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Mode coupling in a vibronic laser

F. Marquis
Centre d'Applications Laser, Ecole Polytechnique Federale, 7075 Lausanne, Switzerland

P. Schwendimann
Defense Technology and Procurement Agency, System Analysis Division, 3000 Bern 25, Switzerland

(Received 19 July 1988)

Taking into account the vibronic-level structure in a laser medium, we study the influence of
electron-vibration interaction on the field dynamics. Different vibronic transitions are coupled in
the medium through this interaction and contribute to the emission from excited states, thus cou-
pling different field modes in the cavity and influencing the field dynamics. A general model is
presented and solved in a simple example of four coupled transitions. In particular, the effect of de-
generate transitions is stressed.

I. INTRODUCTION

In the last few years, tunable infrared solid-state lasers
as well as molecular lasers have been the object of rapid
development. ' As it is well known, they exploit the tran-
sitions between vibronic states in impurities embedded in
a host crystal or in gas molecules. The main characteris-
tics of these systems (gain, threshold, etc.) have already
been modeled in Ref. 2. This approach has the advan-
tage of giving an explicit account of the influence of the
interaction between electrons and vibrations (e.g. ,
electron-phonon interaction in a solid-state laser) on the
laser characteristics. Therefore, an "ab initio" descrip-
tion of laser action in a vibronic system is obtained,
which does not rely on the useful but rather ad hoc three-
or four-level transition scheme.

In Ref. 2, the basic elements of the theory of the vib-
ronic laser have been presented, with emphasis on the
influence of the electron-vibration interaction on the laser
parameters. In this paper we go one step further and dis-
cuss the consequences of the peculiar features of the vib-
ronic spectrum on the laser dynamics. We have chosen
to work with a small number of vibronic levels, in order
to have a quick insight into the dynamical behavior of
these systems. Furthermore, in our numerical examples,
we use values for the diFerent parameters (coupling con-
stants, frequencies, etc. ) which fit well with that of a
molecular laser, such as, for example, XeC1. We want,
however, to stress that we are not trying to link our re-
sults with a definite experimental situation. In this sense
this choice has merely an illustrative character.

We focus in this paper on two main points, and organ-
ize it as follows. First of all we investigate in a general
case the dynamical relevance of the mode coupling in-
duced by resonant coupling to different vibronic transi-
tions, which has been put in evidence in Ref. 2. We then
show in a first example how the emitted intensity is distri-
buted between the different modes, depending on the
strength of the coupling between different transitions and
on the excitation (pump) parameter, when only one excit-
ed state is present. Furthermore, since transitions be-

tween different pairs of vibronic states having the same
frequency are possible, we discuss in a second example
how this frequency degeneracy changes the redistribution
of the intensity between different modes, in the case
where two excited states are present. We stress the fact
that results presented here are characteristic of any vib-
ronic system and show up independently of the number
of states involved in the computation.

II. MODEL EQUATIONS

The vibronic laser model which we use here has al-
ready been discussed in detail. ' Therefore, we will here
only summarize its main features. As a consequence of
the interaction of two electronic states with a vibrational
field, the level structure of the system shows the charac-
teristics represented in Fig. 1. Here the electron-
vibration coupling is assumed to be linear and only opti-
cal phonons are considered. The laser transitions occur
between upper vibronic levels m in the upper potential
sheet, lower levels n belonging to the lower potential
sheet. Besides these transitions, which are characterized
by raising (S+„) and lowering (S „) operators below, we
consider also transitions between vibronic states in the
same potential sheet, which are described, respectively,
by T&+„and TI, operators. Here the + and —signs indi-
cate that the transition takes place in the upper or lower
potential sheet. The Tk—

+
&

with equal indices describe the
population of the corresponding state. Replacing the
operators with their expectation values on a suitable ini-
tial state, and expressing the polarization through S+„
and S „,the semiclassical laser equations are given by

d S+„=—
y „S+„+i[E—A( nm)]S+„

dt

~here ak are the classical electromagnetic field modes.
The equation for S „ is obtained by taking the complex
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cies, respectively. cok is the frequency of mode k. For
more details on this model, the reader is referred to Ref.
2.

