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Scaling theory for the localization length of the kicked rotor
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The relation g= ,'Dfi ' b—etween the localization length ( and the diffusion coefficient D of the

kicked rotor is derived in the framework of the scaling theory for localization. It is argued that this
relation, first found by Shepelyansky [Phys. Rev. Lett. 56, 677 (1986); Physica 28D, 103 (1987)], re-
veals the special importance of the Lloyd model for the understanding of the quantal behavior of
the kicked rotor and other dynamical systems. The finite-size-scaling form of the localization length
and the conductance of the Lloyd model are derived.

I. INTRODUCTION

The kicked rotor' is a simple system that models the
quantal dynamics of driven systems that are chaotic in
the classical limit. It is defined by the Hamiltonian

H= HO+ V(0) g 5(t —m),

T„u„+ g W'„u„+„=Eu„
r&0

with

(1.7)

The dynamics are determined by the nature of the
quasienergy states g . It can be shown that these satisfy
the equation

where u„= lim (, r ~u (O, m +5t)+u (O, m 5t)),—
6t 0

(1.8)

(1.2) where ~r ) are the eigenstates of the angular momentum
operator p with the eigenvalues rh, while

with the angular momentum p and moment of inertia I.
Classically the model exhibits diffusion in angular
momentum for strong potentials V(0), namely, for long
time

with

T„= tang„, (1.9)

(p') =Dt,
where the average is over initial conditions and D is the
diffusion coefficient. For the potential

and

P„=—,'( ,'rn —co), r =—A/I (1.10)

V(0) =K cosO, (1 4) where

i A' —g(0, t ) =H g(0, t)
C}

Bt
(1.5)

with the Hamiltonian (1.1). Since this Hamiltonian is
periodic in time the wave functions can be expanded in
terms of the quasienergy states,

y (O, t)=e u (O, t), (1.6)

where u (O, t)=u (O, t+1). The quasienergies co are
defined in the interval (0,2')

the Hamiltonian (1.1) generates the well-known standard
map where diffusion is found for K )K, =0.9716.

In order to study the quantal behavior one has to in-
vestigate the Schrodinger equation

W(0) = tan[ —,
' V(0)/fi]j (1.12)

and IVo= E. But (1.7) is —just a one-dimensional tight-
binding model in solid-state physics. The correspondence
between (1.1) and (1.7) implies that the quantum dynam-
ics of a periodically driven rotor in momentum space
resemble those of an electron in a one-dimensional solid.

It was argued that if ~/m is a generic irrational num-
ber this sequence is pseudorandom. If the sequence t T„ I

is truly random and if the 8'„ fall off sufficiently fast with
r, Eq. (1.7) is just the one-dimensional Anderson model
for localization. It is well known ' that for this model all
the states are exponentially localized. On the basis of this
analogy it was argued that for (generic) irrational r/~ all
the quasienergy states are localized in momentum space.
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In particular, this argument was tested for the driving
potential

V ( 8 ) =2' arctan( x cos9) . (1.13)

u„= lim (r ~e' ' "u (O, m +5t) ),
5t~O

it satisfies

(1.14)

g J„(—,'K/A) sin(P„+err/2)u„+, =0, (1.15)

where J, is the ordinary Bessel function. The advantage
of this model is that it is regular. It corresponds, howev-
er, to an Anderson model with correlated off-diagonal
randomness that was not explored in solid-state physics.

A relation between the localization length g, and the
classical difFusion coefficient D was found by Shepelyan-
sky, ' following arguments of Chirikov, Izrailev, and
Shepelyansky. It holds in the semiclassical limit A~O
for strong kicking. It is argued that classical dift'usion
takes place until a time t * that is determined by the local-
ization length in momentum space, namely,

In the corresponding solid-state model only the hopping
matrix elements 8' that connect nearest neighbors,
namely, W~& do not vanish. If one assumes that IP„ I is
truly random and uniformly distributed in (0, 2'), the

I T„) follows a Lorentzian (or Cauchy) distribution. In
this case (1.7) is the Lloyd model. ' It was verified that
for the kicked rotor with the potential (1.13), the localiza-
tion length is identical to the one of the (random) Lloyd
model. '

For the standard kicked rotor with the driving poten-
tial (1.4) it was found that the localization length oscil-
lates around the value that is found for the corresponding
solid-state model, where P„ is random. "' For this po-
tential IV(8) is singular for K/fi) ~, and the behavior of
the 8 „ is complicated. This singularity is, however,
peculiar to the specific mapping that was used in the
derivation of (1.7). If one' defines

classical diffusion on length scales of the order of g. Such
a relation exists in the scaling theory for localization in a
random solid. ' For large values of g it was verified by
model calculations in one dimension. ' ' Shepelyansky
found that a =

