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Theory of static correlations in rare gases for realistic model-interactions:
Triple-point region and critical point
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The crossover modified-hypernetted-chain equation, extended to take into account three-body
forces, is tested against recent simulation results for realistic models of krypton and xenon which in-
clude also the three-body Axilrod-Teller interaction v&T'. The effect of vAT' on g(r) is reproduced so
well that this equation can also be used in the framework of inversion of structural data to separate
the true two-body contribution out of the extracted effective potential. We also study the way v'„T'

influences the critical point of the liquid-vapor phase transition for Ar, Kr, and Xe. We find that
both p, and T, are lowered by vAT and that the small deviations from the law of corresponding
states are as much due to v'A'T' as to the different shape of the pair interaction.

I. INTRODUCTION AND SUMMARY interaction v' '.

The crossover modified-hypernet ted-chain equation'
(MHNC-CRS) has been recently extended to take into
account the presence of a three-body interaction (triplet
MHNC-CRS). A serious quantitative test of this equa-
tion is now possible against accurate simulation results '

obtained by using realistic pair interactions for rare gases
with and without the Axilrod-Teller (AT) triple-dipole in-
teraction vAT'. We find that there is satisfactory agree-
ment between theory and simulation and that the largest
source of error in the triplet MHNC-CRS is due to the
treatment of the pair interaction. We also show that
three-body forces are treated accurately enough to deal
with the problem of inversion of structural data and that
the extracted effective pair potential can be decomposed
into a true two-body part plus the contribution of a given
three-body term.

We extend our study to the critical region of Ar, Kr,
and Xe. p, and T, are lowered by v AT and the small de-
viations from the law of corresponding states are due as
much to the different intensity of the three-body term as
to the different shape of the pair interaction.

In Sec. II we compare results from simulation and
from triplet MHNC-CRS in the triple point region and
we analyze our model in the framework of inversion of
structural data. In Sec. III the critical point of Ar, Kr,
and Xe is determined.

II. TRIPLE-POINT REGION

The following exact relation holds for a system de-
scribed by a two-body interaction P(r) plus a three-body

g(r ) =exp[ PP(r)—+h (r) —c(r)

+C(r)+E' '(r)+E' '(r)],
where 13=(k&T) ', h (r) =g(r) —l and c(r ) are the total
and direct correlation function, respectively, and C(r) is
the dressed three-particle vertex:

C(r&2)=p jd r3g(r&3)g( 23

X [exp[ —PUI '(r, , r~, r3)] —l j .

The bridge function has been split in two parts. E' '(r) is
the same functional of h as in the two-body case and
E' '(r ) is formally given as the sum of an infinite series of
bridge diagrams which have at least three vertices con-
nected by the three-body Mayer function. As in Ref. 2,
we neglect E' ' and approximate E' ' by a MHNC-CRS
bridge function. A simpler approximation was studied
earlier ' where the low-density limit for g(r) is used in
(2).

The MHNC-CRS depends on three parameters, the
hard sphere diameter d, and the two crossover parame-
ters R and w which characterize the length scale over
which the bridge crosses over from a hard-sphere type to
a mean spherical form. The values of R and w are not
chosen empirically as in Refs. 1 and 2, but they are deter-
mined on the basis of an extended Lado's criterion. The
three parameters are computed without vAT. The com-
putations have been performed for Xe and Kr under the
same conditions as Refs. 3 and 4. The pair potentials
used are those of Refs. 10 and 11, respectively, truncated
as in the simulation. The value of the intensity of v~T' is
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P,ft(r) =go(r) ks TC(r—) . (3)

Suppose that P,tr has been obtained from S(k) and the
related g (r) by a suitable inversion scheme, the

v3 2.2P4 X 1P erg cm for Kr and v3 =7.95P X 1P
ergcm for Xe.

In Fig. 1 g(r) of Xe is compared with the simulation
and we also show the difference hg=g' ' —g' ' between
the two g(r) with and without u~z. In Fig. 2 the same
difference is shown for S(k). The effect of vAT is very
small in both cases and well reproduced by our equation.
The main effect on g (r) is a depression for distances up to
the first maximum, followed by some small oscillations.
The effect on S(k) is significant only at small k and it is
less than l%%uo at the main peak. Similar results hold for
Kr. The deviation between theory and simulation is
smaller for bg than for g (r) itself. We conclude that the
main error of the triplet MHNC-CRS is due to the way
the two-body interaction is treated. On the other hand,
the low-density approximation for C (r) strongly
overestimates the effect of vAT on g(r) at high density.
The integral equation result for S(0) is higher than the
result of simulation by about 6% for Xe and 4.5% for
Kr. For the latter the experimental equation of state' is
in good agreement with the triplet MHNC-CRS result
and with the virial pressure given by simulation. Hence
the simulation S (0) is at fault due to either the extension
algorithm' of g(r) or the finite-size correction to g (r) of
order 1/X associated with the canonical ensemble.

The structure factor S(k) uniquely determines a pair
interaction, but when many-body forces are present, the
extracted potential P,s is an eff'ective one showing density
and temperature dependence. Its difference from the
bare two-body interaction Po is a measure of many-body
forces.

