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We address the problem of choosing an initial state and final measurement that enable maximal
retrodiction of the result of an unknown intermediate spin measurement of a spin- —,

' particle, along

any one of a given set of directions. Details are given of the derivation of the most general possible
solution of the problem, which we reported recently. The maximal retrodiction is shown to be the
determination of the result of the intermediate spin measurement, along any of four different direc-
tions that span three-dimensional space and satisfy a specific linear relation.

I. INTRODUCTION

Due to the noncommutativity of different components
of angular momentum in quantum mechanics, one cannot
prepare a system that is a simultaneous eigenstate of
more than one component. Thus, given a spin- —,

' particle,
and given a set of distinct directions, one can at most pre-
dict the result of a future measurement of spin along one
of these directions. However, the situation is quite
different if we are asked to retrodict the result of the spin
measurement; Vaidman, Aharonov, and Albert have re-
cently demonstrated' that, provided the spinor is cou-
pled to another "detector" spinor in a certain way, a suit-
able final measurement can retrodict the result of a past
spin measurement (performed though after the initial
coupling of the spinor to the detector) along any one of a
(a priori given) set of three orthogonal directions.

In a recent work I have briefly reported on the exten-
sion of their results to the maximal admissible number of
candidate directions for the intermediate measurement
(namely, four) and/or the most general directions al-
lowed. In this paper I give the full derivation of my re-
sults.

Denote the set of a priori given candidate directions by
[ nt [, where l ranges from 1 to m and nt are unit vectors.
The possible intermediate measurements are then of the
operators o. -nI, with a the Pauli matrices of the spin- —,

'

particle. If m =1 (the set [nt ] consisting of only one unit
vector), the problem is trivially solved, either by choosing
the state P to be an eigenstate of o .n, or by measuring
Q=o.n at the end. (The first alternative is really a pre
diction rather than retrodiction. ) The case m =2 is also
simple to solve —let tt be an eigenstate of the spin along
one direction, say n, , and Q (measured at the end) be
o .nz. Both these cases do not require coupling the spin- —,

'

particle to any other degrees of freedom. But what if we
require m ~ 3, and m distinct unit vectors [ nt [ to choose
from? (Distinct here means also that no two are parallel,
for opposite directions define the same spin measure-
ment. ) Here it is easy to see that no solution to the prob-

lem is possible if we restrict ourselves to just the spin- —,
'

Hilbert space. As noted above, Refs. 1 and 2 have tack-
led the case where m =3 and [n, , n&, n3I is an orthonor-
mal triple. Using a geometric method, they have found a
particular solution to the retrodiction problem. We have
chosen to treat the problem using a different formulation,
which allows us to (a) find exactly for which m and for
which sets of directions the problem is solvable, and (b)
give a simple algebraic procedure for solving it when it is.
Let us summarize our formulation of the problem and the
results we obtained. The formulation involves the follow-
ing.

(a) An initially prepared state P, in a Hilbert space that
is a direct product of the space of the spin- —,

' particle, and

some spin J system; the dimension of the whole space is

d =2(2J + 1), and must be even.
(b) The "unknown measurement, " of either of several

spin components cr.nl, 1~ l ~m. Here nI are unit vec-

tors, spanning three-space. (We refer to ordinary three-
dimensional space as "three-space" in this paper. ) [We
make that last assumption because, as it turns out, the
problem has no interesting (i.e., m ~ 3) solutions when all

n& are in a plane; this case is disposed of in the Appen-
dix. ] tr are the Pauli matrices on the space of the original
spin- —,

' particle.
(c) A final measurement, of a Hermitian operator Q.

This operator has in general d distinct eigenvalues [A, „I,
and their corresponding orthonormal eigenstates cp~.

(d) The final element of the formulation is the technical
concept of partition, explained in Sec. II.

Our results are the following.
(I) Of the space of all possible operators Q for J=

—,
' (a

sixteen-dimensional real space) there is a twelve-
parameter subset for which one can retrodict any one of
tr, , 1 ~ a ~ 3, i.e., solve the case when m =3 and [nt I is
an orthonormal triple.

