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There are many definitions of the fractal dimension of an object, including box dimension,
Bouligand-Minkowski dimension, and intersection dimension. Although they are all equivalent in
the continuous domain, they differ substantially when discretized and applied to digitized data. We
show that the standard implementations of these definitions on self-aSne curves with known fractal
dimension (Weierstrass-Mandelbrot, Kiesswetter, fractional Brownian motion) yield results with
significant errors. An analysis of the source of these errors leads to a new algorithm in one dimen-
sion, called the variation method, which yields accurate results. The variation method uses the no-
tion of e oscillation to measure the amplitude of the one-dimensiona1 function in an e neighborhood.
The order of growth of the integral of the e oscillation (called the e variation), as e tends toward
zero, is directly related to the fractal dimension. In this paper, we present the variation method for
one-dimensional {1D) profiles and show that, in the limit, it is equivalent to the classical box-
counting method. The result is an algorithm for reliably estimating the fractal dimension of 1D
profiles; i.e., graphs of functions of a single variable. The algorithm is tested on profiles with known
fractal dimension.

I. INTRODUCTION

Points, segments, and disks have fractal dimension 0, 1,
and 2, respectively. But in between those objects with in-
teger dimensions lie complex, irregular objects whose
fractal dimension can be thought of as a measure of their
irregularity. The fractal dimension of a curve, for in-
stance, will lie between 1 and 2, depending on how much
area it fills (Fig. 1). The same idea can be extended to
surfaces, but this time with the fractal dimension lying
between 2 and 3. The fractal dimension can thus be used
to compare the complexity of two curves or two surfaces,
and therein lies its importance for applications. In ma-
terials science, e.g. , the fractal dimensions is directly re-
lated to roughness, ' and it finds basic applications in
stereology, powder technology, ' geology, metallurgy,
computer vision, and so on. But from a computation-
al perspective, there are many definitions of fractal di-
mension. Although most of them are equivalent in the
continuous domain, when discretized and applied to digi-
tized data they lead to different algorithms and different
results. Which of these algorithms is the most robust?
Do they properly distinguish between fractal and non-
fractal objects? The answers are not known. As a step
toward them, in this paper we compare their perfor-
mance on mathematical objects with known fractal di-

mension. These mathematical objects thus provide a
kind of "backdrop" or "benchmark, " and on this basis
we show that the standard algorithms often exhibit errors
of 10—20 %. But most importantly, further analysis of
the problems with the standard algorithms leads us to a
new type of algorithm for estimating fractal dimension
that is significantly more accurate.

This paper is the first of series of two, and it concen-
trates on the study of curves or one-dimensional (1D)
profiles. Our goal is to develop an algorithm that pro-
vides accurate results, that is efficient to run, and that can
be generalized to the study of higher-dimensional profiles.
In another paper, ' we carry out this generalization, and
illustrate its application to the study of rough surfaces.

The paper is organized as follows. In Sec. II we review
the definitions of fractal dimension that are the most
widely used, and in Sec. III present the algorithms de-
rived from those definitions. To evaluate their accuracy,
all algorithms are applied to the evaluation of the fractal
dimension of known theoretical models, in particular,
Weierstrass-Mandelbrot curves and Brownian motion,
two classical fractals. The weaknesses of those algo-
rithms will be stressed. But the heart of the paper is Sec.
IV, in which we present a new type of algorithm to evalu-
ate the fractal dimension of graphs of functions. After
developing a method based on horizontal structuring ele-
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II. BOXES, COVERINGS,
AND FRACTAL DIMENSION

The most widely used definitions of dimension are the
Minkowski-Bouligand dimension and the box dimension.
Those are based on the pioneering studies by Bouligand, '

and are described in Mandelbrot. ' Although they are
mathematically equivalent in the limit, in practice they
give rise to algorithms that behave quite differently. The
reason for this difference derives from the way that limits
are taken, and the manner in which they approach zero.
But there is a common aspect as well, which we collect
into the notion of a generalized cover, " that is defined in
the conclusion of this section to be used later on.