The material equations (2.1)—(2.3) are then solved by
perturbation calculation around threshold in the spirit of
Lamb's semiclassical laser theory. As a zeroth-order ap-
proximation, the unsaturated populations are used,
whereas all other quantities are zero. After some
straightforward algebra, the contribution to the polariza-
tion up to third order in the electromagnetic field is given

(S )' =4+ IA
I

A*
k V rnn y rnrn

FIG. 1. Vibronic-level structure for the case of two electron-
ic states. E is the energy and Q is a phonon-configuration coor-
dinate proportional to the displacement (6 +b )

conjugate of (2. 1) and interchanging the order of the in-
dices in the expression. For the inversion I „
=T „—T,„we obtain

d T T

dt Imn 3mm Imr& + ymm ~+mn

k, k'(k~k')

with a] and u2 defined as

1
a( =f,„„gf(,„AN„,(

y/rn

1

y(,„+i (i —m)II

g„',g(, I A, , I'-A~*
y rrl )1

Xe ' ' (a(+a, ), (2.5)
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+( y gk[(f.(S.(+f( S(,.)ak'

(f.,(S '(+f(—„S(,+, )a(; ] (2.2)

where b,N „=( T+ —T„„) is the pump source term.
The nondiagonal quantities T—„obey

d +
T,„+„=—[y „+i'(n —m)]T+„

dt
—( g g(,. ( f„(S,„+(a(, f(,„S(„a(,+ ), —

I', l

T „=—[y „+iA(n —m)]T „dt

+( & g~(f( S(.'ak —f.(S (a~') .
k, l

Finally, the classical field modes are described by

(2.3)

a(, = —I a(,. —iruka( —i g g g(,.f„S„,„
dt

a„=—I a(, +i ru„a(,+. +i g g g(,.f „S,„+„.
dt k m, n

(2.4)

The quantities y,—„,, y „,and y, are damping constants
for the transitions between levels belonging, respectively
to the same potential sheet and difterent sheets, and I is
the damping constant for the field modes ak. The quanti-
ties f„„are the Frank-Condon overlap integrals which
characterize the transition between upper and lower lev-
els and depend on the strength of the electron-vibration
coupling. Their explicit expression is found in Ref. 2 or
in standard literature. Finally, the gk are the dipole-
coupling constants to the electronic transitions and A
and c are the vibration and electron transition frequen-

+i (i' —n)fI y/(

We have used a(,. = A(, (t) exp[i (rut + rl((,. t) ]. Here only the
terms which correspond to resonant transitions have been
retained and we assume that two mode indices are equal.
In (2.5) we recognize two sorts of "resonant" terms:
terms which do not contain a dependence on the vibra-
tion frequency 0 in the denominator and terms which de-
pend on the frequency difference (m —n)SI between vib-
ronic states. Let us discuss these different contributions
in more detail. The vibration-independent terms contain
self-saturation contribution to a single mode, originating
from the inversion terms as in the usual two-level
theories, as well as terms coupling different modes
through different transitions. The latter terms are pecu-
liar of the vibronic laser model of Ref. 2, and are not
present in the simple two-level atom theory. (This shows
why such a simple model is not able to cope with vibronic
lasers. ) The phonon-frequency-dependent terms also con-
tain both kinds of coupling. However, they originate
mainly from the population terms in the perturbation de-
velopment ~ Their contribution to the transition rate
should be of minor importance since the denominator
terms turn out to be larger than those of the frequency-
independent terms. Here we have displayed these terms,
which had been disregarded in Ref. 2, for the sake of
completeness.

In order to simplify the discussion of the dynamics in-
volved by (2.4) and (2.5), we now limit ourselves to a situ-
ation in which at most four lower levels and two upper
levels are present. Furthermore, we neglect the terms de-
pending on (m —n)A in the following. Within this as-
sumption the field equations become
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configuration consists of two excited upper levels coupled
to two lower levels, thus containing a double transition
which is degenerate in frequency. We will show that the
presence of these degenerate transitions strongly
influences the laser dynamics.

where m takes the values 1 and 2, and I and n range from
1 to4.

