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The usual mathematical model of the single-mode electromagnetic field is the harmonic oscillator
with an infinite-dimensional state space, which unfortunately cannot accommodate the existence of
a Hermitian phase operator. Recently we indicated that this difficulty may be circumvented by us-

ing an alternative, and physically indistinguishable, mathematical model of the single-mode field in-

volving a finite but arbitrarily large state space, the dimension of which is allowed to tend to infinity

after physically tneasurable results, such as expectation values, are calculated. In this paper we in-

vestigate the properties of a Hermitian phase operator which follows directly and uniquely from the
form of the phase states in this space and find them to be well behaved. The phase-number commu-
tator is not subject to the difficulties inherent in Dirac's original commutator, but still preserves the
commutator —Poisson-bracket correspondence for physical field states. In the quantum regime of
small field strengths, the phase operator predicts phase properties substantially different from those
obtained using the conventional Susskind-Glogower operators. In particular, our results are con-
sistent with the vacuum being a state of random phase and the phases of two vacuum fields being
uncorrelated. For higher-intensity fields, the quantum phase properties agree with those previously
obtained by phenomenological and semiclassical approaches, where such approximations are valid.
We illustrate the properties of the phase with a discussion of partial phase states. The Hermitian
phase operator also allows us to construct a unitary number-shift operator and phase-moment gen-
erating functions. We conclude that the alternative mathematical description of the single-mode
field presented here provides a valid, and potentially useful, quantum-mechanical approach for cal-
culating the phase properties of the electromagnetic field.

I. INTRODUCTION [$,N]= —i, (1.2)

The single-mode electromagnetic field is a well-known
physical system which has been successfully modeled by
the quantum harmonic oscillator. Indeed, the success of
quantum electrodynamics, based on Dirac's approach, ' is
undeniable. For a long time, however, the nature of the
phase of the quantized field has remained an enigma.
The oscillator model produced a suitable Herrnitian ener-

gy operator (or number operator Ã) but there was no
corresponding Hermitian phase operator. This placed
the phase in the almost unique position of being a classi-
cal observable without a corresponding Hermitian opera-
tor counterpart.

While most experiments involved thermal or vacuum
fields, the problems associated with quantum optical
phase were not important. However, the advent of the
maser and, more recently, work on squeezed light ' has
renewed interest in the problem. ' It is tantalizing that a
strong coherent field and even a suitably squeezed state
with a large coherent amplitude satisfy a phenomenolog-
ical number-phase uncertainty relation:

This is precisely the relation that has been calculated" by
using Dirac's quantum relation"

which is now known to be incorrect.
Dirac obtained the commutator (1.2) by employing the

correspondence between commutators and classical Pois-
son brackets. ' The Hermitian number and phase opera-
tors were combined in a polar decomposition of the pho-
ton annihilation operator:

a =exp(ig)X' (1.3)

The assumed Hermiticity of P implied the unitarity of
exp(iP) The diffi. culties with this approach, later real-
ized by Dirac himself, ' were clearly pointed out by
Susskind and Glogower. Firstly, the uncertainty rela-
tion (1.1) would imply that a well-defined number state
would have a phase uncertainty of greater than 2~. This
is a symptom of the fact that the commutator (1.2) does
not take account of the periodic nature of the phase.
Secondly, the commutator (1.2) gives rise to an incon-
sistency when matrix elements of the commutator are
calculated in a number-state basis. Finally, the "ex-
ponential" operator [exp(i qY) ] derived from this ap-
proach is not unitary and so does not define an Hermitian

The failure of Dirac's approach means that it is now
often accepted that a well-behaved Hermitian phase
operator does not exist.

The diSculties associated with the periodicity of the
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phase operator also arise in the classical context. Howev-
er, the apparent nonunitarity of exp(i/) [as derived from
Eq. (1.3)] is more serious. The action of exp(iP) on a
number state ~n ) can be determined from (1.3) except
when n =0. The action of exp(iP) on the vacuum is in-
determinate. The additional condition imposed in the
Susskind-Glogower formalism is that

P =arctan[p /(coax ) ] (2.2)

and is a multivalued property because the arctangent
function only defines /mod 2' I. f we allow $ to take a
continuous range of values then the rate of change of P
has the standard form

exp(iP) 0) =0 . (1.4)
(2.3)

II. CLASSICAL PHASE

It is not our intention to derive a phase operator from
the commutator —Poisson-bracket correspondence. Nev-
ertheless, it is essential that a meaningful phase operator
should reproduce the classical phase in the appropriate
limit. In this section we study the behavior of a classical
oscillator phase P, and pay particular attention to the
problem of the multivalued nature of the phase.

The classical Hamiltonian for a unit mass harmonic os-
cillator (or single-mode field) is

H =
—,'(P +co x ), (2.1)

where co is the angular frequency of the oscillator. The
phase of the oscillator is

This condition immediately destroys the unitarity of
exp( i(5 )

A well-behaved Hermitian phase operator P would
lead to a unitary operator exp( i P ) whose action on the
vacuum state is well defined. There should be no need for
additional constraints like (1.4). Moreover, the commu-
tator of the number and phase operators should not suffer
from the inconsistencies of Dirac's commutator (1.2). Be-
cause of the failure of Poisson —bracket-commutator
correspondence and decomposition of the annihilation
operator, an entirely new approach seems to be required.