A. Minkowski-Bouligand dimension

The Minkowski cover of a set E is the set of all points
E(e) defined as follows:

E(e)=Iy: yea, (x), xeE),

FIG. 1. Different curves with increasing fractal dimension.
In (a) the fractal dimension is 1.2, in (b) 1.4, (c) 1.6, and (d) 1.8.
Note how the irregularity of the curve increases with dimen-
sion, as does the area which they fill.

ments, we refine it into a related but more efficient varia-
tion method, which uses the notion of e oscillation to
measure the amplitude of a one-dimensional function in
an e neighborhood. It is the rate of growth of the in-
tegral of the e oscillation (which we call e. variation) that
is directly related to the fractal dimension, and our algo-
rithm for estimating this is shown to be a substantial im-
provement over the standard ones in two ways. First, the
estimates of fractal dimension are more accurate; and
second, the algorithm is much more efficient to imple-
ment. In fact, it provides the basis for our higher-
dimensional algorithm. ' A mathematical background
reference for the variation method in 1R and for the hor-
izontal structuring element method can be found in Tri-
cot et aI. ''

where B,( x) is a disk of radius e centered on x. In other
words, E(e) consists in the union of all the disks centered
on E, with radius e (Fig. 2). Note that this definition of a
covering differs from the standard mathematical usage in
that it is the union of balls covering a set E instead of the
family of balls whose union covers E. In the fractal
literature such coverings sometimes have been referred to
as "sausages. "

Let S~2 denote the area of a region S in R . The area
of the Minkowski cover is then ~E(e) ~2, and the
Minkowski-Bouligand (MB) dimension for E is defined as
follows:

»IE(e)12
b, Ma(E) = lim 2—

e~o inc

=inf[a: e ~E(e)~z -. 0),
e~o

i e. , b MB(E) is the lower bound of all a such that
~E(e)

~ z tends to 0 when e itself tends to 0.
If we make the assumption that e !E(e) 2 does not

A. Notation

Throughout this paper, we shall base our analysis on a
function f of a real variable x, continuous on its domain
of definition. This domain will be an interval, usually
[0,1] [for the box-counting, Minkoivski covers, and varia-
tion method] but also [0, ~ ) (for the power spectrum
method). The assumption of continuity is crucial for the
proofs of our results, and is relevant for modeling natural
situations such as rugosimetric profiles. The graph off is
the plane set

Gf = [(x, f(x)): x &[0,1]) .

Throughout this text, by the terms curve, profile, and
1D-profile, we shall refer to the graph of a function of a
single variable. Our goal is to evaluate the fractal dimen-
sion of Gf, denoted A(Gf ), from sample points.

FIG. 2. Minkowski cover E(e). The object E is in black.
The shaded area represents the Minkowski cover E(e) where e

represents 30 units inside a square window of 350 units (pixels).
The pixels in gray in this image are the pixels that are at a dis-
tance to the curve less than or equal to 30 pixels (where the hor-
izontal distance between two adjacent pixels is —„').
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depend on e for a=6,MB(E), we obtain a linear relation-
ship

ln —I E(e )
I ~

= b, MB(E)ln —+c,1 1

with c constant. In other words, b.MB(E) can be estimat-
ed by the slope of the log-log plot:

(1n(1/e), 1n[(1/e )IE(e)Ii]) . (2)

Such plots are typically used in practice, since a least-
mean-square line can be fit to it to reduce quantization
and other forms of error.

B. Box dimension

=infIa: e„Q(E,Ek):OI .
k~ oo

(3)

As in Sec. II A, an estimate of As(E) is given by the slope
of the line passing through the points

(1n(1/e& ), lnA, (E,ek )) . (4)

We will show later that the Minkowski-Bouligand di-
mension and the box dimension are equivalent (see also
Bouligand' ). There are many other equivalent formula-
tions as well, and we will introduce another one in Sec.
II C. For the sake of simplicity, we will use a unique no-

This definition is based upon a quantization of the
space in which the curve is embedded. Define a decreas-
ing sequence ek tending to 0 slowly, such as a geometric
sequence (a sufficient condition is that the ratio
inel, /inek+, tends toward 1). The set E can then be
covered by a grid with pixel (i.e. , picture element) length
el„and the number of pixels Q(E, e& ) that intersect E
can be counted (Fig. 3). More formally, the box dimen
sion is given by

lnQ(E, ei, )
hei(E)= lim

k ln I/e„

tation b, (E), and refer to it as the fractal dimension of the
set E. (Note that although the Minkowski-Bouligand and
the box dimension are equivalent to each other, they may
differ from the Hausdorff dimension. ' ' In this paper
we shall not consider the Hausdorff dimension. )