(2) For m =3, n& a nonorthonormal triple, J must be at
least 1, and if n& are to be unconstrained directions, one
needs at least J ==,' (d =8). For d =8, a construction is

given of a possible pair (P, Q) for any triple [nt I that
spans the three-space.
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(3) If [n& I
spans the three-space but m =4, J must be

at least 1. Such a construction is given. It places only
one restriction: that the signs of n& can be chosen so that
n, +n2+n3+n4=0. Any construction for m =4 will im-
pose this constraint, not only the example we give—
whatever J.

(4) Assuming [n& ) spans three-space, m is at most 4, no
matter what J is.

The rest of this paper is organized as follows. In Sec.
II the concept of partition is defined, and is used to for-
mulate the retrodiction problem concisely. In Sec. III we

apply our formalism to the case of three orthogonal
directions, and in the process reproduce the solution of
Ref. 1; indeed, we find for this case the most general solu-
tion which uses a d =4 dimensional Hilbert space. Sec-
tion IV is devoted to the case of three nonorthogonal
directions, Sec. V treats the m & 3 case, while in Sec. VI
we restate our conclusions briefly. The Appendix con-
tains the proof that there are no solvable cases when
m ~ 3 and [n& ) lie in a plane, thus justifying our assump-
tion throughout that n& span the three-space.

II. PARTITIONS

The initially prepared state is

d

b„

where

Q%~ =~~V'~

where bz are complex numbers; we choose the phases of
y~ so that b~ are real. g„are orthonormal. After o".n&

is measured, giving a result g& =+1, the state becomes
the projected (no summation over (). (The X superscript
signifies that this state is an unknown, to be "retrodict-
ed"),

g( i)
A

+ 1 if A ES+ (n& )

—1 if AES (n&). (4)

In what follows, we will actually refer to the e " functions
as the partitions.

Our problem is to construct pairs (Q, Q) for given [n& I.
In Q, A, ~ are arbitrary as long as they remain distinct, so
really only g~ and b~ are to be found; cp~ should be ex-
pressed in terms of the Cartesian-product basis of the d-
dimensional Hilbert space. But since Eqs. (3) are to be
solved, it is more convenient to express instead the action
of o', 1 ~ a ~ 3, on the basis [y„). We next express Eqs.
(3) in terms of the partitions (4), and derive simple condi-
tions that b~, e'~ must satisfy. These conditions will be
necessary and sufficient for the existence of o' in the cp„
basis, and once solutions b~, e'z' are found, it is easy to
construct cr'. Only for point (1) (see Sec. I) will we ex-
plicitly build Q; usually we will merely find [e~„'~) and
[b„), and that suffices to construct Q if so desired, as
will be shown below.

From (1)—(4) it follows that ( A always ranges
1~A ~d),

. i&=X '~ ~a~
1~1~m .

Thus for each 1 ~ I ~ m, there is a partition of [A, „) into
the sets S+(n& ). What's more, it is a nontrivial partition:
S+ are nonempty, for otherwise o n&P=+P for some 1,
which contradicts Eq. (8a) below. This means that P it-
self cannot be used to predict the outcome of the inter-
mediate measurement along any of the directions, so we
have true retrodiction —in the sense that the result of
the final measurement is needed to deduce g&, once I is
given.

For each of these partitions, define the sign function
e'" (a mapping from [ A ) onto Z«) as follows:

P~(n()= —,'(1+«)(rr.n()P . (3a)
Now, assuming the o matrices (o')„~ exist in the large
Hilbert space, they must satisfy their usual algebra,
which implies

Of course, the p states as given by (3a) are not normal-
ized. If the subsequent measurement of Q is to determin-
istically retrodict «)&, the expansions of the two states P+
in the basis y„must consist of disjoint subsets of [ A );
thus the value of k that is measured will unambiguously
tell us g&.