We have recently indicated a new approach' which
circumvents the difficulties discussed above. This in-
volves describing the field mode in a finite but arbitrarily
large state space of s + 1 dimensions. Physical properties
such as operator expectation values are evaluated in the
limit as s tends to infinity. In this paper we explore the
details and further consequences of our approach. We
conclude that our approach and the conventional infinite
state space model are physically indistinguishable. How-
ever, our method has the additional advantage of being
able to incorporate a well-behaved Hermitian phase
operator within the formalism. Our phase operator has
properties which would normally be associated with
phase, both in the classical regime and in the quantum re-
gime of very low intensity fields. The resulting number-
phase commutator does not lead to any inconsistencies
yet satisfies the condition for Poisson —bracket-
commutator correspondence. Periodic operator func-
tions of the Hermitian phase operator can be defined.
These are found to have very different properties from
the conventional Susskind-Glogower operators"' in the
quantum region. For example, our phase operator is con-
sistent with the vacuum being a state of random phase.
The Susskind-Glogower operators are not consistent with
the vacuum being a state of random phase.

where ( ] denotes a Poisson bracket. However, it is more
useful to restrict P to lie within a specified 2' interval,
0O & P & 0O+ 2w. A common choice of 0O might be 0 or
—~, but we retain here the general case of arbitrary 0O.
We denote this choice of range by adding a subscript 0 to
the phase, thus Pz is restricted to lie in the range
0O&$&&0o+2w. When the phase is restricted in this
manner, the Poisson bracket equation of motion for the
phase becomes

(2.4)

Oo+ 2~

f P(P)dg=1 . (2.5)

In the time interval between t and t+6t the associated
change 5P for a particular oscillator will have a contribu-
tion —co5t from the first term in Eq. (2.4). If the value of
Pz strays beyond 0o during 5t, then the second Eq. (2.4)
will step the phase up by 2~. The probability of the latter
is P(0o)cu5t Dividing b.y 5t and taking the limit as 5t ~0
gives the rate of change of the expectation value of the
phase

(Pg) = —co+2rrP(0O)co,
d
dt

(2.6)

where P(0„)will, in general, be a time-dependent quanti-
ty. Equation (2.6) emphasizes the significance of the
choice of 0O, that is, the particular choice of 2~ interval
in which P& is defined.

We have seen that allowing the phase to have a con-
tinuous range or restricting it to a specified 2~ interval
leads to different Poisson brackets. It is not immediately
obvious which, or if indeed either, should be used in con-
junction with Dirac's cornrnutator —Poisson-bracket
correspondence. Dirac' originally favored the continu-
ous phase, while Judge and Lewis' applied a restricted
range to the problem of rotation angle. In view of the
long history of difficulties we do not employ
commutator —Poisson-bracket correspondence in order to
obtain the phase operator. However, we will return to

The phase Pz is a periodic sawtooth function of time: it
decreases with slope —co until it reaches the value 0O,
where it is immediately stepped by 2' and decreases to-
wards 0O again.

Equation (2.4) describes the motion of a single classical
oscillator. To describe the behavior of an ensemble of
differently phased oscillators we use the phase probability
function P(P), where P (P)dP is the probability of finding
that the phase of a particular oscillator is in the range P
to P+dP. The phase probability function is normalized
in the chosen 2~ interval:
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this problem of correspondence once we have derived our
phase operator and photon-number-phase commutator
by other means.

III. HERMITIAN PHASE OPERATOR

We have discussed some of the problems associated
with formulating a Hermitian phase operator in the In-
troduction. Despite these difficulties, states of well-
defined phase are known to exist. ' These phase state are
the starting point in our phase operator formalism. The
phase state

I
0) is defined as

S

0) = lim (s+1) ' g exp(in0) n ),5'~ oo n=0
(3.1)

I0 ) =exp[iNm2ir/(s +1)]I00), m =0, 1, . . .s . (3.2)

Here, we have used the unitary phase shift operator
exp(iNy ) which transforms

I
0 ) to

I
0+ y' ) (as can be seen

from the definition of I0) ). If y = —cut, then this unitary

where In ) are the (s+I) number states which span an
(s + 1)-dimensional state space %. The state of zero
phase has been chosen as the state in which all the num-
ber state amplitudes are equal. The limiting procedure is
necessary in order to normalize the states. These states
provide a good description in that their time development
is such that at time t the state becomes I0 cot ). M—ore-
over, the expectation value of the electric field is +~
with a divergent variance at all times except when 0 —cut

is an integer multiple of vr. At these times the field is pre-
cisely zero. These zeros (when the field changes sign) pre-
cisely determine the phase of the field.

The phase state is well defined in the space 4' but care
must be taken with the limiting process. As with all lim-
iting procedures, errors can result if s is replaced by
infinity prematurely. Our procedure, therefore, will be to
work entirely with states and operators in the (s+ 1)-
dimensional space 4' (where s can be arbitrarily large) and
then allow s to tend to infinity after physical results such
as expectation values are calculated. The finiteness of our
state space 4 means that the operators involved may
have slightly different properties than those of their
infinite space counterparts. For example, the trace of all
commutators in the finite space must be zero rather than
being undefined. ' However, we emphasize that such
differences will not lead to detectable physical differences
when the limit is eventually taken. We shall not be let-
ting s tend to infinity until a later stage and so dispense,
for the present, with the limit notation in (3.1).

The parameter 0 in the phase state (3.1) can take any
real value, although distinct states will only occur for
values of 0 in a given 2' range. Therefore, there exists an
uncountable infinity of different phase states, even in the
finite but arbitrarily large state space +. The phase states
are necessarily overcomplete and are not in general or-
thogonal. However, it is not difficult to show that states
with values of 0 differing by integer multiples of
2irl(s + 1) are orthogonal, ' ' ' and consequently, given
any reference state

I 0O ) we can find a complete set of
(s + 1) orthonormal phase states given by

operator is the time-evolution operator and we recover
the ideal time development of a phase state. We note
that choosing m ~ (s +1) in (3.2) reproduces the states
I0 ) with values 0~ m (s.