—,
' for the driving potentials (1.4) and (1.13)

as well as for kicked rotors with other potentials. Some
of these results were verified by other researchers. " The
universality of this number calls for some theoretical
reasoning

In Sec. II the relation (1.18) is verified in the frame-
work of the scaling theory for localization with the help
of the Landauer formula. ' In this derivation the relation
between the behavior on scales that are larger than g and
the one on scales that are smaller than g is explicit. It is
shown that if the distribution of the diagonal energies for
the solid-state model (1.7) corresponding to (1.1) satisfied
the conditions of the central limit theorem, i.e., had a
finite second moment, one would expect a = 1.

In Sec. III it is shown that for the Lloyd model one
finds a= —,'. From the derivation it is obvious that the
Lorentzian distribution of the diagonal energies is essen-
tial for this result. For a11 the kicked rotors the diagonal
energies, T„of the analogous random solid-state model
(1.7), exhibit a Lorentzian distribution. This is actually
the case also in the formulation of Eq. (1.15) as is clear if
one divides it by sing„. Then all the pseudorandom
terms are of the form cotan(P„). If one assumes that P„
can be considered random, the distribution of these terms
is Lorentzian. In Sec. III the finite-size scalings of the
conductivity and of the localization length are obtained
for the Llyod model. To our knowledge, these results
were not derived in the framework of the localization
theory so far.

II. THE RELATION BETWEEN
THE LOCALIZATION LENGTH AND THE

DIFFUSION COEFFICIENT

The evolution operator of the kicked rotor that is
defined by the Hamiltonian (1.1) is

(1.16) ' o " —i Vie)/a (2.1)

A~t'=1 . (1.17)

Approximately g quasienergy states overlap, therefore
b,co=/ '. Consequently,

( =aD/fi (1.18)

where o. is a numerical constant of order unity. This con-
stant cannot be determined from such a heuristic argu-
ment. This argument is similar to the one that was intro-
duced by Allen' in the localization theory for disordered
solids. It assumes implicitly the existence of a scaling
theory with one length scale, namely, the localization
length. Such a theory is necessary for the existence of a
relation between the localization length g, that is defined
by the rate of exponential decay of wave functions on
length scales that are larger than g, and suppression of

But the time t' is also the time when the discreteness of
the local spectrum becomes important. If a typical sepa-
ration between two quasienergies is Ace, then

It propagates the wave function one time step, namely,

(O, m +1)=Up (H, m), (2.2)

where 0 is Hermitian. The quasienergy operator H/A
determines the quantal dynamics of the system. Its
eigenstates are the quasienergy states g of (1.6). They
correspond to the energy states of a solid that is defined
by the Hamiltonian H. Their projections on the angular
momentum states satisfy (1.7).

Consider a chain consisting of N sites of this fictitious
solid that is defined by H. Its conductance is analyzed in
the framework of the scaling theory for localization, for
various lengths N. The resistance of a one-dimensional
chain is'

where P (H, m) is the wave function just before the m-th
kick. Since U is unitary, it can be expressed in the form

(2.3)
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p~ =
—,
' [ cosh(2y~N) —I ], (2.4)

p~ ——,
' exp(2N/g) .

For N « g Ohmic behavior is expected, namely, ' ''

(2.5)

(2.6)

where y~N is the logarithm of the largest eigenvalue of
the product of N transfer matrices of the chain. It is
found with the help of the Landauer formula. The work
of Pichard' should be consulted for details. The locali-
zation length g of the infinite system is the limit

= lim&, „y~. Exponential localization is found for
N »g, where' ''
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FIG. 1. The geometry where the quantum conductance and
diffusion between Ci and Cz are defined.

one quasienergy state on each angular momentum state
of (1.1), leading to the density of states per site

p is the resistivity that is independent of the length N. In
order to introduce a scaling ansatz for y~, the averaged
finite-size localization length, g~ is defined as

(2.7)

6n /5E = 1/2~% .

Therefore (2.10) and (2.11) lead to

/=Do/2 3

(2.12)

(2.13)

where 3 is a constant. The dimensionless conductivity in
this regime is

g=P (2.9)

Using a weak disorder expansion Pichard found' that
=

—,', for all models with distributions of diagonal ener-

gies that satisfy the conditions of the central-limit
theorem.