C. Dilation of profiles and generalized covers

A comparison of Figs. 2 and 3 suggests a common
structure between them. We saw that for the box-
counting method, the set E was covered by Q(E, e„)pix-
els with side ej, . Let U(ei, ) denote the union of all those
squares, and IU(ek)I2 denote the area of the special
shaped cover. This area is equal to Q(E, e& )ek. The frac-
tal dimension can then be written as

b, (E)= lim 2—lnI U(e& )I2

inc~

U(e)= ~] A,

In the Minkowski-Bouligand method, U(e)=E(e) is the
union of all the disks centered on E with radius e. In
fact, Eq. (5) is general. The boxes or disks can be re-
placed with any geometric figure which has a diameter on
the order of e. If we denote these generic figures by A
then the union of those A will constitute a generalized
cover for E. Let A be the collection of those figures. It
can be seen from previous examples that A can be finite,
countable, or can have the power of the continuum. The
only requirement for the figures A is that the closure A
of A be homeomorphic to the disk.

To formalize the notion of a generalized cover; recall
that the diameter of a figure A, denoted diam A, is the
largest distance between any two points of A. The inter-
nal diameter of A, denoted diam;„,A, is the diameter of
the largest disk included in A.

We can now define a cover. Given two positive real
numbers e and c,c ~ 1, the (e, c ) cover for E is any set
U(e) that can be written as follows:

lE
. / &I',

II

i[
l & I

1

1
1

12

FICr 3. Definition of box dimension. The object E (dark
curve) lies in the unit square which has been subdivided into 144
small boxes with side eA. =,' . The boxes intersecting E are
shaded. A count of the shaded boxes yields fL(E, ek)=38 for

1

/' 12

b, (E)= lim 2—
e 0

»
I
U(e) I2

in@

Theoretically, if there is no limit, we define b, (E) as an
upper limit.

where A is a family of figures such that the following are
true.

(i) EC U(e).
(ii) For all A HA. A contains at least one point of E.
(iii) For all A EA, e'/c ~ diam;„,A ~ diamA ~ ce.
For the Minkowski cover, the figures A are disks, and

the mapping from A. onto E is one to one with c =2. For
box counting, A are squares, A is finite [A is composed
of Q(E, el, ) elements], and c =2&2. By a theorem
proved in Tricot et al. ,

" the fractal dimension is the
same in each of these cases. Or, more formally, let c be a
fixed constant with 0 (c ~ 1 and a family U(E) of (e, c )

covers for E. Then
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III. STANDARD ALGORITHMS FOR ESTIMATING
FRACTAL DIMENSION OF PROFILES
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We now compare the standard algorithms for estimat-
ing fractal dimension that have been developed from the
background definitions in Sec. II. The complexity for
each of these algorithms will be estimated to compare
them both for practical applications and, more generally,
as a basis for considering their extension to higher dimen-
sions. The notation is standard throughout. We begin by
discretizing the curve f(x) into N+ I equally spaced
points f(x„),n =0, 1, . . . , N. Observe that this intro-
duced certain sampling errors. Furthermore, many of
the algorithms function within the space in which the
curve is embedded, which introduces additional quantiza-
tion errors. For example, displaying the curve in a win-
dow discretizes the embedding space into R XS pixels.
Since this projects the curve into a discrete domain, the
fractal curve will then be approximated by a set of points
(x„,f(x„))linked by straight lines. The resulting curve
is, of course less irregular than the theoretical curve, so
one might expect an estimated fractal dimension smaller
than the theoretical value.

Prototypical test curves. In order to test the various al-
gorithms in this section we will use three diA'erent types
of curves. The first test function that will be used is the
trace of fractional Brownian motion' (FBM). It has been
generated by the fast Fourier filtering technique de-
scribed in Voss. ' For this paper, we chose a FBM curve
with dimension b, ( Gf ) = l.4 [Fig. 4(a)].

The second test function belongs to a certain class of
functions described in Dubuc and Elqortobi. ' Those
functions are bounded and defined on [0,1] with

f (0) =f =0, f(1/p) =f, , f(2/p) =f, ,

f(1)=f =1,
where the number p is called the degree of the function.
Any function f belonging to this class further has the
property that on each interval (i/p, (i+1)/p) (with
i =0, 1, . . . ,p —1), it reproduces what it is on (0, 1), i.e.,

f(x ) =f; + (f; +, f; )f(p—x i )
—.