III. COUPLED TRANSITION DYNAMICS

The number of possible transitions in a vibronic system
being very large, we have decided, as we already antici-
pated to limit the number of intervening vibronic levels.
This number is kept small enough so that the mechanism
of the coupling and the main features of a vibronic laser
are revealed, at least in the approximation expressed by
(2.5). In the following we discuss two different
configurations. In the first example, one excited upper
level is coupled to four lower levels. The second

A. One upper level

The equations for the intensities of the four coupled
modes are

d
Ik =2Ik Ak +Bk Ik + g Ckk, Ik,

d~ '
k(~k'j

(3.1)

with k, k'=1, 2, 3,4, where
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FIG. 2. Coupled intensities Ik as a function of time for the case where only the fundamental vibronic level is populated in the
upper potential sheet, and four vibronic levels are considered in the lower potential sheet. The intensities are represented in arbitrary
units for different values of the pump parameter N/1Vr. t is normalized to 0/2Q, where Q is the quality factor of the cavity. e
dift'erent curves correspond, respectively, to k =1 (dotted line), k =2 (solid line), k =3 (short-dashed line), and k =4 (long-dashed
line). (a) —(d) display the coupled intensities for N/N~ equal to, 1.1, 1.6, 9.1, and 4.5, respectively. (Note that the medium parameters
are pertinent to a molecular XeCl laser. )
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with n =k —1, n'=k' —1, and m =0. N is the excited-
center density, and N& is the threshold value for laser ac-
tion in the stronger transition (in our case m =O~n =1)
expressed by

~o&7oo

g~l foi
The equations are solved numerically as a function of
time. We expect to find a dynamical behavior analogous
to that of a standard two-level system coupled to different
modes. However, we stress the fact that in our case the
mode coupling is determined by the Frank-Condon fac-
tors (i.e. , the electron-vibration coupling), and is in fact a
"transition" coupling. In contrast to the two-level sys-
tem, the coupling here is resonant, and the conditions for
mode oscillation are influenced by electron-vibration cou-
pling only. Therefore, it is of interest to briefly discuss
these results. Figure 2 displays the coupled-transition dy-
namics for different values of the parameter N/NzAs. .
one expects, for low values of N/N&, the mode corre-
sponding to the strongest transition starts to oscillate
[Fig. 2(a)]. When increasing N/AT, the other transitions
become active, too [Fig. 2(b)], in a sequence given by the
strength of their respective Frank-Condon factors, i.e., in

our example transitions from m =0 to n =2, n =3, and
finally n =0, for decreasing values of f „. When all tran-
sitions are above threshold, there is a remarkable redistri-
bution of the intensity between the different coupled tran-
sitions. This redistribution can lead to different situa-
tions, where, for example, the four intensities can be al-
most equal [Fig. 2(c)], or on the contrary where one
specific mode can dominate [Fig. 2(d)]. Note that the
strongest mode does not always correspond to the strong-
est transition. In order to test our results, we have also
done some computations by retaining nonresonant terms,
which are not written explicitly in (2.5). This calculation
is principally done in order to see whether the mode-
mode coupling contribution due to nonresonant coupling
of two modes to the same transitions may become com-
petitive with the resonant transition coupling. The result
of our computations leads to the conclusion that intro-
ducing the closest nonresonant contributions in the eval-
uation of the gain and saturation coefficients does not in-
duce any noticeable change of the time evolution of the
intensities. This means that, in this example, the contri-
butions of nonresonant mode-mode coupling are negligi-
ble compared to the resonant contributions.

Finally, the time evolution of the phases determines the
phase shift. The nonlinear contributions to this shift are
very small. An example shows that this intracavity
intensity-dependent shift is about 100 times smaller than

B. Two excited upper levels

When more than one upper level is excited, frequency-
degenerate transitions, i.e., transitions with the same fre-
quency but connecting different levels are present. We
consider a simple case where four levels are present, two
in each potential sheet. The vibration frequency 0 being
the same in the two sheets, two transitions are degenerate
and contribute to the same mode of the cavity field. Thus
the four transitions considered in this example corre-
spond to only three modes of the field. We characterize
them by their indices k, defining k = 1 and k =3 as the
modes corresponding to the nondegenerate transitions
m =O~n = 1, and m = 1~n =0, respectively. Their
Frank-Condon factors are equal and larger than the fac-
tors characterizing the degenerate transitions (m =n = 1,
and m =n =0). These, on the other hand, contribute to
mode k =2. They are characterized by smaller Frank-
Condon factors, foo being, however, still larger than f».
Once more we numerically solve the coupled equations
(3.1) for the intensities. However, the coefficients for the
degenerate mode are now redefined as

N=co
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The remaining coefficients are deduced from these as
C2, = C23 = C)q(coqlco, ), C32 C]2(el)3/co~ ). Here the nor-
malization is given by the largest of the Frank-Condon
factors in play, in our example, fo&. Modes 1 and 3 are
coupled to mode 2 only (C&&&0 and C3&&0); since only
resonant terms are considered, they are not coupled to-
gether (C, 3 =0).

