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Anisotropy of sound anomalies near the smectic-A —hexatic-8 phase transition
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Recently, anisotropic anomalies in the damping and velocity of ultrasound near the smectic-
3—hexatic-B liquid-crystal phase transition have been observed. By using generalized hydrodynam-
ics we explain this anisotropy by an anisotropic, reversible dynamical coupling between the bond-
orientational order parameter and elongational flow. It turns out that only in-plane elongational
flow induces (critically) bond-orientational order at the phase transition, whereas flow perpendicular
to the layers is inefficient.

INTRODUCTION

Since its introduction some years ago, bond-
orientational order' (BOO) has become an important sub-
ject of investigation. One of the few three-dimensional
manifestations of this type of order is the hexatic-8
liquid-crystal phase (Hex-B). In Hex-B the layer struc-
ture and the orientation of the molecules are like that in
the smectic-A phase (Sm-A), but in addition, the bonds
(the lines between the centers of gravity of the molecules)
are oriented hexagonally. In addition, there are also hex-
atic phases (smectic-I and F) in which -the molecules are
tilted in the layers and these have been studied more re-
cently in detail. ' There is no in-plane positional order
in both the smectic-A and the hexatic-8 phases. Thus
the Sm-A to Hex-8 phase transition is a perfect candi-
date for studying the onset of BOO.

Very recently, Gallani et al. reported the observation
of a strong anisotropy in the ultrasound anomalies near
that phase transition. Usually such anomalies occur near
second-order phase transitions due to the strong order-
parameter fluctuations. Since the Sm-A to Hex-8 transi-
tion is only weakly first order in the compound studied,
we can carry over this concept. In the following we will
discuss how the order parameter couples to sound waves
and which underlying physical process leads to the strong
anisotropy in the anomalies.

GENERALIZED H YDRODYNAM ICS

Ordinary hydrodynamics breaks down near phase tran-
sitions, since order-parameter relaxation becomes very
slow due to the divergence of the susceptibility associated
with the modulus of the order parameter. The common
remedy in this situation is to add the order-parameter
modulus (S), which describes the degree of ordering, to
the list of relevant dynamical variables. This kind of
generalized hydrodynamics is rather successful in
describing anomalies (pre- or post-critical effects) near
phase transitions, which are second order or weakly first
order. Far away from the critical temperature ( T, ) S is

A =p '(5S+ y, V
l

u +y,5p+ y, 5o ) . (3)

For a second-order phase transition g is proportional
to the prefactor of the quadratic term in the Ginzburg-

one of the unimportant microscopic variables not con-
sidered in ordinary hydrodynamics. The phase of the
(complex) order parameter, which contains the relative
rotation angle describing the orientation of the bonds, is

a true hydrodynamic variable below T, .
The hydrodynamic descriptions of Sm-A (Ref. 9) and

Hex B(Ref. 3)-are well known and it is sufficient here to
concentrate on the new effects connected with S. The dy-
namic equation for S reads

S+P,Vtvi+PzViivii ——gA,

where P, and Pz are two phenomenological (reactive)
transport parameters characterizing the coupling of S to
in-plane elongational flow and to elongational flow per-
pendicular to the layers, respectively, and where v is the
velocity field. (The indices l and

~~
refer to components

perpendicular and parallel to the layer normal n respec-
tively. ) Similar reactive couplings were given before for
the nematic to Sm-A phase transition' and the nematic-
columnar transition. " The right-hand side of Eq. (I) de-
scribes the relaxation of S, compared to which possible
additional dissipative processes have been discarded in
writing down Eq. (I). A is the thermodynamic conjugate
to S, i.e., the partial derivative of the free energy with
respect to 5S (5S is the deviation of S from its equilibrium
value, So&0 in Hex-B and So =0 in Sm-A). The damp-
ing constant g must be positive in order to guarantee po-
sitivity of entropy production. The reactive coupling
terms have to be balanced by appropriate terms in the
stress tensor

o.;,
= +[P,(5, —n,"n,")+/3~n, n, ]A,

where the dots stand for the usual hydrodynamic terms
in Sm-A or Hex-B. '

To linear order in the macroscopic variables A is given
explicitly by
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Landau free energy (but different on both sides of T, ) and
vanishes at T, . The cross susceptibilities y3 4 5 describe
the static coupling to layer compression (or dilation),
density, and entropy density variations. An analogous
term exists for the variation of the concentration in mix-
tures. The special form for the cross susceptibilities has
been chosen in order to ensure that 5 is a slow (fast) vari-
able near (far away from) the phase transition. Its
characteristic relaxation time

w:—y/g (4)

is large only near T, . The cross terms in Eq. (3) have
counterparts proportional to 5S in the expressions for the
thermodynamic conjugate to V~~u, the chemical potential,
and temperature variations, respectively, or explicitly

- +y y36S,
—1

6p = . . +y 'y46S,

6T= . +y 'y55S .

