions in the case of (83b), it is possible to evalu-
ate most of the integrals analytically. The basic integrals
need to be calculated at only one instant of time; at all
other times, only the interpolating coefficients change
and are to be determined separately.

The overall two-step ADI approach requires minimal
computer storage and is quite accurate. The truncation
error is OI(bx) I, OI(bz) ), and OI(b, t) I. The two-
step scheme is unconditionally stable and consistent
with the parabolic partial differential equation (80).

The final set of difference equations for the first ap-
proximation (x direction) for any mesh point in t and for
a particular m may be written as

Time

0
0.02
0.04
0.06
0.08

10.0
9.98
9.96
9.94
9.92

0
0.0058
0.055

—0.439
0.425

n+1 n+1 n+1
cIyt —i, +aiyI, +b,y, +, =d

where I =1,2, . . . , L; m =1,2, . . . , M; c, =bL =0; L is
the number of mesh points in x and M is the number of
mesh points in z.

In Eq. (84a), the quantities a, b, c,d are given by



39B. M. DEB AND P. K. CHATTARAJ1706

l

2(b,z)
3 l

16x', ~x
1 i

8x f (bx)
(87b)Cm(84b)CI

1 2
l ~ Veff

(b.z )
'

2xI
(87c)a

l 2 . 1+ l ~ Veff4x (b,x) ~ 2x,
(84c)ar=

l

2(b,z )
(87d)b m

1 i

SxI (bx )

3 l

16x, ~x i By+2 B,

(84d) By
Bx

n+1
yI, m

3 l By

4x 3

l
l V ff

2 4
Xg

d
4x,'

3i By i B y
8,' B 8' B' By

BZ2
(87e)

1
l V ff

2X(

2

dt yIm ~

As before, the derivatives in Eq. (87e) are calculated in an
explicit manner [see Eq. (85)].

Now, the following tridiagonal matrix equation is
solved by employing the same modified Thomas algo-
rithm and the boundary conditions (81):

(84e)

The various derivatives in Eq. (84e) have been calculated
by using their explicit forms, viz.

a,
c, a, b,

y1n n
By y]+1 m yt —1 m

Bx 2hx
(85a) [0] yq

(88)

B y yI"+1,m
—

2y~", m +yI" 1 m

Bx (hx)
bM —1(85b)

yMaM

yi m+1 yl +yIn -1
BZ2 (b.z)

The solution of Eq. (88) completes the ADI cycle. For
going to the next cycle, the solution of Eq. (88) is taken as
the input.

After calculating [yl" ), we obtain the TD "wave func-
tion" P from Eq. (78) and then calculate the TD density,
potential, chemical potential, and induced dipole moment
at a particular instant of time by employing Eqs. (Sb),
(14), (26), (37), and (77), respectively. The current density
j is calculated as

(85c)

In Eqs. (84) and (85), b,x, bz, and b, t are the step sizes in
x, z, and t, respectively; l, m, n denote the mesh points in
x, z, t, respectively. Here, hx =hz=ht=0. 01 a.u.

The following tridiagonal matrix equation is solved by
using a modified Thomas algorithm and the boundary
conditions (81):

j=[0„~4; —0, ~4„] . (89)

a, b,

c2 a2 b2

Using (8a), one can readily show that, in a.u. ,

j=pv =pV'g is identical to the form given by Eq. (89).d2[0]
(86)

D. Interpretation of two-dimensional results
bL[0]

The calculations pertain to the initial part of the ap-
proach regime, covering the ranges t =0—0.08,
R =10.0—9.92 a.u. All quantities reported here are with
reference to a state of no interaction at t =0, R = 10.0 al-
though, strictly speaking, the interaction does not vanish
at R =10. The induced dipole moment oscillates fairly
rapidly and even changes its sign; such oscillations have
earlier been reported by Horbatsch and mainly indicate
collective oscillations of the outer parts of neon's electron
density. Figures 5 —8 depict the perspective plots of TD
U ff p, ~ j ~, and p in a cylindrical polar coordinate mesh.

Figures 4 and 5 reveal structural similarities between
the v, ff plots for the one- and two-dimensional cases. The
oscillations of the entire pulsating potential surface now
manifest themselves more clearly. The peaks (repulsive)
and troughs (attractive) occur due to the relative magni-
tudes of the attractive and repulsive terms in v,ff. The

LyLCL

n+2 n +2 n +2c yI, —1+a yl, +b yl, +1=d (87a)

c, =bM=0,

where

A near-Hartree-Fock trial solution is used as the initial
input in order to launch the process of solution. After
solving Eq. (86), we obtain [y&"+'] which is taken as the
trial solution for the second approximation where z
derivatives are replaced by their Crank-Nicolson forms
and the x derivatives are obtained via the explicit sheme.