The set of phase states I0 ) can be used as a basis to
span +. The freedom to choose an arbitrary value for 0o
means that there is an uncountable infinity of such bases.
We shall leave 0o as an arbitrary phase, allowing the flexi-
bility to choose the most convenient basis to solve a par-
ticular problem. The (s+1) values of 0 are

2TTm

(s+ I) (3.3)

which are spread evenly over the range 0o 0 (0o+27T.
When s tends to infinity, these values correspond to 0o
plus the rational fractions of 2~. In this limit they form a
countable infinity of orthogonal states that exist in a one-
to-one correspondence with the countable basis of num-
ber states.

The Hermitian phase operator is simply defined in
terms of a suitable phase state basis as

y, —= y 0.I0. &(0. I

m=0

=0,+, y ml0. &(0 I
.

m=0
(3.4)

with the summations running from 0 to s. Substituting
this expression into (3.4) and performing the summation
over m yields a number state expansion for the phase
operator:

sir 2ir exp[i(n' n)0o]ln') —
& n

I

pii=0O+ +s+1 s+1„„,exp[i(n' —n)2rr/(s+1)] —1
'

We can also express the number operator in the phase
space basis:

S

N—= g nln)(nl
n=0

I0.. ) & 0. I2, exp[ —i (m' —m)27r/(s + 1)]—1

We note that the eigenvalues (0 ) of Pz are single valued
and depend on the chosen value of 0o. This dependence
is denoted by the subscript 0 and we will show that the
classical analogue of (()s is the single-valued (t s. The
choice of reference state I00) determines the 2rr range
which the phase eigenvalues will occupy. This procedure
is completely analogous to choosing a window in which
to express the inverses of (classical) trigonometric func-
tions as single-value numbers.

From the definition of the phase state (3.1), we can ex-
press the projector I0 )(0

I
in terms of the number

state basis:

I0 ) (0 =(s+1) 'ge p[xi(n' —n )0 ]In' )(n I,
n, n'

(3.&)
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where we have used the result

S

ln &=(s+ I) ' g exp( i—n0 )l0
m=0

(3.8)

2& + m' m

s +1,exp[ —i(m ' —m )2m /(s + 1)]—1

(3.9b)

which is easily derived from (3.1) using the orthonormali-
ty of the basis I l

0 & I. Expressions (3.6) and (3.7) reveal
a subtle symmetry between Pz and 2 both the phase and
number operators consist of a constant corresponding to
the middle of their eigenvalue range plus a sum of ofT'-

diagonal projectors. This symmetry is particularly strik-
ing if we compare the phase operator with Ho =0 and the
scaled number operator:

sm 2vr n'&(n
l

s +1 s +1„„,exp[ —i(n' —n )2~/(s + 1)]—1

(3.9a)
27T 5 7T

s+1 s+1

These expressions are exact but complicated and for
many purposes a simpler form can be found. With this
aim in mind we define a physically accessible, or prepar-
able, state as one which can be excited from the vacuum
state by coupling the mode to a finite energy source for a
finite time by means of a finite interaction. Such a physi-
cal state has the following properties firstly, the finite
source ensures an upper bound to the number states
which have any probability of being excited and secondly,
the moments of the energy or photon number distribu-
tion ( n q

& are bounded for any finite number q. The
latter condition follows from the finite time and interac-
tion strength and is a weaker condition than the former.
Indeed, imposition of the former condition automatically
ensures the latter. Examples of states obeying the latter
condition include thermal states, coherent states,
squeezed states, and single number states. We note that a
phase state is not a physical state because the expectation
value of the photon number diverges as s~ ~. For a
physical state of the field we can make s very much larger
than the number n associated with any significant num-
ber state component ln & of the state. In this case (with
s ))n, n ') expression (4.3) reduces to

IV. PHASE-NUMBER COMMUTATOR (n'l[P&, N]ln & =i(1—5„„)exp[i(n' n}0o]—. (4.4)

while in terms of the phase state basis it has the form

[ke ]=
s +1,exp[ —i (m —m')2'/(s + 1)]—1

(4.2)

These expressions look very different from the Dirac rela-
tion (1.2). In particular, our commutator is traceless (as
all commutators must be in 4). Moreover, it is clear that
the vanishing trace follows directly from the fact that the
expectation value of the commutator in a number state
ln & or phase state l0 & is zero. Our commutator does
not suA'er from the mathematical inconsistency associated
with the Dirac commutator.

The matrix elements of the phase-number commutator
in a number state basis are

( l[y, , A']l &=o, (4.3a)

2~( nn ')exp[i ( n ' —n ) ]0O
(n'l[y, , N]ln &=

(s +1)[exp[i(n' —n)2vr/(s +1)]—1 I

(4.3b)

In Sec. III we defined the Hermitian phase operator in
terms of a complete set of orthonormal phase states. This
technique is independent of commutator —Poisson-
bracket correspondence and we are now in a position to
deri Ue the phase-number commutator. The phase-
number commutator is easily calculated using expressions
(3.6) and (3.7). Expressed in the number state basis the
comm0tator is

(n —n ')exp[i (n ' —n )0 ]0l n
'

& ( n
l

s + 1„„,exp[ —i (n' —n )2m /(s + 1)]—1

(4.1)

This approximate equality becomes exact for all finite n
and n in the limit as s tends to infinity. However, we
stress that the exact expression (4.3) should be used in
general with the limit as s~ ~ being taken only when
the final result has been obtained. If our final aim is to
calculate the expectation value of the commutator for a
physical state, then (4.4) can be used directly. The opera-
tor formed from the matrix elements (4.4) has the form