Assuming that the most important many-body forces
are the three-body ones, in the present approximation the
effective interaction is given by
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FIG. 2. Same as in Fig. 1 for S(k) (X, simulation;
triplet MHNC-CRS) and AS(k)=S' ' —S' '

( ———,simula-
tion;, MHNC-CRS).

predictor-corrector method, ' for instance. For an as-
sumed form of u

' the computation of C(r) with the ex-
perimental g (r) is straightforward and from (3) $0 can be
obtained directly. If the choice of v' ' is appropriate, the
extracted $0 should show no state dependence. It is then
possible to test models of v' '

~

Neglecting E' ' is justified in the direct problem, as we
have seen earlier in this section. This, however, should
be explicitly verified in the much more delicate inversion
problem. We have tested it with the simulation results al-
ready discussed for the xenon model at the triple point,
the most diScult thermodynamic state from this point of
view. Indices 2 and 3 denote correlation functions of the
system without and with three-body forces, respectively.
It is known' that a MHNC approximation for E' ' is not
good enough in the inversion problem. We can obtain,
however, the exact bridge function of the system with just
two-body forces from

E(r, h2)=PP(r) —hz(r)+cz(r)+I g n(r2)
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FIG. 1. g(r) for xenon with three-body AT interaction for a
triple-point state (k~ T/a =0.622,po'=0. 777): simulation (Ref.
3) ( X ) and triplet MHNC-CRS ( ). Difference hg ( r)
=g' ' —g' ' of g (r) with and without v AT. simulation (0 ),
MHNC-CRS ( ).
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FIG. 3. Test of the inversion scheme for Xe in the presence

of vAT'. true pair interaction in units of kz T( ———), effective
pair interaction as given by (5) (—-), and extracted pair interac-
tion from (3) ( ) ~
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TABLE I. Temperature and density of the critical point. First column: experimental critical tem-
perature (Ref. 17). Second column: reduced values. Third and fourth columns: our results without
and with AT triple-dipole interaction. Last four columns: analogous values for the density.

Ar
Kr
Xe

150.7
209.3
289.7

1.052
1.047
1.026

T,*(0)

1.065
1.077
1.047

&*(V )

0.990
0.987
0.944

p, (nm ')

8.06
6.52
5.09

pc

0.304
0.299
0.300

p,*(0)

0.302
0.302
0.302

p,*(V3)

0.290
0.288
0.286

by using gz(r) and c2(r) obtained by simulation [to com-
pute c2(r), gz(r) is extended according to Verlet's algo-
rithm' ]. If we approximate the two-body part E' '(r, h3)
of the bridge function by E (r, h~ ), the effective two-body
potential is

P,s( r) =h3(r) —c3(r) —lng3(r)+E(r, h2) (5)

and from (3) we obtain $0(r). If our approximation is
good, $0 should be very close to Aziz's potential P(r) and
this is indeed the case as shown in Fig. 3. For compar-
ison, P,fr is also plotted. It is clear that the term C(r)
gives the major contribution to P(g,s-—P) and that the
remainder, which is E' '(r)+EI '(r, h3) E(r, hz), is-
small. In a real inversion procedure Eq. (5) cannot be
used because E(r, h2) is unknown and one only has the
bridge function for P,s, i.e., E' '(r, h3). However, once
Po(r) has been obtained from (3) by using E' '(r, h3) in

(5), a simulation with Po(r) makes it possible to compute
the exact bridge function of $0 and from this an improved
estimate of $0 can be obtained. We conclude that it is
possible to test models of v' ' and to extract the true
two-body interaction by doing computations with two-
body forces only, thus avoiding the much more costly
simulation with three-body forces.

III. CRiTICAL POINT

We have determined the critical point of Ar, Kr, and
Xe on the basis of the triplet MHNC-CRS equation.
This equation does not give an accurate description of
critical phenomena but shows a genuine critical point
with diverging isothermal compressibility and correlation
length. ' The hard-sphere diameter is determined accord-
ing to Lado's criterion for every different density and
kept fixed along an isochore since it depends weakly on
temperature. The optimized crossover parameters in the
critical region are w =0.575 and R =1.375. The range
R,„ofthe r interaction is such that R,„~8g where g is
the correlation length, and the maximum value of R,„ is
100o. The cutoff for P(r) is at R

We have performed the computation with and without
the AT v' '. As pair interaction for Kr and Xe we use
the same potentials as in Sec. II. For argon we use the
potential in Ref. 16 and v3=0. 734X 10 erg cm . The
critical point is obtained as the maximum of the spinodal
curve. We estimate a maximum absolute error of 0.005
both in T,* and p,* and a much smaller relative error be-

tween the different models (reduced units for T and p are
in terms of c. and o. , respectively, c. being the well depth
and o. of the position of the zero of the pair interaction.

In Table I the experimental' and the computed p, and
T, are given. The experimental values of p,* and T,*
show small deviations from the law of corresponding
states. The presence of vA~ lowers both T, and p„
in agreement with previous computations and this effect
is very well approximated by a linear dependence in
terms of V3=v3/Eo. : T,*(V3) =(1—aV3)T, (0),p,'( V3)
=(1—bV3)p, (0) with a =1.0 and b =0.56. Within the
accuracy of our computation we find the same value of
p,*(0) for the three rare gases when V3 =0 while there are
small variations of T,*(0),of order of 3% between Kr and
Xe. These variations are in agreement with a random-
phase calculation, the strengths of the attractive wells [in-
tegral of r P(r) starting from cr ] of Ar, Kr, and Xe being
in the ratios 1:0.99:1.02. This effect is of the same order
as the change of T,* induced by the different value of the
intensity v3 for the three rare gases. Hence, on the basis
of the present best representation of the interatomic
forces, the deviations from the law of corresponding
states for Ar, Kr, and Xe are due in equal parts to the
different shape of P(r) and to the difference in v~I.

Considering absolute values for the critical point, the
best agreement with experiment is shown by data in
Table I obtained without three-body forces. However, it
is known that outside the critical region many-body
forces are needed in order to get agreement with the
equation of state of the heavy rare gases, and actually
good quantitative agreement is found in this case in Refs.
3 and 4 when v~~ is used. This suggests that MHNC-
CRS underestimates both T, and p, by about 5%, and
that the agreement with experiment found in Ref. 18 with
a two-body potential is fortuitous.
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