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Electric fields in stationary ion flows in symmetric geometries
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A method is presented that yields exact closed-form solutions in curvilinear coordinates for the

partial differential equations determining the electric field in a stationary flow of unipolar ions with

constant mobility. The method is applied to the parabolic cylindrical, elliptic cylindrical, bipolar,
parabolic, and spheroidal coordinates. The new solutions approach infinity roughly in the manner

of the classical parallel-plate solution. They are expected to apply to analyses of non-self-sustained

ion flows.

I. INTRODUCTION

div(E divE) =0,
curlE=O . (2)

Both industrial applications and scientific problems have
called for investigation of these equations, but exact
closed-form solutions have been found only for three gen-
eral geometries. For the circular cylindrical geometry we
have

The problems concerning the unipolar ion flow have
been reviewed by Sigmond' with an emphasis on corona
discharges. The main problem is the space-charge field.
The differential equations determining the total electric
field E are well known. The case usually considered is a
stationary flow of ions of one species with constant mo-
bility and negligible diffusion, when

translational symmetry eliminates the terms with i =3
and j =3 in (6) and reduces equation (2) to

BE h =BE,h, . (7)

In solutions (3)—(5) we have Ez=0 and E&h& does not
contain xz, whence (7) is satisfied trivially. More general
solutions of (7) can be given in terms of a function
U(x&, xz) which has the necessary derivatives and is
defined as follows:

Eh, =U B U,
where m is a real number; in the present applications we
need the value m =

—,'. The function U is related to the
potential V,

V = —1 E)h& dx& = —U + ' I( m + 1 ) +c,
where c is a constant. By inserting (8) into (6), we obtain

E = A+B/r (3)

E'= A/R+B/R4, (4)

where A and B are arbitrary constants and r is the cylin-
drical radius coordinate. The spherical solution is Xy[m(a, U)'H, yU+a, (H, a, U)] =0,

J
(10)

where R is the spherical radius coordinate. For the
parallel-plate geometry, the solution is

E = Ax+B,
where x denotes an axis along the middle plane of the
plates.

Here we present a method by which we can find exact
closed-form solutions for other usual coordinate systems.

Uzm —~y(g U)zyh?=C
J

(12)

where C is a constant; Eq. (11) is used for both g. and

where H =h&hzh3/h . A solution of (10) can be
represented by two equations,

ya, (H, a, U) =0,
J

II. THE DIFFERENTIAL EQUATIONS
IN CURVILINEAR COORDINATES

In orthogonal curvilinear coordinates (x &,xz, x3 ), with
the scale factors h&, hz, h3, Eq. (1) becomes

gt), E, Q ),.Et.h, h h Ih, h,. =0, (6)

where t), =t)/t)xi, r, and g,. and g . mean sums over the in-

dices 1,2,3. The usual assumption of rotational or

III. APPLICATIONS TO GEOMETRIES
WITH TRANSLATIONAL SYMMETRY

We first consider translationally symmetric cases, for
which h 3

= 1. We neglect the circular cylindrical
geometry, which has been cleared up previously. The
other usual coordinate systems with translational symme-
try fulfill the condition h, =h2=h, which we adopt.
Then (11)and (12) become
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ga, a, U=o,
J

(13) This gives the expression of h in the bipolar coordinates
(g, rl, z). The corresponding potential is

U' 'y(a U) =Ch' (14) V = ——,'[B(sinhg+sing)/(coszl —cosg)] r +c . (23)

A simple solution of (13) is

U =px +k, (15)
IV. APPLICATIONS TO GEOMETRIES

WITH ROTATIONAL SYMMETRY

where x =x, and p and k are constants. In the Cartesian
coordinates we have h =1, where (15) also fulfills (14),
and with m =

—,', Eq. (8) reproduces the classical solution
(5).

Another polynomial solution of (13) is

U =b(g —il +k), (16)

V=q(g —
zl +k) r +c,

where q is a constant.
A nonpolynomial solution of (13) is

U=B sinh(Pu) sin(Pv)+D sinh(Qu) cos(Qv)

(17)

+F cosh(Ru) sin(Rv)+G cosh(Su) cos(Sv), (18)

where b is a constant. This form applies to the parabolic
cylindrical coordinate system (g, rl, z), where h =g +rl .

From (16) and (9) we obtain

Here we neglect the spherical geometry, which has
been cleared up previously. The other usual geometries
with rotational symmetry comply with the condition
h, =hz =h. Since h 3&1, Eq. (11)becomes

ga, h, a, U=o .
J

(24)

In the parabolic coordinates (g, rl, y), the scale factor
h is the same as in the parabolic cylindrical coordinates,
where (14) would be satisfied with the previous solution
(16). Although we now have h, =grl, solution (16) also
fulfills condition (24). Thus, the expression of V is the

same as (17), but it means here a rotationally symmetric
potential.

In the prolate spheroidal coordinates ( u, v, (p ) for
which h =a(sinh u+sin v)' and h3=a sinhu sinu, the
solution of (24) and (14) is

where u =x, , v =xz, and 8, D, F, G, P, Q, R, and S are
constants. For the special case U =8 sinhu sinv, Eq. (14)
gives

U=a coshu cosv .

The corresponding potential is

V=b(coshu cosv )
r +c .

(25)

(26)
8 (sinh u+sin v ) =Ch (19)

Ei =[8 sinhu sinv /(1+tanhu cotv )]'rz,

Fz=[8 sinhu sinv/(1+cothu tanv )]'rz,

V= —
( —', )(8 sinhu sinv) ~ +c .

(20)

Other coordinate systems corresponding to (18) are not
elaborated here.

A more complicated solution of (13) is

U =8(sinhzl+ sing)/(coshri —cosg),

for which

(21)

g(a U ) =28 /(cosh i
—eros/) (22)

This agrees with the expression of h in the elliptic cylin-
drical coordinate system ( u, v, z). The corresponding
field is given by

The case of the oblate spheroidal coordinates is similar,
except that h 3

=a coshu cosU, where

U=a sinhu sinU . (27)

V. CONCLUSIONS

The new solutions are functions of two variables,
which is a novel feature in comparison with solutions
(3)—(5). The present solutions do not vanish at infinity;
they approach infinity roughly in the same way as the
parallel-plate solution (5). On the basis of this analogy,
the new solutions are expected to apply to analyses of
non-self-sustained ion Rows. Even in the simple parallel-
plate geometry, such analyses have produced important
general conclusions about unipolar ion How. ' The
present method does not solve the question of possible
closed-form solutions applying to self-sustained coronas.
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