[Pq, N]~ =i g l
n

'
& ( n l(1 —5„„.)exp[i (n ' —n )0O]

n, n'

= —i+i+exp(in'0 )lan'&pe px(
—in0o)(n l,

n'

[qY, N] = i[(I —(&+ I)l0, &(0,l] . (4.6)

The expectation value of the phase-number commutator
in any physical state lp & is

(pl [y,, N]lp &
= —i[I—(s+ I) l(p l0, & l'], (4.7)

where l(pl0O&l is the probability that the phase of the
state is 0O. In the continuum limit (as s ~ ~ ) this may be
expressed as P( )02O~/(s+1), where P(0 )is othe proba-
bility density and (s + I)/(2n) is the density of states.
With this substitution, the expectation value (4.7) be-
comes

(4.5)

where the subscript p distinguishes this commutator from
the precise expression (4.1) and is a reminder that it is
only valid when acting on physical states. The first term,
which follows from the Kronecker delta, is the Dirac
term. The presence of the second term ensures that the
trace of the commutator vanishes. It is clear from the
definition of the phase state (3.1) that the physical-state
commutator reduces to
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& pl[/ Nlp &
= —i [I 2vrP(0o)] . (4.8)

Dirac's commutator —Poisson-bracket correspondence re-
quires the form of the commutator and Poisson bracket
to be related

[u, U ]~i fi [ u, U ) . (4.9)

The classical expression for the expectation value of the
Poisson bracket is [cf. Eq. (2.6)]

Oo+ 2n

([y,,B~&=J, P(y)[y, , a]dy
= —co[1 2vrP—(00)] . (4.10)

away& ,' I
l 2~P(0. ) I

. —— (4.1 1)

This uncertainty relation depends on Oo, that is, the
choice of range for the phase eigenvalues. This
phenomenon persists in classical mechanics where the ex-
pectation value and variance of a classical phase distribu-
tion will depend on the range of phase values employed.
The quantum (or classical) probability distributions P (0)
will be periodic with period 2ir If P (0) is sh. arply peaked
at and approximately symmetric about 0=P+2n7r, then
a 2m window which totally encloses a peak [that is,
chosen so that P(00) is small] will yield a mean phase of
approximately P and a small variance. If, however, the
window is chosen such that P(0O) is large (for example,
0o=p) then the distribution in the 2' window has one
peak at P and another at 2m. +P. In this case the calculat-

The quantum Hamiltonian is (1V+ —,
' )irico and so the

correspondence between the quantum (4.8) and classical
(4.10) expressions is verified. This correspondence is pre-
cise for all physical states. If the phase probability distri-
bution is very sharply peaked, as for example in the case
of a highly excited coherent state, then the expectation
value of the commutator reproduces the classical 6-
function Poisson bracket (2.4).

From the preceding discussion we see that it is essen-
tial for there to be a difT'erence between the Dirac com-
mutator (1.2) and that derived by our approach because
the trace of the latter must vanish. This difference re-
moves the inconsistency associated with the number state
matrix elements of Dirac's commutator. It also produces
the appropriate 2~ step in the phase-number commutator
for all physical states. This step maintains the phase ei-
genvalues within the chosen 2m range, that is, it automat-
ically takes care of the periodicity problem. The classical
result (2.6) has followed naturally from the quantum-
mechanical description of phase applied to physical
states. The category of physical states is extremely broad
and includes practically all states used so far in quantum
electrodynamics, with the phase states being the only not-
able exception. Nevertheless, (4.6) [and therefore (2.6)] is
not universally applicable. It is now clear why Dirac's
Poisson bracket recipe to extrapolate from (2.3) or even
(2.6) to find an Hermitian phase operator, with well-
behaved phase eigenstates, had little change of success.

The expectation value (4.8) is a measure of minimum
uncertainty in that physical states must satisfy the rela-
tion

ed mean will be about p+~ and the variance will be
large. This eftect is explored in detail elsewhere, but we
note here that the mean and variance of the phase only
have meaning if the particular window of phase eigenval-
ues is specified. For many distributions P ( 0) is
sufficiently small over a range of 0 for the mean and vari-
ance to be reasonably insensitive to the precise choice of
00 [provided 0o is sufficiently different from the peak of
P (0)].

V. CREATION AND ANNIHILATION OPERATORS

The phase operator was originally intended to combine
with the square root of the number operator in a polar
decomposition of the creation and annihilation opera-
tors. ' However, the failure of early attempts to construct
a Hermitian phase operator, or even a unitary exponen-
tial phase operator, ' suggested that this procedure was
unsatisfactory. It seemed to be clear that the zero in the
eigenvalue range of 8 precluded any possibility of con-
structing a unitary exponential phase operator
[exp(+i/)]. In this section we reexamine the problem
in using our Hermitian phase operator.

We can construct a unitary operator exp(if') from the
Hermitian phase operator. This operator function may
be defined by its series expansion and is guaranteed to be
unitary by the Hermiticity of $0. the unitary operator
(and its conjugate operator) will have the phase states as
eigenstates:

exp(+iffy)I0 & =exp(+i0 )I0 (5.1)

S

=(s+1) '~ g exp[ i (n ——1)0 ]I0
m=0

(5.2)

where we have used expression (3.8). For n )0, a com-
parison of (5.2) with (3.8) shows that

exp(i/~)In &
= In —1 & .

