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It is theoretically shown how a two-photon laserlike oscillator with strongly squeezed output can
be constructed. The physical mechanism leading to squeezed laserlike oscillator is the strong
competition among the nonlinear gain due to resonant four-wave mixing process, nonlinear losses
due to the absorption of generated photons, and linear losses from the cavity. In the balanced
case, the photon correlations result in a linewidth that is narrower than the Schawlow-Townes
limit.

In this paper, we present the theory of a novel kind of
two-photon laserlike oscillator whose output is automati-
cally squeezed' as a result of strong four-wave mixing in
the nonlinear gain medium. In our model, an intense
pump laser beam of frequency m causes the two-photon
excitations in an active nonlinear medium which is placed
inside a cavity. Two radiation fields of frequencies co& and
ro2 are generated due to four-wave mixing. These photons
can get reabsorbed by a two-photon absorption process.
We show that a strong competition among four-wave mix-
ing, two-photon absorption, and linear cavity losses leads
to lasing action above a certain threshold determined by

I

the nonlinear mixing and the linear damping constants.
We also show that the strong correlation between the gen-
erated photons leads to a narrower linewidth.

We next present the basic equations for the two-
photon squeezed laserlike oscillator. We treat the pump
field E(co) classically. Let a and b be the annihilation
operators for the fields at co~ and co2, respectively, and a
and b the corresponding creation operators. Under the
resonant condition 2' =co~+ m2, the dynamical evolution
of the fields at co~ and m2 is described by the master equa-
tion for the field density matrix p [as in Ref. 2, Eq. (1),
but with cavity losses included now]:

t)pP =
I G I

(a'b'p pa'b')+ —
I G I (pab abp)—

——(atbtabp —2abpa bt+pa b ab) —y, (atap —2apat+pa a) —yb(btbp —2bpbt+pb b) .
2

Here the nonlinear gain parameter 6 is proportional to
the lowest-order nonlinear susceptibility g for four-
wave mixing:

G = —2zro2g t3'(ro, co, co i )E'(co)—
()( )g ( ) (2)

We have defined a and b in such a way so as to eliminate
the phase of 6. The nonlinear absorption parameter x is
related to the susceptibility for two-photon absorption:

K'~8K co]co2AImg (co2, co2, cot)/V,

~here V is the quantization volume for the field mode.
The linear-loss parameters y, and yp arise because of pos-
sible leakage from the end mirrors of the cavity and are
taken to be slightly diA'erent for the two radiation fields at
mI and co2 in the general case. Because of the single-
photon decay terms in this system, the conservation law
((ata —b b)~) =0, p=1,2, . . . does not hold. This bro-
ken symmetry has important consequences, such as the
occurrence of a threshold and phase-transition-like behav-
ior of the system. A similar situation is encountered in the
treatment of optical bistability where the total coopera-
tion number (corresponding to the angular momentum
operator 5 ) is not conserved owing to the single-atom re-

I

laxation terms. In deriving (1) we have ignored the linear
absorption of co~ and co2 by the atomic medium assuming
that col and co2 are far from the frequencies of the inter-
mediate levels. If need be, then this absorption can be ac-
counted for by a redefinition of y, and yp.

An important consequence of this broken symmetry is
also that the destructive interference discussed in Refs. 2
and 3 is no more fully operative. As a result, there is al-
ways some population in the excited state.

From Eq. (1) the mean-value equations for the field

amplitudes are found to be

(a) Tr(pa) =
I G I

(bt) — (ahab) —y, (a),—

(b) =Tr(pb) I G I
(at) — (hata) —yb(b) .—

2

(4)

(5)

1&a) I

'= —l I G I (yb/ya) '"—
yb~ =a',2 2

I &» I

'=—
~ I G I (../.b) '"-y. i -=P'2 2

(7a)

(7b)

The steady-state solutions are obtained under the semi-
classical approximation, either

I&a) I'-o, I&b) I'=o,
or
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Thus, for nonzero values of (a) and (b), i.e., for nonzero
values of the coherent part of the field, we require

IG I
& ir. rb. (s)

It is clear that (S) defines an above-threshold condition
for the laser oscillation in our medium. In the usual laser
operation, the threshold is defined by the condition that
the linear gain equals the linear absorption. In our case
the threshold is defined similarly by the condition that the
nonlinear gain (arising from four-wave mixing) equals the
geometric mean of the two leakage rates. Equation (6)
describes the situation below threshold in the steady-state.
Note that in the region above threshold, steady-state is

possible only because of two-photon absorption in the
medium (x.e0). If the two photon absorption were to be
ignored, then the fields in the medium would grow under

l

[H,ff, p] '—
y,

' (A tA p —2A pA t+ pA tA )

the condition (S).
It should be borne in mind that in the present system

there is no population inversion which in our view is not
absolutely essential for laser action. Laserlike action can
result from other mechanisms as long as the system exhib-
its gain, which in our case arises from parametric process-
es.

In order to obtain the quantum statistical properties of
the generated fields, we linearize the density-matrix Eq.
(1) in the vicinity of the steady-state solutions a and P
(real and positive) defined in (7). Let us set

(9)

Then, using up to quadratic terms in A and 8, we get

—yb(8 Bp —28pB +pBtB) —a'[(A tBp 28pAt+pA tB)+(BtAp 2ApBt+pBtA)] (ioa)

where

H ff=i iy, ybA 8 + H.c.

