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Recently DePristo and Kress [Phys. Rev. A 35, 438 (1987)] have presented a page approximation
formula for the kinetic-energy functional of a many-electron system, such as an atom. This func-
tional has been adopted in the present work in variational density-functional calculations of the to-
tal atomic binding energy, using the Ne atom as an example. For this atom similar calculations
have been done earlier by the author using the sum of the first two terms of the gradient expansion
of the kinetic-energy functional. The total-energy functional used in the present work contains the
kinetic-energy term, the term describing the interaction of the electrons with the atomic nucleus,
the term describing the interaction among the electrons, and the exchange-energy term. The elec-
tron (number) density of the Ne atom is modeled by using hydrogenlike one-electron wave functions
(with the 2s function orthogonalized to the 1s function) containing three variational parameters.
The result of the present calculations is compared with the previous calculations of the author and
it is concluded that the DePristo-Kress Pade approximation formula for the kinetic-energy func-
tional gives a better agreement with the Hartree-Fock kinetic energy for the Ne atom than the sum
of the first two terms of the gradient expansion of the kinetic-energy functional.

I. INTRODUCTION

Recently, DePristo and Kress' presented a Pade ap-
proximation formula for the kinetic-energy functional of
an atom. Also recently, Perdew and Wang Yue present-
ed an expression for the exchange-energy functional of a
many-electron system. Both of these functionals have
been adopted in the present work in variational density-
functional calculations of the total atomic binding energy
of the Ne atom. For this atom similar calculations have
been done earlier by Csavinszky. who approximated the
kinetic-energy functional by the first two terms of its gra-
dient expansion.

In the present calculations, as in the previous one, the
electron (number) density of the Ne atom is constructed

from hydrogenlike one-electron wave functions (with the
2s function orthogonalized to the ls function) containing
three variational parameters. With this electron (num-
ber) density, the total-energy functionals have been mini-
mized with respect to the three variational parameters.

The present work is organized as follows. In Sec. II
the theoretical framework is briefly outlined, in Sec. III
the results of the present and previous calculations are
compared, and in Sec. IV the conclusions are presented.
All quantities are expressed in atomic units.

II. THEORY

The total-energy functionals used in the present work
are composed of four terms: the kinetic-energy function-
al, the functional describing the attractive (Coulomb) in-

TABLE I. Values of the parameters entering into the kinetic-energy functional of DePristo and
Kress (Ref. 1).

i=0 1 —2

a,
b,

0.950 00
—0.050 00

14.281 11
9.998 02

—19.579 62
2.960 85

26.647 77
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TABLE II. Values of the variational parameters and the normalization and orthogonalization constants. (The values given with a
superscript 6 have been calculated to a higher accuracy than those in Ref. 3.)

ZG zP zP ZG z,'
9.7956 9.7022 2.9198 1.9845 7.1228 6.7897 1.7950 0.992 47 —0.105 08 —0.252 68

teraction of the electrons with the nucleus, the functional
describing the repulsive (Coulomb) interaction among the
electrons, and the exchange-energy functional. One can
then write

E, (p) =Ek(p)+ E„,(p)+E„(p)+E„(p),

where p is the electron (number) density.
For the kinetic-energy functional DePristo and Kress'

give the Fade approximation formula

EI, (p)= f ro(p)P43(x)dv

where ro(p) is the expression familiar from the Thomas-
Fermi theory, namely,

E„(p)=—
—,
' f V pdv, (9)

(10)

rV, ~ —N as r~ cc

The exchange-energy functional, as obtained by Per-
dew and Wang Yue, is given by

E„(p)= fp F(s)dv, (12)

where V, denotes the potential of the electrons which,
upon making a choice for p, is determined from Poisson's
equation,

d (rV, )
=4m pr,

67

by integrating it twice with the boundary condition

r,(p) = '(6~')'"p—'"7P P 10 7T P

and P~ 3(x) is defined' by

(3) where F(s) is def ned' by

F(s)=(1+1.296s +14s +0.2s )' (13)

4 3

P4, (x)= g a, x' g b, x' .
i =0 i =0

In Eq. (4) the variable x is defined' by

(4)
with

and

IVp

2kFp
(14)

x = r2(p ) /ro(p ),

E„,(p)= —f V„pdv,

where

(7)

where r2(p) is the so-called Weizsacker inhomogeneity
correction, as modified by Kompaneets and Pavlovskii
and by Kirzhnits, namely,

r(p)= —,', f P P dv.(Vp) (Vp)
(6)

The quantities a, and b, , occurring in Eq. (4), are listed
in Table I.

The functional describing the attractive (Coulomb) in-
teraction of the N electrons with the nucleus of atomic
number g is given by

kF=(3~ p)' '

The next step is the making of a choice for the electron
(number) density p. In the present work, as in the previ-
ous one, the choice for p is made in such a way that this
quantity is (1) finite at the atomic nucleus, (2) exhibits an
exponential decay with the distance r from the nucleus,
and (3) the associated radial-electron (number) density ex-
hibits the atomic-shell structure.

For the Ne atom of electron configuration
(Is ) (2s ) (2p ), p is constructed as

p= [2R „(Z, ) +2%2, (Z, , Z2) +6R2 (Z3) ] .
4m

(16)

In Eq. (16), R|,(Z& ) and R2 (Z3) are the radial parts of
hydrogenlike radial wave functions, given by

V„=g/r,
with r denoting the distance from the atomic nucleus.
For a neutral atom, such as Ne, N =g.