For the vacuum state (n =0) the resulting state is

(s+1) '"+exp(i0 )I0

(5.3)

=(s+ 1) '~ exp[i(s+ 1)00]+exp( is0 )I0—

=exp[i (s + 1)00]Is & . (5.4)

Therefore, the number state representation of xpe(if') is

exp(igg)=Io&& II+ II &&2I+ ' ' ' + Is —1&&sI

+exp[i(s+ 1)0O]Is &(OI . (5.5)

This operator resembles the one introduced by Susskind
and Glogower, ' but with the vital diA'erence that the ac-

The properties of the unitary operator are demonstrated
by considering its action on the photon number states:

S

exp(its)In & =exp i g 0 0 &(0
I In &

m=0
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cos Pe+sin Pe=1,

[cosine, singe] =0,
& n leos'po n ) =

& n lsin'pe n ) =
—,
' .

(5.6)

(5.7)

(5.8)

tion on the vacuum state is not indeterminate and so can-
not be arbitrarily set to zero. The result of acting on the
vacuum with exp(if') is uniquely and precisely deter
mined to be the state exp[i(s + 1)00]ls ). The expansion
(5.5) is fully consistent with exp(i/0) being a unitary
operator. The conjugate operator exp( —iv)o) is also uni-
tary and clearly commutes with exp(ice)

We can define cosine and sine operators from the uni-
tary operators. These will correspond to cosine and sine
series in the Hermitian phase operator. These operators
are more consistent than their counterparts formed from
the Susskind-Glogower operators. In particular, we find

[a,a ]=1—(s+1)ls)&sl . (5.1 1)

The last term exactly compensates the trace obtained
from the first term in the same way as the additional part
to Dirac's term in [PO, N]. However, while the addition
to the Pe, N commutator has direct physical conse-
quences, the additional term in (5.11) has no effect when
[a,a f] acts on any physical state and so has no physical-
ly observable consequences. The physical-state commu-
tator

suffer from such problems because of the finite (but arbi-
trarily large) nature of the state space. An extra term
was necessary in Dirac's commutator (1.2) and we should
also anticipate an additional term in the d, & commuta-
tor, even if only to ensure that its trace vanishes. On cal-
culating the commutator of a and &, as defined by (5.9),
we indeed obtain a result that is traceless:

a:exp(i P—e)N ' (5.9)

= l0) & Ii+2' 'll ) &2l+ +s'"l~ —I) &sl, (5.10)

with a being the Hermitian conjugate of a. As s tends
to infinity the action of a becomes that of the convention-
al annihilation operator. Note that the Hermitian ampli-
tude operator N ' removes the ls) &Ol projector term
when acting on (5.5) to give (5.10). Thus, while exp(if')
uniquely determines a, it is now clear why the reverse
procedure (involving a decomposition of a) cannot pro-
duce the vital ls ) & Ol projector term in (5.5). Such a pro-
cedure can at best only produce an indeterminate result,
requiring an extra assumption as used by Susskind and
Glogower. The ls ) & Ol projector never occurs in any cou-
pling involving the electromagnetic field as these take
place via a and a ~. '

It is known that an expression of the form (5.9) (as
proposed by Dirac') is inconsistent with the conventional
commutation relation of a and a if exp(if') is unitary.
If it were possible, we would require that a unitary trans-
formation exp(if')P exp( —ice) would simply add the
unit operator to N. However, our approach does not

The last of these results is consistent with the phase of
the vacuum being random and is in marked contrast with
the result obtained using the Susskind-Glogower opera-
tors. In the Susskind-Gloyower formulation the vacuum
exPectation values of cos Pe and sin Pe are —,'. The major
difference between our operators and those of Susskind
and Glogower involves the action on the vacuum state.
It should not be surprising that very different results will
occur in the quantum regime involving field states with a
significant vacuum component. Our operators are in no
sense an approximation to the Susskind-Glogower opera-
tors and have similar properties to the latter only for
fields with large energies where both sets of operators
give results in accord with classical behavior. Moreover,
our cosine and sine operators are derived as operator
functions of an Hermitian phase operator. No analogous
procedure is possible in the Susskind-Glogower formula-
tion.

The creation and annihilation operators can now be
constructed by definition:

[a,a $]~= 1 —ls) &sl[I —
(
—s)~] . (5.13)

The coherent state expectation value of this operator is

&al[a, a f]~la) =1—exp( —lal ) [1—( —s)~] .
s

(5.14)

As s tends to infinity the last term vanishes for any given
(finite) q. For a more general physical state lp ) we obtain

&pl[a, a f]~lp ) =1—lc, l [1—
(
—s)~], (5.15)

where c, =&sip). The requirement that the moment
&N~) be convergent as s tends to infinity ensures that
l c, l

s ~ must tend to zero and the second term vanishes.
We emphasize again that when states other than the

physical states (for example the phase states) are used in a
calculation, then (5.11) must be used in place of (5.12) and
the limit must be found at the end of the calculation.