(5)

SOUND SPECTRUM

It is now straightforward to derive the dispersion rela-
tion co=co(k) for sound waves from the complete linear-
ized hydrodynamic equations including the terms related
to S discussed above. As is customary in discussing the
anomalous effects near T, we will neglect terms of order
k in the dispersion relation, i.e., the only dissipative
process kept is order-parameter relaxation in Eq. (I). A
very simple expression for co(k) is obtained by treating cur
as a parameter; although this gives only an implicit
dispersion relation, it is rather convenient for discussing
anomalous effects. ' Our result is

with

2
=c + ™ 1

d +2did2
I + I C07 pQ l Cd 7

(6)

d 1 =Plsln 8+P2cos 8
()

f3cos 0 .

Here 0 is the angle between n and the wave vector k, c~
is the (slightly angle-dependent) sound velocity far away
from T, [in Sm-A (Ref. 9) as well as in Hex-B (Ref. 3)]
and y—:pay4+o. a@5 is the derivative of the pressure

with respect to 5$. (p0 and era are the equilibrium values
of density and entropy density, respectively). The com-
plex part of Eq. (6) describes the anomalies of the sound
velocity, c, —=Re(co/k ), and of the sound damping,
a = Im(co/c, ), near T, . Usually these anomalies can con-
sist of cusplike features in the damping and (rather small)
dips in the velocity —depending on the behavior of the
prefactor [the large parentheses in Eq. (6)].

The very striking feature in the observation of the
anomalies near the Srn-A to Hex-8 phase transition by
Gallani et al. was the marked anisotropy. There was ei-
ther no effect (in the velocity) or only a much weaker
effect (in the damping) for 8=0' compared 'to 8=90'.
Obviously the susceptibility y cannot explain this aniso-
tropy, since it enters Eq. (6) isotropically. The suscepti-
bility coupling layer compression to order parameter y3,
contributes to the anomalies only for 0=0', but not for
t9=90. It could, in principle, describe the observed an-
isotropy, if y =y 3 ~ There is, however, no physical
reason for such a relation and it is highly unlikely that
layer compression reacts to order-parameter variations
with the same strength as the pressure. Nevertheless, if
accidentally such a relation holds in the specific corn-
pound used in Ref. 5, a repetition of the experiment with
different compounds could clearly rule out this possibili-
ty.

Here we propose a different explanation for the aniso-
tropy, which is quite general for that phase transition and
which can be understood physically. If /3, ))pz, the an-
isotropy can be explained. Although a quantitative deter-
mination of the P s from the published data is not possi-
ble, it seems that P, diverges at T„while Pz certainly
does not. The meaning of that result is clear in the
present framework: An in-plane elongational flow (V1U~)
leads to (in-plane) BOO, and at T, already an
infinitesimal How is enough to build up that order, while
a flow perpendicular to the layers cannot lead to (in-
plane) BOO. We thus propose that it is this anisotropic
coupling of Aow to order-parameter Auctuations that re-
sults in the anisotropy of the sound anomalies near the
Sm-3 to Hex-8 phase transition.

Further experiments could corroborate our explana-
tion. Since the leading term, g& comes with a sin 8 fac-
tor, sound under 45 should show only about one-quarter
of the anisotropy shown at 90'. Another possibility for
further tests are anomalies in second sound near T, .
The dispersion relation for this kind of excitation near T,
1s

l67$ 1
2

=sin 8cos 8 4c2+ . (P, —Pz) +2y, (P, —P2) —.

where c2 is the magnitude of the second sound velocity
far away from T, (Refs. 3 and 9) (at 8=45'). Here the
anomalous effects should be strongest at 45, although
their ratio with the nonanomalous terms should be angle
independent. If the proposed anisotropy in the P's would
not be present, i.e., if P&=Pz, there would be no strong

I

anomaly at all, while we predict such a strong anomaly in
Eq. (8) due to the diverging P, ( ))P2).

CONCLUSIONS

In this communication we propose that a new mecha-
nism, the anisotropic coupling of BOO to elongational
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Aow, is responsible for the anisotropy of sound anomalies
near T, . Such anisotropic anomalies can also be expected
near other phase transitions, where BOO starts or in-
creases sharply (e.g. , smectic-C to smectic-I or Fp-hase
transition). The experimental findings of such anisotro-
pies in the latter phase transitions would give further sup-
port to our theoretical picture.
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