Let the disjoint subsets be [A, „:AHS„(n&)). Then
I

since b„~O, we have S+(n~)US (n&)=[A:1~ A ~d)
for any 1~1~m. Also

(cr n&)(o n, )=n& n +i(n& Xn ) o

Also, o' must be Hermitian.
By Eq. (5),

& P I
o n( I P &

=ge'"d g

P„(n, ) =
3 ES (n()

«(( I

(3b)
where

d. =Ib. I'

P=P+(n()+P (n() . (3c) The normalization of P implies
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(7a)

m is at least 3, and [nI ) is assumed to span the three-
space (see the Introduction). Now take the expectation
value of Eq. (6) in ~P), making use of Eqs. (5) and (7) and
the hermiticity of 0'nI ', and use also the fact that
[nI Xn I, being essentially the dual basis to [n& I, also
spans the three-space. Then the imaginary part of the re-
sulting c-number equation is equivalent to

whereas the real part gives

nl. nq
=peg e~ dq( I) ( j)

A

(8b)

Note that eI„"e ~'=e'g' is again a partition. It is useful
to introduce some terminology for future convenience. A
partition e is "good" if g „e„d„=0;then

d „=—,', q =+ 1 ( good partition );
AES

(9)

3

n + &
= g cl'~ nl, I ~j ~ m —3

l=1
(10)

(where n&, nz, n& are any three linearly independent n~'s).
From (5) and (10) we get

otherwise t is "bad." e is "pointed" if any one of S+, S
that it induces has only a single element. Two partitions
e, e' are "mutually nested" if S„CS '„ for some
g'H [+,—]. From Eqs. (5) and (8} we easily find the fol-
lowing:

(1) e'is good.
(2) For 1&j, e&+ '~e; otherwise by (5),

o.(nl+gn~)/=0 (for some sign g), which is impossible
since n&&+n and the eigenvalues of o (nl+gn ) are
+/n(+vyn, /.

(3) For l&j, eI" and e ' are not mutually nested. If
they were, say, S+(n&)CS+(n ), then Q„Es I„~d„

I„~d„(since all b „&0), contradicting Eq. (9),+ j
which states that both sides of the inequality are —,'.

(4) e ' is not pointed; if it were for some l, it would
(trivially) be mutually nested with any other e'~', j&l.

(5) e"~' are true partitions for l&j (i.e., they map [ A )
onto Z2). If two vectors nI, n are orthogonal, e ' ' is
good, and otherwise it is bad.

In addition to (7a) and (8), there is yet another useful
equation that follows from (5) if m & 3; there are (m —3)
linear relations between [nI I, say,

III. THE m =3, ORTHOGONAL CASE

We practice the above formalism on the case, m =3,
[n, , nz, n~I an orthonormal basis of the three-space. In
fact, let us choose Cartesian axes along these directions;
we can render this a right-handed basis by proper choice
of the signs of n, . We specify to J =

—,
' (d =4), which

proves sufficient for this case. Since nI. n, =51J, by (8b)
e"1' is a good partition if I&j. By the rules (1)—(4) above,
each partition e must divide [1,2,3,4) into two sets, of
two elements each. It is easy to see that the most general
solution, up to a permutation of the labels 3, is

S ' =[1,3I; S' '=[1,4); S '=[1,2) (12)

where g =+1. Then we find
e" =ale ', so e 'J' are good and (8b) is equivalent to (8a).
Equation (8a) is equivalent to [see (9)]

trices (cr )„z satisfying (5) and (6) is the following: (i)
there exist e„', d„=[b„ that solve (7a) and (8), and (ii)
if rn ) 3, there exist numbers cI' ', 1 j +m —3, 1~l ~3
such that (11) holds.

Proof. We have already shown the necessity of (i) and
(ii). If we assume (i) and (ii), we can simply define (for
1=1,2, 3) the action of o"nI on P according to (5). If
m ) 3, (10} and (11) then imply (5) also for 3 (I ~ m.
Since n, , n2, n3 span the three-space, we then know the
four states P, o'P, 1 ~ a ~ 3. By (8a), (8b), and (5), we see
that these four states are orthonormal. Through (6) we
define the action of cr' on these four states, and on the
subspace they span. Equations (5)—(8) then imply that o'
are Hermitian and satisfy the correct algebra on the sub-
space. Thus we have obtained a four-dimensional repre-
sentation of o'. If d )4 we simply extend the action of
o' to the rest of Hilbert space by creating a direct sum of
the four-dimensional representation with an arbitrary
d —4 =2(2J —1)-dimensional representation of o ma-
trices. Thus we obtain the action of o' on the gA states.
This procedure not only completes the proofs but is a
way to construct y„, and thus P and Q, in terms of the
usual angular momentum bases of the Hilbert space, or, if
J is not an angular momentum, a Cartesian product of
the usual spin- —,