VI. PHASE PROPERTIES OF A GENERAL STATE

For completeness and for future reference, we show
how the phase operator can be used to examine the phase
properties of a field state. Consider a general pure state
of the field mode

lf)= pc„ln) .
n=0

(6.1)

This may be reexpressed in the phase state basis using
(3.8):

lf ) =(s+1) ' g gc exp( —in8 )l0 ) . (6.2)

(5.12)

is sufficient when operating on physical states.
This is most easily seen for states excited from the vac-

uum by a finite energy source, but is also true for states
which have no upper bound to

l
n ) but which have finite

energy moments. As a definite example, consider a
coherent state la). If q is any chosen positive integer
then we have
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The phase probability distribution is

If &I =(s+1) ' gc„exp(—i0 )

with an expectation value and variance

(6.3)

The mean and variance of (l)() will depend on the chosen
value of Oo. We note that all values are equally valid but
choose Oo in the most convenient and physically transpar-
ent way. For the partial phase state lb & we set

lf & I' , (6.4)
ITS"=P,+1 (7.3)

and define a new phase label
(6.5)

Any discussion of phase-number minimum uncertainty
states requires the expectation value of the phase-number
commutator:

s
P —Pl

2

From (3.3), Eq. (7.2) becomes

Ib &I'

(7.4)

&f 1 [4,&]if &

c„*c„'(n—n ')exp[i (n —n ')00]

s +1„„,1 —exp[i(n —n')2'/(s +1)] (6.6)

1 1+ g b„b„.cos[(n —n')p2rr/(s +1)],s+1 s+2„
(7.5)

It is the purpose of this paper to look at phase proper-
ties of a single-mode field from as general a perspective as
possible. Therefore, we shall not pursue the many appli-
cations of these formulas to specific field states. We note,
however that when

If & is a single number state the ex-
pectation value and variance in the phase are go+sr and
~ /3, respectively (as s~ ~). These values correspond
to the mean and variance of a classical phase with a ran-
dom value between Oo and Oo+2m. The details of this
calculation will be presented elsewhere along with other
special cases including coherent states. In this paper we
focus our attention on a class of states that we call partial
phase states.

&baal, lb &=p (7.6)

This is a very important and general result for partial
phase states which can be applied immediately, for exam-
ple, to any coherent state.

The choice of Oo means that the variance in the phase
probability distribution has a particularly simple form:

(7.7)

with p ranging in integer steps from —s/2 to s/2. This
distribution is symmetric in p. Using Eqs. (7.3)—(7.5), we
find that

VII. PARTIAL PHASE STATES

The form of the phase state (3.1) and the phase proba-
bility (6.3) suggest that interesting phase properties are to
be expected when the state is of the form

S

I
b &

= g b„exp(inp) I
n &,

n=0
(7.1)

where b„is real and positive. Obviously, the phase state
is a special example of this with b„=(s+1) '. The
states

I
b &, which we shall refer to as partial phase states,

will not normally be eigenstates of phase. A very impor-
tant subset of these states will be the physical partial
phase states, of which the coherent state is a particular
example. The phase states are themselves unphysical and
so the best attempt at a physical phase measurement will
only project the system into a physical partial phase state.

The phase probability distribution for a partial phase
state is given [from (6.3) and (7.1)] by

The summation in (7.7) is most easily performed in the
limit as s tends to infinity by transforming it into an in-
tegral. We replace @2~/(s+1) by 0, 2rr/(s+1) by d0,
and integrate from —~ to ~ to obtain

bg()=(2vr) ' J 1+2 g b„b„cos[(n n')0] —0 d0
n &n

2

+4 y b b ( 1)(n —n')( i) —2

3
(7.8)

(7.9)

We see that for the extreme case of a single number state
(where only one of the b„is nonzero) the last term van-
ishes and the variance is ~ /3. At the other extreme is
the phase state [with b„=(s+ 1) ' ]. Using the large s
result that

1 )(n —n')
= —s(1 —

—,'+ —,
' —. )= —s~ /12,„)„(n—n')

=(s+1) ' gb„exp[in(P—0 )] '

1 2+ g b„b„.cos[(n —n')(P —0 )] .

(7.2)

we find that the phase variance vanishes as expected.
As a special example of a partial phase state, consider

the "rectangular" state Ib, R & for which the coefficients
b, equal a constant ( r '

) for q ~ n (q + r and are zero
elsewhere. The photon number probability distribution is
constant and nonzero between lq & and lq + r —1 & and is
zero outside this range —hence the name "rectangular"
state. These states include as special cases both phase
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states (when q =0 and» =s + 1) and the single number
state lq & when» =1. The phase probability distribution
can be obtained by summing the series in (7.2) to give

sin [»(P—0 )/2]
»(s+1)sin [(P—0 )/2]

(7.10)

When s tends to infinity this gives a continuous phase
probability distribution,

sin [»(P—0 )/2]
P(0 )=

2r»» sin [(P—0 )/2)
(7.1 1)

APz= —(4/»)[(» —1)—(» —2)/4+(» —3)/9

+( —1)"/(» —1) ]

—4(1 ——'+ —' — )+(4l»)(1 ——'+ —'. . . ) .4 9 2 3'

(7.12)

If r is reasonably large then we can replace the finite
series by ~ /12 and ln2, respectively, giving the approxi-
mate result

which is peaked and symmetric about 0 =P. If we let »

increase to give a broad number state distribution, then
the phase probability distribution approaches a 6 func-
tion. With the choice of reference phase (7.3), the expec-
tation value of the phase is P (as it must be for all partial
phase states). From (7.8) we find the phase variance in
the rectangular state to be

complicated: the commutator expectation value vanishes
if » =1 (single number state) and approaches the Dirac
form for large r.

It is not difficult to calculate the photon number vari-
ance for the rectangular state lb, R &:

AN =(» —1)/12 . (7.16)

This variance is zero for a single number state (» = 1). In
the limit of large r the number-phase uncertainty product
becomes

ANAP&= [(» ln2) /3] ' ~ (7.17)

Comparison of this expression with one half the modulus
of the commutator which for large» is —,

' [see (7.15)],
shows that the rectangular partial phase states will not in
general be number-phase minimum uncertainty states.
The exception among the physical rectangular phase
states is the number state (with» =1) for which both the
uncertainty product and the commutator expectation
value vanish.