The function we chose has degree p =4 and is defined by

f0=0 f I= 0 5, f2=0, f3=0.5, f4 ——1

It is commonly referred to as the Kiesswetter curve' and
has dimension b, (G f)=1. 5[see Fig. 4(b)].

The last object, a mathematical model, is the
Weierstrass-Mandelbrot function:

f(x) = g b " (1 cosh "—x ),

where b) 1 and 0(H (1. It is well established that
h(F) =2 H(see Be—rry and Lewis ).

We chose this function since it has already been used
to model rough surfaces. ' The particular parameters
chosen for our Weierstrass-Mandelbrot test curve are
b =2. 1, H=0. 4 [then b, (Gf )=1.6] and with 0.60
& x ~ 0.61. The resulting curve is shown in Fig. 4(c).

To facilitate comparison between the diA'erent algo-
rithms, in all cases we chose X= 16 384 points.

Local fractal dimension Afea.ture that often helps to
determine the range over which to compute the fractal
dimension is the local fractal dimension, or what might
be thought of as a "sliding window" estimate (through e)
of the fractal dimension. To illustrate, one could com-
pute the fractal dimension for the first 10 values of e,
then for 2 to 11, then 3 to 12, and so forth. If the log-log
plot yields a straight line, the plot of the lower bound
against the local fractal dimension will be constant and
its value is reliably b, (Gf ). More generally, however,
there may be only a limited range of values of e where the
log-log plot can yield accurate estimates of the fractal di-
mension.

A. Minkowski-Bouligand method

5.0

I

4 5 l

46~

(5.600 0.602 0.604 0.606 0.608 0.610 x
(c)

FIG. 4. Test objects with known fractal dimension. (a) Frac-
tional Brownian motion (FBM) curve with H=0. 6 leading to
4( Gf ) = 1.4; (b) Kiesswetter curve with fractal dimension
6(Gf ) = 1.5; and (c) Weierstrass-Mandelbrot (WM) curve with
b =2. 1 and H=0. 4 leading to 6(Gf )=1.6. Note that in all the
algorithms, the curves are mapped to the unit square.

In order to get the Minkowski cover Gf(e) we will use
a basic concept from mathematical morphology called
dilation. Let B be a set that we will call a structuring ele-
ment, and let B be swept over the embedding space (here
a unit square in R ). If we note by B the structuring ele-
ment B associated with position x, then the dilation of Gf
by Bis

F= (x: B„AGf ~HI .

The Minkowski cover in IR, as defined in Sec. II A, is
equivalent to a dilation applied on Gf, the structuring
element B being a disk with radius e. Since. we want
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Gf(e) for a range of e (@=1,2, . . . , 70 pixels, for in-

stance), we would have to apply the dilation over and
over again. But distance transforms can accomplish the
same result more efhciently. In particular, a distance
transform takes a binary image b (ij ), where

1 if (i,j ) is an object point
b(i,j 0 if (i,j ) is a background point

and converts it into a minimal distance array d (i,j) in
which each element has a value equal to its minimal dis-
tance to the object, given a particular metric. Figure 5
shows the minimal distance array for the Kiesswetter
curve. The algorithm that we shall use is called the
"chamfer 5-7-11" distance transform. It is a recursive
algorithm and it provides a very good approximation to
the Euclidean distance. Finally, the histogram of the
minimal distance array can then be used to compute the
Gf (e) ~& needed for the log-log plot.

The algorithm to get the log-log data with the
Minkowski-Bouligand method [Eq. (2)] can be divided
into four steps. We assume that we have a list of %+1
points (x„,f(x„))and an R XS array.

(1) Position the points f(x„)into the binary array link-
ing them by straight lines.

(2) Compute the distance transform from the binary ar-
ray and get the minimal distance array.

(3) Compute the histogram of the minimal distance ar-
ray.

(4) From the histogram, get the iGf(e) ~, .

The complexity of the Minkowski-Bouligand algorithm
can be estimated as follows. The first step is O(N). The
second and third steps are O(RS). The length of the his-
togram array being fixed, the last step is O(1). The result
is then an algorithm which is O(RS).