In case of the second approximation (z direction), the
difference equations for a particular l are
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(a)

FIG. 5. Perspective plots (a.u. ) of —50» U,~ ~ 50 in the proton-neon scattering system (U~ =1, b =0 a.u. ) in cylindrical polar coor-
dinates (p, z). The basal rectangular mesh designates the (p, z) plane, where 0~ p ~ 3.25 and —3 ~ z ~ 3. The target Ne nucleus is at
(0,0) and the proton is approaching from the left along the p=0 direction of z. (a) t =O, R =10.0; (b) t =0.02, R =9.98; (c)
t =0.04, R =9.96; (d) t =0.06,R =9.94; (e) t =0.08, R =9.92.
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ranges as well as heights (depths) of these peaks (troughs)
oscillate from t =0—0.08. At t =0 [Fig. 5(a)] there is an
infinite trough (negative, attractive U, s) at the Ne nuclear
site; along the p direction, corresponding to z =0, this
trough is followed by a peak (positive, repulsive U, s. ) and
a trough. From t =0.02 onwards, the infinite trough
[generally masked in Figs. 5(b) —5(e)] at the nuclear site is
followed by two peaks and an outer trough. During these

eight time steps, the positions of these peaks and troughs
do not change significantly. For a given p, along the z
direction, the oscillations of the highest peak are quite
noticeable. At p =0, on both sides of z =0, v,z passes
from an attractive to a repulsive zone before plunging
into the trough at the nuclear site. Since the proton is
approaching from the left, the peaks and troughs have a
somewhat asymmetrical shape. Table IV gives the values

FICx. 6. Perspective plots (a.u. ) of 0~ ~ 50p . . p 50 in the proton-neon scattering system (U = 1 b =0 a
(p, z); see caption of Fig. 5 for other details.

y U~ —,=0 a.u. ) sn cylindrical polar coordinates
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FICx. 6. (Continued).

of v, ff for a range o paf and z, at t =0.08.
f U does notn 1 the =dependent structure of U,ffgy p

d so clearly cn t e perear to be manifest

ow rominent collective oscillations, particu-

case, the attractive zones in U,ffone-dimensional case,
in these zonesation of electronic c arge incause an accumulation

se a de letion ofulsive zones tend to cause a epwhereas the repu siv
t is worthw se o nh'1 t note that theelectronic charge. It

= 1 b =0 a.u. ) in cylindrical polar coordi-atterin system ( U~
=

or other detai s.
I

~ 50 the proton-neon scatte g yp ' po
t =0.02, R =9.98; (b) t =0.08,R = . ; senates (p, z). Here (a) t =
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(b)

FIG. 8. Pers ep ctive plots (a.u. ) of —50(p ~ 50 in the roton-npo 'g
) t =0.08 R = v~ =, =0 a.u. ) in c 1'

g. or ot er details.

current density j is nonvanishing becauseing ecause as the proton
c es e e atom, excited states of the latter s

mixing with the ground state. Tas a e. able V gives the values of
p n iji for a range of p andzat t =0.08.

The mmost striking variations are observed in

P
e p r, t i. However, it is diffi epet

p o s. early, since p under oesgo
, i s ou e a very useful uantit

cess. ec niques for interpreting such com-

plicated oscillating structures
'

(

developed. In particular the
ures in p r, t) are to be

'
u ar, e accordion structure at t =

seems to occur because (i) at R =
=0

not zero
e i at =10, the interaction is

zero as we have assumed, (ii) the a roxim
f nctio 1 mplo ed

'

an as one expects in ground-state DFT d
bala d t s in E (37)
cordion struct r y

in q. . As time ro ress
ure gra ua ly disa e

hew a c aotic" an
' " pattern. Table IV gives the values

o p r, r) for a range of p and z at t =0.08.

TABABLE IV. Effective potential (U,&) and ch
~

p
1 d 1 d d

0. The initial (t =0)

poo- o 'g
p

units. For every ( z) thep, z e set of two values corres onds t
m ementi and Roetti (Ref. 70). All v 1

pon s to U,z and p from top to bottom.
va ues are in atomic

0.09 0.3025 0.64 1.69 3.24

—2.0

—0.5

0.0

0.5

2.0

—1.595
—0.6570 x 10'

0.7627
—0.4275 X 10

—26.77
0.6061 x 10'

2.896
—0.4749 X 10

—1.420
—0.2063 x 10'

—1.618
—0.217 x 10'

0.3796
—O.5164x 1O'

—1.789
—0.1357x 10'

1.688
—0.5371 x 10'

—1.447
—0.2372 x 10

—1.718
—0.1166X 10

0.5254
—0.6124 x 10'

3.820
—0.5909 x 10'

0.8916
—0.5760 x 10'

—1.561
—O. 1152x1O'