It is beyond the scope of this paper to study further
specific examples of partial phase states, but we conclude
our discussion with a few general comments. Firstly, we
emphasize the significance of the choice of reference
phase L9o. This phase can be assigned any value, but the
choice 00 =/3 7» is t—he natural (and most appealing)
choice to make for partial phase states (7.1). With this
choice of reference phase, the correction to the Dirac
term in the expectation value of the phase-number com-
mutator will be

AP~=(4/»)ln2 . (7.13) (s+1)I (0olb & I'=[(bo+b2+b4+

l(0, lb, R &l'= (7.14)

with the result that the expectation value of the phase-
number commutator is

(b, R l[&~,N]lb, R &
= —i+ (7.15)

For r even we regain the Dirac commutator expectation
value. However, if r is odd then the situation is more

To examine the validity of our approximation, we have
calculated (7.12) explicitly for values» =1, 2, 3, and 4.
We find for the ratio AP&/[(4/»)ln2] the results 1.19,
0.92, 1.03, and 0.98, respectively. It is clear that the ap-
proximation (7.13) is a good one for rectangular partial
phase states with as low as three or perhaps even two
different number state components.

The only rectangular partial phase state of interest to
us which is not also a physical state is the phase state it-
self. We already know that the expectation value of the
phase-number commutator vanishes for a phase state.
We therefore restrict the following discussion of the
minimum uncertainty properties to physical partial phase
states. This restriction allows us to use expression (4.7)
for the expectation value of the commutator in conjunc-
tion with (7.10) for a rectangular state. With our choice
of Oo (7.3) and in the limit of large s we find

—(b, +b~+b~+ . . )] . (7.18)

If the variation of b„with n is sufficiently smooth and the
distribution includes a large number of nonzero b„,then
it follows that this term will be small. In this case the
Dirac term alone will be a good approximation to the ex-
pectation value of the phase-number commutator. For
such states, the phase-number minimum uncertainty
states will satisfy the relation

ANAQO= —,
' (7.19)

The parallel between this expression and that for
position-momentum minimum uncertainty states suggests
that a high-intensity phase-number minimum uncertainty
state would have a Gaussian distribution of number
states. A detailed calculation for a high-intensity
coherent state (approximated by a Gaussian photon num-
ber distribution) is presented elsewhere and shows that
the minimum uncertainty relation (7.19) is satisfied by
such states. The Hermitian phase operator provides a
fully quantum-mechanical explanation for what hitherto
has been discussed only in phenomenological and semi-
classical terms.

Finally, we note that when (s+1)l(00lb &l is small
the probability density P(00) (4.8) is also small. There-
fore, the chosen range of phase eigenvalues completely
encloses the peak of the phase distribution. The mean
and variance of the phase will be reasonably insensitive to
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variations in the precise choice of 00, provided such varia-
tions do not take 0O too close to /3, that is, if l/3

—0ol is
still much greater than the width of the phase distribu-
tion.

(P, —P, )I0, &l0, &=(0,—0,)10,)l0, ) . (8.3)

VIII. PHASE DIFFERENCES

exp, [i (4& 02)) =—exp, (i 0& ) p.-( '02) (8.1)

exp, [ —i (P&
—Pz) j—:exp, (

—

i/i�)exp,

(i /2), (8.2)

The phase difference between two independent classical
field modes, or oscillators, is well defined and is indepen-
dent of time if the oscillators have the same frequency.
This phase difference is simply the difference between the
individual phases (P&

—P&). The conventional Susskind-
Cslogower exponential operators are not operator func-
tions of a Herrnitian phase operator and such a simple
notion of phase difference is not possible in their ap-
proach. Instead, it is necessary to define phase
difference operators separately rather than as the
difference between phase operators. The definition
chosen was that which mould apply if the series were
genuine exponential series:

The spectrum of this operator is dense (in the limit as s,
and s~ tend to infinity) euen for states with a low total ex-
citation number. A phase difference measurement can
lead to a countably infinite number of results regardless
of total excitation number. For example, the two-mode
vacuum state is

s
I $2

l0, 0 ) = (s, + 1 )
' (s, + 1 )

' ' g g l
0 , & l

0 , &

m1=0 m2=0

(8.4)

and the system is equally likely to be found in any of the
(s, + 1)(s&+ 1) phase difference eigenstates. In the limit,
as s, and s2 tend to infinity, there will be a countable
infinity of possible values which, depending on the choice
of 00, —002 would ensure that all phase differences are be-
tween —2~ and 2~. Our phase difference operator is en-
tirely consistent with two modes, in their respective vacu-
um states, having uncorrelated and random phases.

where the subscripts 1 and 2 refer to modes 1 and 2.
Hermitian cosine and sine operators were then construct-
ed from these in the same manner as they would be con-
structed if these were genuine unitary operators. This
definition leads to cosine and sine operators
[cos, (P&

—Pz) and sin, (P&
—$2)] that commute with the

total number operator (N& + N2 ) but not with each other.
These operators have the expected behavior in the classi-
cal limit, but have quite peculiar properties in the quan-
tum regime where the vacuum is an important com-
ponent of either of the two field states. The lowest energy
eigenstate of cos, (P&

—P2) is the double vacuum l0, 0)
with eigenvalue (labeled cos0) of zero. This would corre-
spond to a value of 0 of +~/2. The next eigenstates are
2 '

[ l1,0)+0, 1) j with eigenvalues cos0=+ —,'. The
next set of eigenstates are three orthogonal linear com-
binations of l2, 0), l0, 2), and

l
1, 1 ) with three eigenval-

ues, and so on. Only in the limit of large total excitation
number does the spectrum of cos, (P, —Pz) become dense.
These results would imply that a measurement of the
phase difference between two modes, each in its vacuum
state, must yield a phase difference of +90'. If the state
of the system is l0, 1) (that is, one mode in its vacuum
state and one containing a single photon), then a mea-
surement of phase difference must yield either +60' or
+120'. No other results are possible. The fundamental
reason for these predictions is again the nonunitarity of
e p, (xi/), which imparts nonrandom phase properties to
the vacuum.