To discuss the dynamical behavior of the coupled
modes, we distinguish between a symmetric-pumping and
an asymmetric-pumping configuration. Symmetric
pumping populates both upper levels equally. The time-
dependent intensities are shown in Fig. 3. The nondegen-
erate transitions oscillate above their threshold values,
whereas the degenerate transitions are inhibited. This is
explained as follows; in the chosen configuration, the
Frank-Condon factors of both nondegenerate transitions
happen to be larger than the degenerate ones; therefore,
their thresholds are lower. Hence we are in a situation
which is reminiscent of that of the many-mode two-level
model where the strongest modes (i.e. , the modes with
lower threshold) oscillate at the expense of the other.

The case of asymmetric pumping, characterized by a
situation where the higher of the two upper levels is less
populated than the lower one, leads to a different behav-
ior. We discuss it by introducing the pump ratio r, where
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81.94

40.97—

the strongest transition in the fluorescence spectrum of
the laser medium towards a different weaker transition,
whose contribution is somehow reinforced by the cou-
pling. Furthermore, the degeneracy in frequency, which
appears as soon as more than one upper level is excited,
allows the reinforcement of transitions having a smaller
gain. This effect may be of some experimental interest
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r is the ratio of the pump in the upper level m =1 to the
pump in the upper level m =0,

FIG. 3. Intensities of the coupled modes I& as a function of
time, for symmetric pumping, N/NT =2.S. Two vibronic levels
are considered in each potential sheet; mode k =2 corresponds
to two degenerate transitions. The different curves correspond,
respectively, to k =1 (dotted line), k =2 (solid line), and k =3
(dashed line).
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and varying r for a fixed value of N/NT. For small r, the
higher upper level is almost empty, and competition be-
tween transitions m =O~n =1 and m =O~n =0
occurs [Fig. 4(a)]. Increasing r for the same value of
N /NT the contribution of the transition m = 1 ~n = 1 to
the degenerate mode k =2 increases, leading to a
stronger competition between modes 1 and 2. Mode 2
consequently increases at the expense of mode I [Fig.
4(b)]. Further increase of r leads to a stronger effect of
transition m =l~n =0, then to the appearance of the
third mode [Fig. 4(c)], and finally to the inhibition of os-
cillation of mode 2 for symmetric pumping, when the
contribution of the nondegener ate transition becomes
large enough. Note that in all this discussion, the pump
N/NT is kept constant, and that only the relative pump
into the two upper levels determines which will be the
strongest oscillating mode. On the other hand, when r is
fixed and N/NT is varied, the three modes can oscillate
simultaneously, starting with oscillation of mode 1 for
low values of the pump followed by the appearance of
mode 2 competing with 1 for larger values of the pump,
and finally simultaneous oscillation of the three modes,
with redistribution of the energy for even larger values of
the global pump.

This phenomenological discussion shows that due to
the coupling between the transitions induced by
electron-vibration interaction in the medium, the dynam-
ics of a vibronic laser is much richer than that of a stan-
dard two-level system, and can be correctly described
only by a model that takes into account the presence of
the coupled set of vibronic states associated with each
electronic state. Depending on the strength of the in-
teraction, the lasing mode can actually be shifted from
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FIG. 4. Same as Fig. 3, for the case of asymmetric pumping.
N/N& is kept constant in all the figures, and equal to 3. (a) —(c)

1 Idisplay different values of the relative pump r, r =
pgp lo and

—', respectively.
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because the asymmetrical pumping configuration dis-
cussed above is more likely to be obtained when equilibri-
um between inversion and pump mechanism is estab-
lished.

In conclusion, we have given a first simplified picture
of the dynamics of the interaction between light and a
pumped vibronic system, which has a richer structure
than the usual atomic systems. The interplay between
coupled modes and transitions allows for new erat'ects

(such as the dynamical influence of transitions which are
degenerate in frequency) which may be of practical
relevance.
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