TABLE I. Estimation errors when applying the Minkowski-
Bouligand method. The first column gives the theoretical frac-
tal dimension, the second column shows the estimated fractal
dimension, and the third column gives the deviation from the
true value.

Object 5(Gf ) 6, (Gf ) Deviation

FBM curve
K curve
WM curve

1.4
1.5
1.6

1.313
1.356
1.380

0.087
0.144
0.220

22-
21-
20-
19-
18 -,

17 i

16 ~

15
1 2 3 4 5 6 7 In(ek)

LFD(~k)

2.0

1.8
I

1.2-

0 10 20 30 40 50 60 k
1.0

{a)

inl&(- k) I

20 i

19-
18-
17-

(b)

LFD(~k)

1.6

1.4 '

one, is significant. The log-log plots and local fractal di-
mension graphs are presented in Fig. 6. If the local frac-
tal dimension estimates are consistent everywhere, then
they would yield the solid horizontal line shown. Howev-
er, in all cases note that the local fractal dimension [Figs.
6(b), 6(d), and 6(f)] is nowhere constant, preventing a con-

1. Results on test curves
for the Minkowski Bouligan-d method

We applied the algorithm to the prototypical test
curves presented at the beginning of Sec. III. The results
are shown in Table I. Observe that the error, i.e., the de-
viation of the estimated dimension from the theoretical

16-
15

4 5 6 7 in(~k)

(c)

in(p( k)l

22 -I

21
~

20 )
19 -l

18 ~

17-
16-
15

1 2 3 4 5 6 7 In(~k)

(e)

12-

1.0
0 10 20 30 40 50 60 k

LFD(~k)

2.0-

1.6-

1.2-

0 10 20 30 40 50 60 k

FIG. 5. Distance transform applied to the Kiesswetter curve
of Fig. 4(b). The distance is displayed as a gray level intensity:
dark corresponds to points close to the object and bright to
points that are far away.

FICx. 6. Evaluation of the fractal dimension of the test curves
using the Minkowski-Bouligand method. (a) and (b) are for the
FBM curve, (c) and (d) for the Kiesswetter curve, and (e) and (f)
for the WM curve. The left column presents the log-log plots
with Plei ) = Gf iei. ) z, while on the right we present the graphs
of the. local fractal dimension. In the ideal case, the log-log
plots (on the left) would lie on perfectly straight lines, and the
local fractal dimension (right) could be horizontal solid straight
lines. However, observe the concavity in plots (a), (c), and (e),
significantly confusing the straight-line fit and the skewing of
the local fractal dimension (LFD) estimates away from the hor-
izontal straight line.
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sistent estimate of b, (Gf ). For those in that example we
had R =S=400 and the range chosen was ek =klR
where k =1,2, . . . , 70.

2. Discussion of the Minkowski Bo-uligand method

The precision of the Minkowski-Bouligand method is
poor since the points defined in Eq. (2) almost never lie on
a straight line. Consider a simple example: if Gf is a seg-
ment with length l, then ~Gf(e)~2=2le'+me . Since this
area is not directly proportional to e, the log-log plot re-
sults in a concave curve instead of a straight line, and a
close examination of Figs. 6(a), 6(c), and 6(e) reveals the
concavity. This problem is even worse when the curve
has an infinite number of local minima. The basic prob-
lem, in some sense, is that the Minkowski cover is too
"thick. " The presence of the "rolls" in the sausage (Fig.
7) induces a concavity in the log-log plot which does not
allow a precise estimate of the fractal dimension. Those
rolls are even more dominant when ef, is large and R and
S are small.

B. Box-counting method

This method is straightforward to implement. Once
the object is "drawn" in the binary array, the definition
can be applied directly with e& =k /R, k =2, 3, . . . , k
where k „&(R.Assuming that k,

„

is a constant, this
algorithm is O(RS).

