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A method is presented for the calculation of tight upper and lower bounds for the energy eigen-
values of the Schrodinger equation. The method is based on a rational functional approximation for
the series expansion of the solution of the Riccati equation for the logarithmic derivative of the
wave function. Specific applications for one-dimensional anharmonic oscillators and for the Yu-
kawa potential are given, and the present results are compared with those obtainable by other pro-
cedures.

I. INTRODUCTION Hqt=Eqt, H= d ldx +—V(x) .

The Riccati equation satisfied by the logarithmic
derivative of the wave function proves to be useful in ob-
taining the eigenenergies of the Schrodinger equation.
This can be accomplished either through perturbation
theory' or by truncating the Taylor series for the loga-
rithmic derivative of the wave function. ' Although the
latter procedure, which only applies to nodeless eigen-
functions, yields acceptable results, it is found to be diver-
gent. For this reason, Fernandez, Frydman, and Castro
proposed a rational functional approximation for the
Taylor series which gives rapidly converging upper and
lower bounds to the eigenenergies.

The purpose of the present paper is to generalize and
improve the method developed by Fernandez et al. , and
to apply it to some specific model potentials of physical
interest. The generalized method is discussed in Sec. II.
It is applied in Sec. III to two one-dimensional anhar-
monic oscillators and in Sec. IV to the Yukawa potential.
The resulting bounded eigenenergies are compared with
those obtained by other workers using various alternative
theoretical approaches. ' Discussion and conclusions
concerning the method are presented in Sec. V.

II. THE METHOD

The present procedure applies to one-dimensional
parity-invariant model potentials [i.e., V( —x) = V(x)]
and to central force problems [i.e., V(r)= V(r)]. To il-
lustrate it, we first consider the Schrodinger eigenvalue
equation in the one-dimensional case,

We define N(x) as follows:

C&(x) =x 'qt(x),

where s =0 or s = 1 for the even or odd states, respective-
ly. Since &P(0)&0, the logarithmic derivative

f (x)= —+(x)'I@(x) (3)

will be analytic at the origin and can be expanded in a
Taylor series,

f(x)= g f,x '
j=0

(4)

Upon substituting Eqs. (2) and (3) into (I), it is found that
f (x) obeys the Riccati equation

f (x)' f(x) +2sf (x) Ix =E——V(x), (5)

where f (x)'—:df (x)ldx. If V(x) is expanded in the
series

V(x)= gv x ',
j=0

then it follows from Eqs. (4)—(6) that

j —1

fj=(2j +2s+I) ' g ff, i+Ego —
v,

i=0

(6)

j =0, 1, . . . .

As shown previously, the logarithmic derivative f (x)
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can be approximated by a rational function

g (x)= 3 (x)IB (x),
where

and

g b,f„,=0, n =M+ I,M+2, . . . , M+X+ I,
1=0

g b,f„,=a„, n =0, 1, . . . , M
i =0

(1 la)

M N

A(x)= ga, x '+', B(x)= gb, x ', ho=i .
j=0 j=0

Thus, there are M +N +2 adjustable parameters in the
approximated function g(x), namely, the coefficients a
and b and the energy. From now on, Wand F. will stand
for the approximate and exact eigenenergies, respectively.
According to Eq. (7), f, will be a polynomial in E (or W)
of degree j +1. For instance, fo=( W —vo)I(2s+ 1),
f, =[( JV —vo) —v)(2s+ I)']l[(2s+I) (2s+3)], etc If.
the coefficients a and 6 and Ware chosen such that

M+X+1
g(x) — g f ( ~)x2J'+1+Q(x2(M+N)+5) (10)

j=0

then it follows that

HD=

fd+1 fd+2

fd+2 fd+3

fd+D fd+D+1

fd+D

fd+D+1

fd+2D —1

(12)

where d =M —X ~0 and D =N+1. The roots of the
D XD determinant HD, W converge towards the actual
eigenenergies E as D increases in a manner that provides
increasingly accurate upper and lower bounds. This be-
havior, as verified computationally for a number of po-
tentials, is a marked improvement over the method dis-
cussed in Ref. 3 which diverges with increasing N after

(1 lb)

where it is understood that b; =0 if i & N. The N
coefficients b, , bz, . . . , bz cannot satisfy the N +1 linear
homogeneous equations ( 1 lb) unless

TABLE I. Numerical results for the energy eigenvalues of the quartic oscillator, Eq. (18), illustrating
the rapidly converging upper and lower bounds. The best values are underlined.