—2.572
—15.80

0 7320
—28.75

12.05
—24.30

1.103
—31.27

—2.504
—15.72

—3.980
—6.814

—9.686
—12.61

—21.48
—24.68

—10.20
—13.12

—4.040
—6.875
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0.09 0.3025

TABLE V. Charge density (p) and current density (~j~) in

the cylindrically symmetrical proton-neon scattering system as
functions of the cylindrical coordinates p and z. Here t =0.08,
R =9.92, proton velocity is equal to 1, impact parameter is
equal to 0. The initial (t =0) near-Hartree-Fock input density
for Ne was taken from Clementi and Roetti (Ref. 70). All
values are in atomic units. For every (p, z) the set of two values
corresponds to p and

~ j ~
from top to bottom.

mechanics. A preliminary report of this work is given in
Ref. 80.
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APPENDIX: DERIVATION OF THE TDSDE,
EQ. (13) WITHIN A QFDFT

Consider Eqs. (2)—(4) and (6)—(12). From Eq. (8), one
obtains

Vp=p
2V'(b —2i Vg (Ala)

V. CONCLUSION V p=p 2(VP) + 2V P SiVQ Vy.

The new features in the present study of ion-atom col-
lisions may be summarized as follows.

(i) Simultaneous incorporation of the three main prob-
lems facing present-day DFT, viz. kinetic energy, excited
states, and time dependence.

(ii) An interlinking of DFT and QFD to follow a TD
process from "start" to "finish" in terms of an SDE.

(iii) The use of a new KED functional which seems to
be the best practical compromise so far.

(iv) The derivation of a TDSDE for direct calculation
of charge density and current density, i.e., both the am-
plitude and the phase of a single "orbital" for the many-
electron system.

(v) The concept of a TD (pulsating) effective potential
surface on which the process occurs and the concept of a
space-time-dependent chemical potential.

(vi) The TDSDE is a new GNLSE and might govern a
range of dynamical processes in quantum chemistry. A
study of the integrability and other mathematical proper-
ties (e.g. , quantum solitons or solitary waves or quantum
chaos) would be of interest.

(vii} Incorporation of Nelson's stochastic mechanics
into the DFT-QFD framework.

(viii) Explicit manifestation of nonlinearity, if present,
in molecular scattering processes.

(ix) A new algorithm for the numerical solution of the
present GNLSE.

(x) Perspective plots of TD density, current density,
effective potential, and chemical potential for a quantum
process. To our knowledge, such plots of the first three
quantities were first given by Kreuzer ' in a statistical-
mechanical and Auid-dynamical treatment of the time
evolution of an ideal gas in an external potential.
Dynamical electron current induced by molecular vibra-
tion has also been depicted by Tachibana et al. in a
different context.

It is hoped that our attempt to interlink all the above
features into a consistent framework might lend addition-
al support to "classical" interpretations of quantum

—4(Vy) 2iV—y (A lb)

Bp (By/Bt } . By
Bt

(A lc)

Using Eqs. (2)—(4) and (9)—(11) leads to
'2

Pg2

p

5G, pg3 l V'p

a (N) f (R,N), ~/3

T
+ ' —

—,C„p (A2a)

Substituting the expressions for Vp and V p from (A 1}
into (A2a) the latter becomes

5G, ( 2/3+, (V )2
1 V p + iVQ Vy + i V2

5 ' kP ' y 2 P P 2 y

a (N) f (R, N)
T

+ ~
——', Cxp (A2b)

Equations (7) and (A2b) together lead to

+(V )2
1 V p+ V$ Vy+ V2 + c 2/3y 2 y y 2 y 3 kp

a(N) f (R,N}, &/3 i. p(r', t)
~r

—r'~

+U(r, t)=0,
i.e.,

By 2 1 Vp iVQVy i
Bt 2 P P 2

= —(Vy} +— — ——V y —U,fr(r, t),

(A3a)
where
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u, tt(r, t) =
—,'Ckp — +f (R, N) IN ——', C„p'

r

+ f ', dr'+u(r, t) .
p(r', t)
fr —r'/

(A3b)

Substituting the expression for By/Bt from Eq. (A3a) into
Eq. (A4), we obtain

(BPIBt ) +2 ~

(V )2 V

to
On the other hand, Eqs. (6) and (A lc) together give rise 2V .Vx 2V—y+2iu, tt(r, t)

V' g+ —2i(Vy)

1.e.,

V+ Vy
p V 7+2 2 (VX)

1.e.)

(By/Bt ) . V'y
2 t — +2iu, tr r t =0 . (A5)

(BQIBt) 2. By
V + 2V(b Vy

(A4)

It is interesting to note that if one considers any multiple
of T [p] in the KE functional the above cancellations do
not occur. This indicates the importance of the full
Weizsacker term. Equation (A5), on rearrangement,
yields the TDSDE (13).
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