In[y(e„)j
8-

4-

(a)

In [y(eg )]

8-

6l
5-
4-
3-
2

1 2 3 4 5 6 In(e~)

(c)

~ n(4(~g))

5)
4)
3

21 2 3 4 5

2
1 2 3 4 5 6 In(eg)

LFD(eg)

3.0 ~

2.4 )

1.8-

1.2—

0.6 ~

0.0 '-

0 10 20 30 40 50 60

(b)

LFD(ep)

2.2
2.0
1.8
1.6
1.4
1.2
1.0
0.8
0.6
0.4

0 10 20 30 40 50 60 A:

LFD(ek)

2.2-
2.0-
1.8-
1.6-
1.4—
1.2—
1.0-
0.8-
0,6 1

0.4
0 10 20 30 40 50 60 k

1. Results on test curves for the box counting me-thod

We have in Fig. 8(c) the log log plot for the
Kiesswetter curve with R =S=400 and k,„=70.No-
tice the jumps and the dispersion of the points for large

The same sort of behavior can be observed for the
Weierstrass-Mandelbrot (WM) and the FBM curves in
Figs. 8(a) and 8(e). This then results in instabilities in the
local fractal dimension plot as one can see in Figs. 8(b),
8(d), and 8(f). However, for small e the local fractal di-
mension is "not bad" especially in the case of the
Kiesswetter curve and the FBM curve. But to date no al-
gorithm is known for optimally selecting points to ~m-

(e)

FIG. 8. Evaluation of the fractal dimension of the test curves
using the box-counting method: (a) and (b) for the FBM curve,
(c) and (d) for the Kiesswetter curve, and (e) and (fl for the WM
curve. The left column presents the log-log plots with
P(e~ )=A(Gf, eq ), while on the right we have the graphs of the
local fractal dimension. Observe the scatter in the local fractal
dimension (LFD) graphs; such scatter is inherent in the box-
counting method.

prove the dimension estimate. The results for the estima-
tion of the fractal dimension 6,(Gf ) using this method
are presented in Table II.

2. Discussion of the box counting method-

Although very simple to use, the box-counting method
has many drawbacks. First, the characteristic jumps
prevent a continuous log-log plot; the scatter is every-

TABLE II. Estimation errors for the box-counting method.
The first column gives the theoretical fractal dimension. The
middle two columns present the results using all the points
present in the log-log plots of Fig. 8, while the last two columns
present the results when fitting the line through the first 20
points only.

Object 4( G& ) 6, ( Gf ) Deviation 6, ( Gf ) Deviation

FIG. 7. Minkowski cover for the Kiesswetter curve. Notice
the "rolls" that occur at the location of the local minima and lo-
cal maxima.

FBM curve 1.4
K curve 1.5
WM curve 1.6

1.335
1.392
1.443

0.065
0.108
0.157

1.338
1.413
1.491

0.062
0.087
0.109
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where. It is almost impossible to eliminate this scatter,
since II(Gf, ek ) can only take integer values, thereby in-

ducing big jumps in the transition from e& to uk+, .
Another problem is that if 1/ek is not an integer, then
the pixels with side e& will "overflow" on both sides of
the graph Gf. This will bias the results and introduce ir-
regularities in the log-log plot [Eq. (4)), especially when
ek is large. One would like all the boxes to fit exactly into
the unit square. this is possible for all ek if ek =2 /R
with R =2', i.e., if t & and R are dyadic numbers. Howev-
er, if this sequence, which tends to zero quite fast, were
used, the precision of the data would rapidly be reached
and the computation would have to stop: the log-log plot
[Eq. (4)] would then contain only a very few points and
accurate fits would be elusive. Although methods have
been introduced to correct the errors due to a sequence|k of nondyadic numbers, ' the errors due to the discon-
tinuities are not correctable without altering the algo-
rithm substantially. Furthermore, this method is very
sensitive to quantization. Small values of R and 5 are
equivalent to large values of ej„leading to severe discon-
tinuities in the log-log plot and yielding less accurate re-
sults.

C. Power spectrum method

-19 3
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(c)

FIG. 9. Evaluation of the fractal dimension of the test curves
using the power spectrum method: log-log plots for (a) the
FBM curve, (b) the Kiesswetter curve, and (c) the WM curve.
For all those plots P(e~ ) =Pf(eq ). Observe the point dispersion
which distorts the straight-line fit.

The power spectrum method is widely used for applica-
tions in materials science. Descriptions of this method
can be found in Voss, Pfeifer, ' and Pentland. In the
case of self-affine functions, a relationship exists between
the power spectrum and the fractal dimension, so that
the fractal dimension of a self-affine curve can be ob-
tained from the log-log plot:

(Into, in[co'Pf(co)]' '),
where Pf(ro) is the power spectrum of f.