3
4
5

6
7

"Exact"'

HD

1.060 234 46
1.060 360 57
1.060 362 07
1.060 362 090 290 1

1.060 362 090 482 0
1.060 362 090 484 18

Ground state

1.060 376 07
1.060 362 26
1.060 362 092 3
1.060 362 090 504 7
1.060 362090484 5

HD

1.060 359 63
1.060 362 07
1.060 362 090 32
1.060 362 090 481
1.060 362 090 484 15

3
4
5
6
7

"Exact"'

3.799 287 93
3.799 668 55
3.799 672 97
3.799 673 029 238
3.799 673 029 7952
3.799 673 029 80139

First excited state

3.799 714 71
3.799 673 50
3.799 673 03
3.799 673 029 860
3.799 673 029 802

3.799 665 90
3.799 672 96
3.799 673 029 05
3.799 673 029 793
3.799 673 029 801 31

3
4
5
6
7

"Exact"'

7.3615
7.454 596 86
7.455 685 33
7.455 697 79
7.455 697 936 4
7.455 697 937 986 7

Second excited state

7.4659
7.455 816 13
7.455 699 28
7.455 697 953
7.455 697 938 2

7.4535
7.455 678 02
7.455 697 74
7.455 697 935 9
7.455 697 937 97

3
4
5

6
7

"Exact"'

'Reference 5.

11.3757
11.641 737 6
11.644 711 4
11.644 745 1

11.644 745 507 2
11.644 745 511 378

Third excited state

11.6726
11.645 066 2
11.644 749 2
11.644 745 52
11.644 745 512

11.6389
11.644 692 0
11.644 744 9
11.644 745 506
11 ~ 644 745 511 32
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TABLE II. Numerical results for the energy eigenvalues of the sextic oscillator, Eq. (19), illustrating
the rapidly converging upper and lower bounds. The best values are underlined.

"Exact'"

1.136053
1.145 233
1.144 790 2
1.144 802 86
1.144 802 453 7

Ground state

1.144 196
1.144 522
1.144 801 80
1. 144 802 475

1.145 159
1.144 789
1.144 802 85
1.144 802 441

4
5
6

"Exact'"

4.340 065
4.338 557
4.338 600
4.338 598 711

First excited state

4.338 668
4.338 596
4.388 598 78

4.297 389
4.338 6000
4. 338 598 67

4
5
6

"Exact'"

8.9806
9.0780
9.072 95
9.073 084 56

Second excited state

9.0661
9.073 31
9.073 077

9.0769
9.072 94
9.073 089

4
5
6

"Exact'"

'Reference 5 ~

14.6625
14.9509
14.9348
14.935 169

Third excited state

14.9132
14.9359
14.935 147

14.9468
14.9347
14.935 183

reaching a "best" value.
As mentioned above, the present method also applies

to central force problems. In this case, the radial part of
the Schrodinger equation

J
f, +~=(21+j+3) ' g f f, ; —2v +2Eo o

i=0
L

j=0, 1, . . . . (17b)

4(r)"+ —O(r)'+ I2[E —V(r)] —l(1 +1)lr I+(r)=02

7

can be transformed into the Riccati equation

f (r)'=f (r) — f (r)+2[E —V(r)],2(l + 1)

(13)

(14)

V(r)= g v r~,
j= —1

we can write

(15)

(16)

where

f0= —v, l(I +1) (17a)

where f (r) = —N(r)'I4(r) and C&(r) =r '%(r). There-
fore, if we again expand the potential in a series

On reasoning as before, it is found that the approximate
eigenenergies are also given by the roots of HD.

Since the rational functional form (Pade approximant)
can take into account the poles of f (x) which occur nat-
urally for simple potentials [e.g. , V(x) =x ], the method
developed above applies to all the states, not only to the
nodeless ones. Other methods, e.g. , the moment method
proposed by Handy and Bessis, need special adaptions in
order to treat excited states. If Eo &E, &, then it is
found that H2 provides the first approximation to E„H3
yields the second approximation to E, and the first one to
E, +2, etc. In general, the roots of HD are the
(D —j —1)th approximation to E, +2, , j =0, 1, . . . ,
D —2. Numerical investigation suggests that the zeros of
HD provide rapidly converging upper and lower bounds
to the eigenenergies of the Schrodinger equation as the
order of the determinant increases. Unfortunately, we
are not at present able to provide a rigorous proof for this
behavior. However, we can numerically verify these con-
clusions if accurate eigenenergies exist for some particu-
lar potentials.

In order to eliminate errors, we have employed the
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TABLE III. Numerical results for the ground-state energy eigenvalues of the Yukawa potential, Eq.
(20), for the choice X=0.1. The best values are underlined.

HD

—0.407 058 021 9
—0.407 058 030 620 0
—0.407 058 030 613 404 1
—0.407 058 030 613 402 9

HD

—0.407 060 960 2
—0.407 058 030 613
—0.407 058 030 613 402 4
—0.407 058 030 613 403 17

HD

—0.407 058 030 59
—0.407 058 030 841
—0.407 058 030 613403 1
—0.407 058 030 613403 158

algebraic program REDUCE wherever possible for algebra-
ic manipulations, and have carried out the numerical cal-
culations in REDUCE keeping a large number of digits
(typically 80). Thus the numerical results reported are
not affected by round-off errors. This is particularly im-
portant in the present method because of the large can-
cellations that occur in the evaluation of determinants.