' basis (say, cr =+1) and any basis of the
spin-J system coupled to the spinor. [Such a Cartesian
product basis is found by choosing any basis for the Hil-
bert subspace o = 1, and defining the corresponding basis
of the o. = —1 subspace by acting on the first basis with
o''. Note that this pairing of the bases of the two sub-
spaces o. =+1 guarantees that d is even; see parentheti-
cal remark in point (a) of the Introduction. ] In Sec. III we
will demonstrate explicitly such a construction of (P, Q).

3
(j+3) ~ (j) (I)—~CI E

1=1
A ES+(n&)

so we find

A

(we sometimes drop the subscript A).
So far, (8) and (11) were derived as necessary condi-

tions. But we now have a theorem.
Theorem. For given d and [nI I, a set of necessary and

sufhcient conditions for the existence of Hermitian ma-

d1 +d3 =d2 +d4 =d1 +d4 =d1 +d2 =
~

and, hence,

d3 d4 (13)
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Thus, if the phase convention is that b~ are real and posi-
tive,

b„=—,', 1~ 3 ~4. (14)

Then (5), (12), and (14) imply (q=+1 is arbitrary)

2/=V
& +f2 +Vs +V&,

2oxl=ki+0') 9'2 V'4

2oyg = .
rl ( cp, + 9'4 cp2

—0', )—,

0'i+ 0'2 0's 0'o .

(15)

The usual 0' algebra then tells us how o' operates on
these four states, which form an orthonormal basis
of Hilbert space. Thus, (1//2)(o. + gi cr )P and
(I/&2)(1+o, g)P ((=+I) are an orthonormal pair, and
a basis of the sub-Hilbert space with o, =g. Call the
J =

—,
' (auxiliary spinor) Pauli matrices r'; the states

lg, ) lpga)„g, 2=+1, are a basis for the full d =4 Hilbert
space. Since also I l g ) l

+ )„l g ) l

—),} is an orthonor-
mal basis for the cr, =g Htlbert subspace, a r-spinor uni-

tary matrix relates it to the above pair, namely,
T

—(o.„+i(o )P
1

2

—(1+ger, )P
1

2

(16)

where 0+ are arbitrary real three-vectors, and g+ are ar-
bitrary scalars. Equations (15) and (16) easily yield &p„as
linear combinations of

l g) lg') „then arbitrary (distinct)
A. ~, 1 ~ 3 ~ 4, must be chosen, and then both
Q=g„k„ly„)(g„and the preprepared state

[by Eq. (15)] are known. Thus the general
solution of our problem for d =4 and m =3, nI-n =At- is

characterized by 12 continuous real parameters
( I k„},8+,g+ ), as well as an arbitrary sign, 7).

Upon consulting Ref. 1, it is a straightforward exercise
to check that their solution to the retrodiction problem
for the case in this section is a special case of our general
solution, corresponding to the following parameters:

S+(n, ) = |2,4, 6}

S+(nz)= l1,2},

S+(n~)= l2, 3, 6}

(17)

They clearly satisfy conditions (1)—(4) of Sec. II. The
goodness equations become

, +d2 —d2+ 4+d6 —d2+d3+d6 —
—,
'

d] +d~+d3+d4+d)+d6 = 1

If d, , d& are taken as independent, the solution of (18) is

section. This proves that we need d~6 (J~ 1) for the
nonorthogonal case. Note that for d =4 there are no fur-
ther distinct partitions which satisfy (1)—(4) beyond
g'' ' ', so m ) 3 cannot be handled with d =4; this fact
will be used in Sec. V. Going back to m =3, we consider
d =6 (J= 1). There are a number of different ways to
choose I e'z'}; we find that several lead to solutions, but in
all cases ni. n are not the most general cosines between
three directions. This means that they are not three in-
dependent real numbers between 0 and 1. In fact, there
cannot be a solution with three free parameters, because
there are only six d „,and the "goodness" conditions (8a)
(of which there are three) together with (7a) are four
equations, so there remain only two real parameters, on
which n&. n depend through (8b). Nor could (7a) and (8a)
be linearly dependent, for that would imply a linear
dependence g I &c&

e'„"=0, implying via (5) that
&cln& =0, contradicting the assumption that ni span