We assume that the chain of length N, of the fictitious
solid that we consider, is embedded between two electron
baths, as shown in Fig. 1 ~ It is connected to the baths by
segments of an ideal conductor, having identical site en-

ergies T„=O. This is a standard geometry' for the
application of the Landauer formula. If a chemical po-
tential difference is introduced between the baths, it will

result in an electric current through the chain. The
zero-temperature conductivity is

e ecr=g =(A g)
2~% 2~%

(2.10)

where only one spin direction was taken into account.
The conductivity is related to the diffusion coefficient by
the Einstein relation,

cr =
—,'Doe (6n /5E) . (2. 1 1)

Do is the diffusion coefficient and (5n /oE) is the density
of states per site for H. It is important to remember that
the diffusion and conductivity that are considered in

(2.11) and (2.10) are in the pure quantum regime, namely,
between the points C, and C2 of Fig. 1 and do not in-

volve the baths. The energies E of the Hamiltonian H are
distributed in the interval (0, 2~%), since the quasiener-
gies are restricted to (0,2~). There is, on the average,

where the average is over realizations of the random po-
tential. This average is relevant for the average resis-
tance, as can be seen from (2.4) for y~N && 1. Consisten-

cy of (2.4) with (2.6) for N «g implies' that in this re-
girne,

(2.8)

The sites of the solid that is studied in this section corre-
spond to angular momentum states of the kicked rotor.
Their separation is A; therefore the corresponding
diffusion coefficient in momentum space is D =Do /A .
In particular, for small values of fi one obtains (1.18)
where o.= 3 ~/2.

For solid-state models with distributions of diagonal
energies that have a finite second moment one finds'

=
—,
' leading to a=1. For the model corresponding to

the kicked rotor this distribution is Lorentzian and con-
sequently a different value of a may be found. In Sec.
III, it will be shown that for the Lloyd model 3 =1 im-

plying a =
—,', in agreement with the numerical results.

III. FINITE-SIZE SCALING FOR THE I LOYD MODEL

In this section we show that (2.8) holds for the Lloyd
model in the band center, E =0, and calculate the con-
stant A. We consider the tight-binding model

~n n+ n+1+ n —
1

(3.1)

in the geometry of Fig. 2. For n ~0, the system is ideal
and is modeled by e„=O, while for n )0 it is disordered,
with a Lorentzian (Cauchy) distribution of diagonal ener-
gies

1 6
P„+,s(e„)=—

~ (e„—rI) +5' (3.2)

faun
=+ (3.3)

Starting from an arbitrary real initial condition on the
pure side, (3.3) implies that for all n &0 the norm of the

where g=0.
The relation between the "localization length" gN of

the system of size N and the Lyapunov exponent of the
transfer matrix is used in what follows. For this purpose
that rate of growth of u„ is calculated using arbitrary ini-
tial conditions. "' '' ' '

First note that on the pure side n &0, where e„=0 (see
Fig. 2), the eigenstates satisfy
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0 0
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where

N N N N (3.13)

The vector vN is expressed in terms of these vectors as

V„=RNvp=a+e v™++a e v (3.14)

FIG. 2. The geometry where the finite-size scaling of the lo-
calization length is defined.

and the square of its length is

(vz vz)=i+la+ l (e —1)+la
l

(e —1) .

vector (u„+,, u„) is constant. It will be chosen to be uni-
ty. The various initial conditions on the pure side will be
determined by a parameter O on the interface, namely,

(3.15)

The normalization of vp and v+ was used. In order to
simplify (3.15) it is averaged over the initial conditions O.

From (3.12), one finds

Vo

up

u

cosO

sinO (3.4) (3.16)

Starting from this initial condition, the wave function
on the disordered side can be found by the transfer ma-
trix method. "' ' ' For this purpose, (3.1) is written in
the form

where ( ) e denotes the average over O, with a uniform
distribution. For yNN &&1,

((v~.v„)),=1+2(y~N)'/la~i'+O((y~N) ) . (3.17)

Vn+ ) Mn Vn

with

(3.&) Since limz Old, zl =1, the elongation of vz, to the lead-
ing order, is

and

Vn "n —
&

(3.6)
d=—((v~ v~))e —1=2y~N

Its average over the realizations of randomness is

(d ) =2(y'„)N' .