Homever, we have demonstrated the existence of the
Hermitian phase operator and there is nothing to prevent
us from adopting the natural definition of phase
difference. Our phase difference operator is simply

Pe
—Pe, where again the subscripts 1 and 2 refer to the

I 2

individual modes. The eigenstates of this operator are
just the products of the individual phase eigenstates:

IX. UNITARY TRANSFORMATIONS AND MOMENTS

It follows from the definition of the number state (3.1)
that the number operator is the generator of increments
in the phase:

exp(iNy)l0) =l0+y) . (9.1)

exp(i4$&)16& = l2 &,

exp( i 4ge) I
I ) =exp [t (s + I )00) I

s —2 ) .
(9.2)

If A, is not an integer, then the state exp( —i Ape)ln & wiii
not be an eigenstate of the number operator. Neverthe-
less, this state will be one of a complete orthonormal set
of (s +1) basis states which can be used to span the state
space O. These states are the noninteger number states
which we label in+ A. ). Access to these states by means

Integer rnultiples of 2~ can be added to or subtracted
from 0+@ without altering the state, in order to keep the
value of 0+ y inside the chosen 2~ window. The opera-
tor shifts the phase of the state by y (mod 2') If y is an.
integer multiple of 2' l(s + 1), then the action of
exp(iNy ) on an eigenstate of P& produces another eigen-
state of Pe. When this is not so, we have a unitary opera-
tor which allows us to transform to a different phase state
which is not an eigenstate of Pe.

The existence of the Hermitian phase operator allows
us to construct a general unitary operator exp( —iXPe)
When A. =1, this is just the "down-shift" operator intro-
duced earlier (5.5). From expression (5.5) it follows that
exp(ij pe) shifts the number state to a new number out-
side the "window" between l0) and ls ), then the shift is
by an amount j plus a suitable multiple of (s + 1), includ-
ing the appropriate phase factor. For example, the uni-
tary operator exp(i4$e) lowers the photon number by
four so that:
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of a unitary transformation generated by (()z may be use-
ful in solving future problems.

The unitary operators described here have an applica-
tion in that they allow us to construct phase- and
number-moment generating functions. Given the density
matrix for the field p, we can define a phase-moment gen-
erating function or characteristic function:

y~( A. )—:Tr[p exp( i kPq) ] . (9.3)

The moments of Pz are given by differentiation with

respect to k:

lB
ak

(9.4)

The moment generating function is related by Fourier
transform to the phase probability density introduced in

Sec. IV:

p(0)= I e ' y~(k)(s+1)

Tr[p6((b~ —0)] .(s+1) (9.5)

Evaluating the trace shows that this is indeed the phase
distribution

(9.6)

and that it is correctly normalized

o 2&

(9.7)

A parallel analysis involving the operator exp(iNy ) will

generate a number-moment generating function.

X. CONCLUSION

We have presented a mathematical model of the
single-mode electromagnetic field which involves a finite
but arbitrarily large state space O'. The dimensionality of
4 is allowed to tend to infinity only after calculation of
physical results, such as expectation values, are made.
Our model and the usual harmonic-oscillator model are
equally valid and are physically indistinguishable. The
advantage of our approach is that it permits the existence
of an Hermitian phase operator, thus removing phase
from its hitherto rather unique position as a classical ob-
servable without a quantum Hermitian operator counter-

part.
We have described how the existence and form of the

phase operator follow directly and uniquely from the
states of well-defined phase. The physical state expecta-
tion value of the resulting phase-number commutator
corresponds precisely with the classical Poisson bracket
of the single-valued phase with the energy. The commu-
tator contains Dirac's term and an additional contribu-
tion which resolves the anomalies associated with Dirac's
commutator. However, the exact form of the phase-
number commutator (which must be used for unphysical
states such as phase states) is such as to preclude a direct
extrapolation from the Poisson bracket.

A vital term in the unitary operator function exp(if')
vanishes when combined with N ' in order to form the
annihilation operator. This is the source of the difficulty
in attempting to define a phase operator from the annihi-
lation operator. The genuine unitarity of exp(if') gives
it very different properties than the conventional
Susskind-Glogower operator e@,(i P). This is particular-
ly evident when operating on field states with a significant
vacuum component. Our unitary operator is in no sense
an approximation to the Susskind-Glogower operator.
Indeed, the phase properties of the vacuum state, and
particularly the phase difference between two fields, are
dramatic illustrations of the difference between our for-
mulation and that of Susskind-Glogower.

The derived phase properties of the partial phase
states, which include the coherent states, are consistent
with those obtained by phenomenological methods
where the latter are valid. The phase operator allows us

to construct a continuous unitary transformation between
the number states. This transformation also allows us to
access new basis sets of noninteger number states which
are not eigenstates of X. The continuous unitary trans-
formation is of utility in constructing moment generating
functions for the phase operator.

We conclude that our model of an electromagnetic field
mode is not only physically indistinguishable from the
conventional mathematical model involving the infinite
Hilbert space harmonic operator, but is also more useful
in that it allows us to define a well-behaved phase opera-
tor. Optical phase can at last be treated within the
framework of quantum electrodynamics.
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