3

the three-space.
Despite the fact that d =6 cannot give the most gen-

eral nonorthogonal solution, it can give a two-parameter
subset, as the following example demonstrates. Let the
partitions be

0+ = —,0,0, 0 =0,
d4

d 3

d, = —,
' —d, —d3

(19)

and after a little algebra, (8b) gives for the angles between
the measurement axes,

(A. „are four arbitrary distinct numbers).

IV. THE CASE m =3, [n, } NONORTHOGONAL

If d =4, then the labels A can be permuted so any
three partitions e' ', satisfying conditions (1)—(4) of Sec.
II, are given by (12). Since then 6 ='gE' ', etc. [see
equations following Eq. (12)], e"~' are good partitions for
l~j, so by (5), n& n =6&, which is not the case in this

n -n2=1 —4d&

n .n3= 1 —4d &,

n n]:1 2d] 4d3

so the angles are determined by only two parameters.
Note that n2 n3 =n, .n2 in this construction.

Even for d ) 6, not all choices of partitions give three
independent directions. We will simply record a particu-
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g d„=B .
A&e

{20a)

lar solution that does give independent directions. Let
d & 6 be arbitrary (even; see the Introduction). Let

S+(n, ) = { 1,2, 3I

S+ (n~) =
{ 1, 5, 6),

S+(n~)={3,4, 6I .

(25)

Also, we decree that

E =+1 (1 l 3, 3 )6) (20b)

They satisfy the conditions (1)—(4) of Sec. II, and by (8a),
(d5, dt; taken as independent),

(d could be chosen 8, i.e., J=
—,
' ). Consider the following

partitions [each S+ (n& ) set contains every 3 & 6, which
is indicated by dots]:

so

d4+d, +de =d, +d2+d3 =d3+d4+de
=d

&
+d5 + d~ =

—,', (26a)

S, (ni)={5,6, . . . ),
S+(n~)= {1,2, 5, . . . ),
S+(n~)={2,4, 6, . . . I .

(21)

d2+d4+de =d, +d3+d5 —B

Taking into account (20), the goodness conditions be-
come

d, =d4= —' —d~ —de, d2 =de,

and (8b) gives

n n =1—4d —4d
1 2 s e

n2 n3=4de —1,
n n =4d5 —1

d3 =d5 (26b)

(26c)

=d5+de =d1+d2+d5
=—' —B .

2 (22)

Taking B, d4, and de as independent, we get the solution

d1: —+B+d4+2de~ d2: — B d4 de
(23)

d3= —,
' —d4 —de, d~ =—' —B —de .

So from Eqs. (8b), (21), and (23) we get

n -n =1—4d1 2 6

n2. n3 = 1 —4d4 —4d e

n3.n1=4B 1+4d 6

(24)

Thus, the three angles are indeed free. In fact, the only
constraints on B, d&, ds are (since dz = ~bz ~

&0) B &0,
d4 &0, d~ )0, and d, &0, dz &0, etc. , in (23). It is tedi-
ous but straightforward to prove that, if relabeling of n&

is allowed, no inequalities are imposed on ni. n beyond
the geometric ones. This completes our construction for
m =3 and {ni I nonorthogonal. As d4 ~0, d& ~—',
B~O, d1~0 our solution tends to the case n& n =Gl-,
and the partitions (21), with A =1,4 and all A &6 re-
moved, become (modulo a relabeling of A values) the
d =4 solution of Sec. III.

for some three real numbers cI, of which at least two are
not equal to 0. Taking 3 to range from 1 to 6 and read-
ing off' e'„" from (25), we find

c1 +c2 c3 —sign

c1+c3 c2 sign

c2+c3 —c1 =sign .