(3.18)

(3.19)—1

1 0 (3.7)

It is useful to define the product matrix

(3.8)

The wave function at an arbitrary site is obtained by the
application of RN to the initial conditions, namely,

RNvo . (3.9)

the eigenvectors of R~ with eigenvalues exp(+y~N), re-
spectively. Their norm is taken to be unity. The initial
vector vo can be expanded in terms of these nonorthogo-
nal vectors in the form

vo=a+ v +a v (3.11)

For random matrices M„, Furstenberg's theorem as-
sures that the norm of v„grows exponentially in the limit
N~ ~.

In this work we are interested mainly in the behavior
of v~ for N && g. Let us denote by

(3.10)

Actually the quantity that should be averaged is ln(1+d)
but for N «g it reduces to (d ) of (3.19) (see Ref. 16). In
this regime the localization length g~ is defined by (2.7).

In order to calculate gz a relation between (d ) and g
will be found, using a method that was introduced by
Ishii. For this purpose we write Eq. (3.1) in the form

zn+ )
= —e„—1 /zn, (3.20)

Ishii used this recursion relation, in order to find the sta-
tionary distribution of zn and the localization length. In
particular, for E =0, he found the result

coshy = [ I + (5/2) ] ' (3.22)

where y=1/g. For g))1 (y &(1, 5«1), that is of in-
terest in the present work

where zn =u„ /u„&. He found that for a Lorentzian dis-
tribution, P,s(e„), of e„, the distribution of the ratios z„ is
Lorentzian, as well. It is the distribution P, (z„) of (3.2),
where the s„satisfies the recursion relation

(3.21)

with
@=6/2 . (3.23)

Na+ = (y cosO —x sinO),
X

Na = (x+ sinO —y+ cosO),
N

(3.12)

We use (3.21), in order to find the distribution of ratios
z„ for N (& g' iterations. It is different from the stationary
distribution. In the pure region, where 6=0, one finds
s„=i. The initial condition at the interface between the
pure and random regions is that the distribution of zp is
P, (zo), i.e., so=i. It corresponds to a distribution of ini-
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tial conditions, where 8 of (3.4) is uniformly distributed.
With this initial condition, one finds, for n « g and
5«1,

i+O(5 ), n even

i(1+5)+O(5 ), n odd .
(3.24)

(d)= g (ln~z„~) .
n =1

(3.25)

With the help of the integral,

dzP, z ln z = lno. (3.26)

for real o. , one finds, to the first order in 6

0, n even
(3.27)

Consequently for 1 «N « g, to the leading order,

For 1 «g, the typical growth rate at each site is small,
i.e. , ~z„—1 &&1 so that z„~ =1+ ln z„. Since the distri-
bution of z„ is Lorentzian, its average does not exist. For
the scaling theory the behavior of the typical quantities
should be considered. ' ' These can be very different
from the averages, if these are dominated by the tail of
the distribution, as is the case in particular for Lorentzi-
ans. The average of ln~z„~ exists and for N &&g~ the
average of the typical elongation of the vector vo, corre-
sponding to (3.19) is

IV. SUMMARY

The relation (1.18) between the localization length and
the classical diffusion coefficient was derived in the
framework of the scaling theory for localization. This
provides additional support for the detailed correspon-
dence between quantal behavior of driven chaotic systems
and Anderson localization in disordered solids. The fact
that the solid state systems that correspond to the kicked
rotor exhibit a Lorentzian distribution of diagonal ener-
gies, manifests itself by the value a= —,'. Therefore this
value of o. reveals the special importance of the Lloyd
model for the understanding of the quantal behavior of
the kicked rotor and other dynamical systems. If there
are dynamical systems corresponding to solid-state sys-
tems with distributions of diagonal energies satisfying the
central limit theorem, then we expect to find a=1. We
are not aware of any such system, however. All calcula-
tions in Secs. II and III were performed for models with
hopping to nearest neighbors only. We conjecture that
these are representative and the results should hold for
models with hopping that is of short range but not re-
stricted to nearest neighbors.

It was shown that the finite-size scaling of the localiza-
tion length and of the conductance of the Lloyd model is
similar to the one that is found for generic models for lo-
calization, namely, models with distributions of diagonal
energies, that satisfy the central limit theorem. These
scaling forms diff'er however, by a numerical constant [see
(2.8) and (3.29)].

(d)=5N .

Comparison with (3.19) leads to

(3.28)
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This is the result (2.8) with A = 1. Consequently one ex-
pects that (1.18) is satisfied with a= —,

' for a kicked rotor
model, where the corresponding solid state model (1.7) is
a Lloyd model.
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