III. ONE-DIMENSIONAL
ANHARMONIC OSCILLATORS

V(x)=x (18)

which is a particular case of Eq. (6) having U, =6,~. Re-

As specific applications of the theoretical expressions
discussed in Sec. II, we first consider the quartic oscilla-
tor

suits for the lowest four eigenenergies for several choices
of d and D are listed in Table I. It is clear from these re-
sults that HD and HD yield increasing lower bounds
while HD yields a decreasing upper bound as the order D
increases. For D as small as 7, the agreement of the best
bounds (underlined in Table I) with the accurate numeri-
cal eigenvalues reported previously by other authors is
remarkable.

In the case of the sextic oscillator,

V(x)=x

having v =6 3, the roots of HD oscillate as the order D
increases giving alternating upper and lower bounds as il-
lustrated by the results listed in Table II. The best
bounds, which are underlined, again agree very well with
the previous accurate numerical calculations. We would

TABLE IV. Upper and lower bounds for various values of the range A, for the 1s and 2s states of the
Yukawa potential, Eq. (20). The best values are underlined.

1s state

X=0. 1

E(Hs)= 0 4070580306134041 &E &E(H6)= 0.4070580306134029
E(H,') = —0.407058030613403 17 & E &E(H,') = —0.4070580306134024
E(H', ) = —0.407058 030613403 158 & E & E(H', ) = —0.407058030 613 403 135

"Exact'" E = —0.407 058 030 613 403 156 7

E (H 6 ) = —0.326 808 511 4
E ( H 5 ) = —0.326 808 511 369 699
E (H 6 ) = —0.326 808 511 369 203

A, =0.2

&E &E(H', )= —0.3268084928
& E & E(H,') = —0.326808 51136908
&E &E(H', )= —0.32680851136875

"Exact'" E = —0.326808 511 369 193

E(H6) = —0. 148 117043
E ( H 7 ) = —0. 148 117022 2
E (H6 ) = —0. 148 117032 3

A, =O. 5

& E & E ( H 7 ) = —0. 148 117020
& E & E(H,') = —0. 148117008
& E & E (H ) = —0. 148 117021 5

"Exact'" E = —0. 148 117021 89

E(Hq ) = —0.012 175
E(H5 ) = —0.012267
E(H5 ) = —0.012 143

'Reference 6.

2s state

A. =0.2
& E & E (H ) = —0.012 100
&E &E(H6) = —0.012 11
&E &E(H', ) = —0.01210711

"Exact'" E = —0.012 107 86
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expect similar behavior in other parity-invariant poten-
tials, and work is in progress to extend the method to in-
clude other (e.g. , odd powers) potentials.

IV. CENTRAL POTENTIALS

As an application of the present method to a central
force problem, we consider the Yukawa potential

(20)

where the range A. can be chosen arbitrarily. For the
ground ( ls) state and the choice A, =O. 1, we obtain the re-
sults listed in Table III. Similar results obtain for other
choices of X and for other states. These are illustrated by
sample results presented in Table IV. We give only the
results for D ~ 7 for several choices of A, for the 1s and 2s
states. As can be seen from these results, the conver-
gence for the eigenenergies of the Yukawa potential is ex-
tremely rapid. This is especially true for small values of

for which the Yukawa potential becomes more
Coulombic in nature. This behavior could be anticipated
because in the limit A.

—=0 (hydrogenic atoms), it is well
known that the logarithmic derivative f (r) can be exact-
ly represented as a Pade approximant.

central potentials. These bounds can, in principle, be
made increasingly more accurate by increasing the order
of the determinants HD, although numerical stability
problems may occur if one attempts to use high-order
determinants. In practice, however, even small deter-
Ininants, say, 6X6, give reasonable accuracy for the po-
tentials considered. Also, for the one-dimensional case,
the nature of the bound (e.g. , upper or lower) can be pre-
dicted; this provides useful information that can be ob-
tained with a minimum amount of work. While the
method gives bounds for both the ground and excited
states, it can be seen from the present results that the
bounds for the excited states are generally less accurate
than those of the ground state for the same order deter-
minants. It is also apparent that results for those in-
stances, such as the Yukawa potential for small values of
A, , which correspond closely to problems for which the
logarithmic derivative can be accurately represented by a
rational functional form, the bounds are remarkably tight
even for low-order determinants.

Finally, we note that the present method can be ap-
plied to other potentials with corresponding results, and
because the algorithms are well-suited to algebraic pro-
gramming techniques (e.g. , REDUCE), they can be carried
out very rapidly on modest size computers.

V. DISCUSSION AND CONCLUSIONS

As one can see from the results presented in Tables
I—IV, the method described in Sec. II gives accurate
upper and lower bounds for both parity-invariant and
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