(27)

The signs on the right-hand side are unspecified, and
form part of the fourth partition e' '. Note that solving
(27) is sufficient (recalling that at least two c's are
nonzero); properties (1)—(4) of Sec. II, and Eq. (8b) for all
1 l 4 then follow from the 1 ~l 3 case. Thus e' ' will
automatically be good, etc. Equation (27) is a necessary
and sufficient condition when augmented with the
1 ~ l ~ 3 conditions.

Equation (27) may be simply solved: with the conven-
tion c, &0 we find c, =c2 =c3 = —1. Thus

(these three angles depend on only two parameters, which
is always the case for d =6, as explained in Sec. IV). But
if m =4, there is one more condition on the partitions:
Eq. (11), which reads

3
(4) ~ ( I)

1=1

V. THE CASE m ) 3
n, =O. (28)

As noted at the beginning of Sec. IV, m & 3 is impossi-
ble for d =4. The current section consists of two parts:
first we show that m =4 is possible for d =6 by an expli-
cit solution (for which {ni J satisfies the linear relation
recorded in the Introduction; this relation precludes any
three among them from being orthogonal). Then, we
prove that m )4 is impossible, and that any m =4 solu-
tion must obey that linear relation among the four unit
vectors.

Consider the partitions {d=6),

This requires that n1+n2+n3 be a unit vector, a fact al-
ready guaranteed by the parametrization {26c). Later we
shall see, as a corollary to our proof that m ~4, that (28)
is always true if m =4 {ofcourse, up to arbitrary signs in
the definitions of the unit vectors n& j. Thus the above
m =4 construction, albeit a particular one, gives the
most general retrodiction possible for the m =4 case.

We conclude with the proof that m )4 is impossible
and that (28) is the most general m =4 case. We proceed
by assuming numbers c&, 1 ~ l ~ 3 such that
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Z=S+(n, ) AS (n, )AS (n~ )

=S (n, ) AS+(n, ) AS+ (n~. ), (29)

then c, =g, c =cj, = —g, where (=+1.
Proof of Lemma. If (29) holds, then recalling

S+ U S = T (for any I), we easily see that

, c&e'„"=sign, and showing that if there is a solution,
it is unique. Thus in (11),j may take at most one value;
this will prove that m ~4.

Proof. Consider any three partitions, e'„", 1 l 3, that
satisfy conditions (1)—(4) of Sec. II. A ranges from 1 to
an arbitrary d; the dimension d does not enter at all in the
proof. Let (ij k) be some permutation of (123). Let
T =

I A I, the set of all 3 labels.
Lemma. For any (ijk) if (E the empty set)

C] +C2 C3 —Sign

c2+c3 —c, =sign,

C] +C3 C2 SlgI1

(32)

VI. CONCLUSIONS

This, together with the fact (noted above) that at least
two c&'s must be nonzero, implies c, =c2=c3=(, g a
sign. Thus there can be only one c"' in Eqs. (10) and (11),
since two n vectors differing by a minus sign are not al-
lowed (they define the same measurement). Hence, the
only case where it remains to prove the theorem is when
there is a permutation such that (29) holds. But in that
case the lemma assures us that, once again, the ordered
set of c&'s is unique up to a sign; so the proof is complete.

S+ (n, ) US+ (nI,. ) aS+ (n, ) VS+ (n, ) AS+ (nl,. )~Z,
S+(n, )AS (n, )~Z,
S+(n, ) AS (n~ )&Z',

S+ (n, ) AS (n, )~(Z),

S+(nk)AS (n, )~Z .

(30)

By taking A ES+(n )AS+(nl,. ),

, c~ e '„"= sign gi ves us

the condition

c,-+c +c& =sign . (31a)

Next, take 3 ES+(n )AS (n, ); there the condition
gives

c. cA. c; = sign (31b)

whereas 3 HS+(ni, ) AS (n, ) gives

CA. Cj C]
—Sign (31c)

c, +c —
c& =sign,

c, +ck —c —sign .

(31d)

(31e)

Equation (31d) is redundant with (31c), (31e) with
(31b), and the general solution of the remaining indepen-
dent equations is just as stated in the lemma.