~'—=
I G I ir. rb. — (10b)

Note that Eq. (10) is exactly solvable. From (10), we
obtain the linearized equations for the mean values of 2,
A, 8, 8 . The relaxation matrix has eigenvalues (k)
given by

&i=0, &2- —2IGI, &3= —2r, &4= —2(IGI —r),
(ii)

in the balanced case when y, =
yb

=—y. In the region above
threshold, we have IX2I & IX3I always. But in a range
2r& IGI & r, l&4I & I»l, thus~~k~~g l&4I th«m»I-
est eigenvalue; otherwise I X3 I is the smallest of the k's,
giving rise to the narrowest peak in the output spectrum.

One can construct the quantum Langevin equations for
the system operators, and from the generalized Einstein

I

relations (Ref. 5, p. 324), one arrives at the following
dlffus1on constants:

&Dg~~&- I G I (rJrb) '", &Daet&- I G I (yblr. ) '",

(D„st& I G I

—iy, yb (Ds„i&,
(i2)

10—=V, —Vb=- .
2l

A —A~ 8—8~
a p

(i4)

Using the mean value equations for 2 and 8, we find
that the phase p satisfies the equation

i - —(y.' —rb)(e. +yb)+R, «) . (is)

The diffusion coefficient D((b) associated with the random
force R& can be calculated as follows:

the rest are all zero. In order to look at the linewidth of
the laser, we introduce the phase operators p, and pb for
the two radiation fields in the most general way

e' '~(ata+I) ' a, (i3)

etc. Thus, the phase-difference is given by

(2 ( )) . &[ay(r)]2)
~i-0 ht

r

&D„„t&

(Dalai&

+
a2 p2 ap

(Da„t)
ap

1 1
(y.&rb)'"+ (rb~y. )'"—

a
(I G I -iy. y»

In the balanced case y, yb y, we find the result

j-R,(r),
&R~(t)R~(r')& -&2D(y))B(r r'), —

(2D(y) &
-yla'.

(2D(y))sT- I G I+ y

2a
(is)

Thus, in the balanced ease the relative phase obeys the
diffusion equation. Note that the usual Schawlow-Townes
liinit for the laser linewidth is given as (Ref. S, p. 293)
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g~ '1

l(

1

!!
/

or absorbed simultaneously in two-photon absorption pro-
cess) are responsible for the line narrowing. Note further
that 6 is proportional to pump power and, thus, by in-
creasing the pump power one can move away from thresh-
old.

Finally, we calculate the spectrum of fluctuations in the
intensity difference between the two output modes. The
two-time correlation functions of the intensities IJ (t) out-
side the cavity and I~(t) inside the cavity are related as
follows:

&I~ (to), Ik (0)& =4y! yk&I~ (r), Ib (0)&

+28 k8(r) y, &I, (0)), (19a)

0.0
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FIG. 1. Plot of the normalized spectrum St(to) [defined by
(21)] with y, /yb-1. 125: for (a) ~G ~

-I.lay, yb &solid line);
&b) ) G ) 1.5Jy, yb &dashed line); &c) ( G ( 2.0jy, yb

&dashed and dotted line).

where

I, (t) =ata, Ib(t) =btb,

&x,y &
=—&xy &

—&x &&y & .
(19b)

The spectrum of the fluctuations in the difference
I I, —Ib of intensities of two output modes is defined as

Since y( ~
G

~
for operation above threshold, we con-

clude that the laser linewidth here is narrower than the
Schawlow-Townes limit by a factor of 2y/(~ G

~
+ y). It

is clear from Eq. (16) that the correlations &D„tsar& and
&Dtt„t) between the two strongly coupled modes (as they
are either generated simultaneously in four-wave mixing

St (co) „dre '"'&T:I(r),I(0):&gb, (20)

where the subscript 4'S stands for steady-state correla-
tions, T stands for time ordering, and:: stands for
normal-ordering of the operators. Using Eq. (19) we ob-
tain the following expression for the spectrum (20):

St (to) So+4 dr e '"'& T:y, I, (r ) —ybIb (r), y, I, (0) —
ybIb (0):&, (21)

where

Sp 2(y, &I,&tttt+ yb&Ib&tttt) -4y, a'-4ybP'. (22)

The normalized spectrum St(co)=St(to)/So is evalu-
ated numerically using the linearized master Eq. (10).
Figure 1 shows the plot of St(to) for three operating
points of the laser, one very close to threshold (solid
curve), and others further above threshold. The vacuum
or shot-noise level is given by St(to) -1, and perfect noise
suppression corresponds to St (to) -0. In the region near
threshold, one has strong squeezing of phase fluctuations
and the squeezing gets reduced as the gain

~
G

~
is in-

creased. The behavior is the same in the balanced case. In

fact, the analytical result in this case is very simple,
St(to) =co /(4y +to ) which goes to zero as to 0 in
spite of the presence of the two-photon absorption. This is
because the two-photon absorption loss is not a passive
loss and is balanced in a dynamical fashion by the gain
and cavity losses. These features of our two-photon laser
are similar to that of nondegenerate parametric oscilla-
tors.
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