The functional describing the repulsive (Coulomb) in-
teraction among the N electrons is given by

and

R|,(Z& ) =2Z e

1 ~g~
—(1/2)z, r

R2~(Z3)= Z3 re
2&6

(17)

TABLE III. Values of the energy components and the total energy. (The values given with a superscript 6 have been calculated to
a higher accuracy than those in Ref. 3.)

EG

130.57

E

129.67

EG

—315.13

E„,
—309.53

EG

66.29

E„
62.12

EG

—12.31

EP

—11.94

EG

—130.57

EP

—129.66
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TABLE IV. Values of the electron (number) densities at the
nucleus. The HF value has been calculated with the double-g
wave functions of Ref. 12.

p (r=0)
608.50

p (r=0)
609.04

HF( 0)

617.17

while Az, (Zt tZ2) is a hydrogenlike radial Rz, (Z2) func-
tion, namely,

Rz, (Z2)= —Z,' '(2 —Zzr )e
2 2

(19)

orthogonalized to the R „.(Zt ) function. This procedure,
that permits the introduction of different variational pa-
rameters for the dift'erent n, l electrons, has been suggest-
ed by Csavinszky. '

The Az, (Zt t Zz ) function is given by

Az, (Z Zt t2) =%[R2,(Z2)+AR „.(Z, )], (20)

where the constant JV is determined from the normaliza-
tion condition

. Z Z r dr=1 (21)

and the constant A is obtained from the orthogonaliza-
tion condition

R
&

. Z~ 2 Z~ Z2 r dr =0 (22)

EG(p) 3 (6~2)2/3 fps/3dU + i f P P(& ).(V )
(23)

Using Eq. (12), Eq. (1) has been evaluated by numerical
integration, based on Simpson's rule. " The results of the
computations, based on the DePristo-Kress' kinetic-
energy functional and the Perdew —Wang Yue
exchange-energy functional are displayed in Tables II and
III.

Using the first two terms of the gradient expansion of
the kinetic energy, namely,

and the total energy E, obtained by using Eq. (2) in Eq.
(1).

Table II also displays the values of the variational pa-
rameters Z&, and Z2, and Z3, and the values of the nor-
malization constant JV, and the orthogonalization con-
stant P~', obtained by using the sum of Eqs. (3) and (6) in
Eq. (1}. Table III also contains the values of the energy
components and the total energy E, obtained by using
the sum of Eqs. (3) and (6) in Eq. (1).

It is instructive to compare Ek =129.67 a.u. (from
Table III) with Et, =130.57 a.u. (also from Table III)
with the near —Hartree-Fock (HF) value, EP"=128.55
a.u. , of Clementi and Roetti. ' The comparison shows
that EI, is in better agreement with E&

" than E&. It is
also instructive to compare E, = —129.66 a.u. (from
Table III) with E, = —130.57 a.u. (also from Table III)
with the near —Hartree-Fock value of E, = —128.55
a.u. , as given by Clementi and Roetti. ' The comparison
shows that E, is in better agreement with E, "than E, .

It is also interesting to note that Perdew and Wang
Yue find that the exchange energy calculated for the Ne
atom with the near —Hartree-Fock density of Clementi
and Roetti' is E'„"=—12.22 a.u. This is compared with
E = —11.94 a.u. (from Table III) and E„G=12.31 a.u.
(also from Table III). The comparison shows that E„ is
in better agreement with E "than E ~

Another test of the quality of the kinetic-energy func-
tionals is based on a comparison of the electron {number}
densities at the nucleus. Such a comparison is valuable
because it involves a local property, in contrast to the
comparison of total energies that involves a global prop-
erty. Electron (number) densities at r =0 are listed in
Table IV. The HF value has been calculated with the
double-g wave functions of Clementi and Roetti. '

The values of p (r =0) and p (r =0) are just about the
same and, what is more significant, both differ only about
2% from the HF value. This fact shows that one can ob-
tain good results with a modeled electron (number) densi-
ty.

in Eq. (1), the minimization of this expression has been
carried out again by numerical integration based on
Simpson's rule. " The results of the calculations, based
on Eq. (23) and the Perdew —Wang Yue exchange-energy
functional, are displayed in Tables II and III. In these
tables the superscript G refers to the gradient expansion
approximation for the kinetic-energy functional, while
the superscript P refers to the Fade approximation for
the kinetic-energy functional.

III. DISCUSSION

Table I displays the values of the parameters a, and b;,
entering into the Pade approximation formula' for the
kinetic-energy functional.

Table II displays the values of the variational parame-
ters Z ] Z2 and Z3, the values of the normalization con-
stant JV, and the orthogonalization constant N, ob-
tained by using Eq. (2} in Eq. (1).

Table III contains the values of the energy components

IV. CONCLUSION

As far as the total binding energy of the Ne atom is
concerned, the Pade approximation formula of DePristo
and Kress' for the kinetic-energy functional leads to a
better agreement with the near —Hartree-Fock total-
energy value than the value obtained by using the sum of
the first two terms of the gradient expansion of the
kinetic-energy functional. It would be tempting to add to
this sum the next term of the gradient expansion of the
kinetic-energy functional, derived by Hodges. ' This
would probably lead to a better agreement with E, ".
This author, however, believes that Tal and Bader' have
conclusively shown that the kinetic-energy functional can
have only two terms in its gradient expansion.

One can then ask: What is the next step? Undoubted-
ly, work will be done in the future to further improve the
kinetic-energy functional, on the one hand, and the
exchange-energy functional, on the other hand.
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