Using the lemma, the theorem now follows easily. For
if the assumption (29) of the lemma is false for all permu-
tations (ij k), we can pick

A, E[S+(n, )AS (n2)AS (n3)]

U [S (n, ) AS+(n2) AS+ (n, )],
and similarly 3 2, 3 3 in a cyclic manner; then the condi-
tion (11') at 3 = A, , A2, A3 yields

In addition, A CS+ (n, ) AS (nq ) and A 'HS+ (n; )

AS (n ) give, respectively (all right-hand sides are in-

dependent signs),

We summarize the results obtained in this paper.
Given a spin- —, particle and a set of directions in space,
we wish to interact with (measure) the particle (with some
auxiliary quantum system added) at two instances in
time, in such a way that when told along which of those
directions the spin was measured (at an intermediate
time), the result of that measurement will be known (re-
trodicted). The first "measurement" consists in prepar-
ing a pure state. Our aim here was to find how large and
general the set of directions can be while still allowing re-
trodiction, and to find a simple way to generate solutions
to the problem when they exist. We also asked, what is
the minimal number of degrees of freedom the auxiliary
system must have for each given set of directions. We
found that, beyond the trivial m ~ 2 cases, the directions
must span three-space in order that there be a solution.
We also found that m is at most 4, that when m =4 there
are solutions but only if the four unit vectors satisfy a
certain linear relation, and that the case m =3 can be
solved for any three distinct directions. We gave the
minimal dimensions of Hilbert space for which a solution
exists for each of the above cases. We have shown a gen-
eral way to construct solutions (Q, Q), and gave several
particular solutions, including the general one for the
case d =4, m =3 and an orthogonal triple of directions
nI', this last has as a special case the solution of Ref. 1.
Finally, we remark that our procedure is in fact capable
of yielding the most general solution for any d and

I ni I, provided all inequi valent sets of partitions
[e'", I ~ 1 ~ m ) that solve Eqs. (7), (8), and (11) are tried;
searching through all such sets is a straightforward, if
tedious, combinatorical task.
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APPENDIX

Let us prove that there are no solutions to the retrodic-
tion problem when m ~ 3 unless the directions nt span
the three-space. If they do not, they lie in a plane, say,
XY. If m ~ 3, there are at least three pairs of projected
states P„(n&), and each of these pairs defines a partition

I

[see Eqs. (3a)—(5)]. However, the remark after Eq. (3c) is
no longer valid, since it depends on Eq. (Sa), which de-
pends on the fact that n& X n span the three-space, which
they don't now. Thus, there is no reason why e'" have to
be true partitions. That is, it is possible that e'„"=+1for
all 3 and some l value; then q& would be "predicted. "
But whether this happens or not does not matter to our
proof. Let n„nz, n3 be any three of the directions. Since

c]cq +c2Eg signs (A 1)

where the signs on the right-hand side are e'„". Now, the
partitions e ' are distinct [e.g. , by point (2) of Sec. II],
so one can find an 3 value where they are equal, and
another where they are opposite; thus,

c ] +c2 —sign (A2)

c l c2:sign (A3)

Since c, z must be different from 0, these two equations
have no solution. This completes the proof.

they are linearly dependent, so are there corresponding
partitions; thus there are two nonzero numbers c, , c2
such that
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4J need not be an angular momentum; we refer to it as "spin"
for convenience only. In general, the only operators in our
formalism that must obey the angular momentum Lie algebra
are the Pauli matrices of the original spin- —' particle. Still, J
should be a half-integer, since the full product Hilbert space
has as one of its factors the two-dimensional space of the
spin- —' particle; thus d is even.

In what follows we assume b&&0 and all A, & distinct; relaxing
these assumptions means merely that the eff'ective d is

lowered. In physical terms, this means that only a subset of
the auxiliary degrees of freedom coupled to the spinor are in-
volved in the preparation of P and subsequent measurements.
(This fact follows easily from the procedure outlined in this
section, and will not be proved here. ) Also, all nt are mutual-
ly nonparallel, for parallel n's correspond to the same spin
measurement.

Actually there are three inequalities satisfied by these three
numbers, for any three directions spanning the three-space.
One of these expresses that n& are linearly independent —it is
that their box product is not equal to 0. The other two ex-
press the limited range of possible angles between the three
directions, e.g. , n&.n, = —1 for all 1&j is ruled out by geome-
trical considerations.