Given the profile data, a 1D fast Fourier transform
(FFT) can be used to compute the power spectrum. The
slope of the line passing through the points of Eq. (8)
should provide the fractal dimension. Since it is known
that the FFT is O(X inÃ) in terms of complexity, it
would result in an algorithm which is O(XlnN). The
precision of the method, however, is relatively low, as we
show in Sec. III C 1.

Example and discussion

One problem with the power spectrum method is that
the points in the log-log plot rarely lie on a straight line,
which makes the evaluation of 6( 6& ) difficult. The
method has been applied to our test curves and typical
log-log plots are shown in Fig. 9. Even if we apply 1ocal
average correction the fit is good only for particular
cases. The results of the estimation of the fractal dirnen-
sion using this method are presented in Table III.

The difficulties with the power spectrum method go
beyond a consideration of accuracy alone. In order to
use this method, one has to make the hypothesis that the
set under study is self-affine, which is quite restrictive.
However, even if this hypothesis were true, the fact that
there are only a finite number of points makes it difficult

to obtain a good fit. Moreover, based on analysis by
Dekking and Van Otterloo, we conjecture that the
power spectrum does not have a specific rate of conver-
gence, but rather decreases at least as fast as O(co ").
This raises further complications in estimating fractal di-
mension from it.

IV. NEW ALGORITHMS FOR ESTIMATING
THE FRACTAL DIMENSION OF PROFILES

TABLE III. Estimation errors when applying the power
spectrum method. In the first column we have the theoretical
fractal dimension, the second column presents the estimated
value, and the third column shows the deviation from the true
value.

Object

FBM curve
K curve
WM curve

6(Gf )

1.4
1.5
1.6

A, (Gf )

1.418
1.449
1.526

Deviation

0.018
0.051
0.074

As we have shown, the standard algorithms are neither
robust nor efficient. In this section, which is the heart of
the paper, we introduce two new algorithms for comput-
ing the fractal dimension. The first of them —called the
horizontal structuring element method (HSEM) —derives
from the Minkowski cover discussed previously, but leads
to more accurate results by eliminating the "folds" in the
sausage. But the HSEM is just an intermediate step. It
introduces the idea of building covers out of intervals
rather than figures, an idea that is more fully exploited in
our second algorithm: the Variation method. It is the
variation method that yields the most robust and efficient
estimates of fractal dimension.
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A. Horizontal structuring element method

b(Gf )=max 1, lim 2—' e-o in@
(10)

Because of the importance of the "horizontal segment"
covers in the HSEM, we now present a proof of assertion
(10). Let

lnl U(e)I26'=lim 2—
e-O inc

For the Minkowski cover, the "rolls" induce a concavi-
ty in the log-log plot, confusing the line fit. Most concav-
ities appear at the peaks (local maxima and minima) of
the function. For self-affine and related graphs, it is
better to use structuring elements which are invariant un-
der affine transformations. Instead of disks then, we will
use horizontal segments, thus cutting off portions of disks
at the peaks of the graph.

To be more precise, for all x in [0,1], let us call
T(x, e) = [x —e, x +e]X [f(x ) I the horizontal segment
of length 2e, center at (x, f(x)) on Gf. Let

U(~) = U T(x, e)0(x(1
be the union of all those structuring elements. Since f is
continuous we see that U(e) has a nonzero area, except in
the special case where f is constant, and this can be used
to calculate the fractal dimension. In particular, if U(e)
is as defined in Eq. (9), we have

Specifically, for inequality (11) this implies

I V, I, (c IU(e)I, . (12)

(b) Define a section of Vz(x) to be the (linear) set of
points of V2 with abscissa x. Now choose x such that the
section of V2 with respect to x is nonempty, and call l (x)
the measure (length) of this section. We have l(x})2e.
On the other hand, we can show that

l(x)(6e . (13)

Indeed, if l (x) ) 6e, then the section of V2 with respect to
x contains the section of at least three disjoint squares of
the type C(x', e), with x'EH(e). In other words, at least
three points of H(e) exist, say, x&,xz, x3, with a distance
to x less than e. Among those three points, at least two,
for example, x, and x2, are on the same side of x: conse-
quently, lx, —x2I (e and

If(x, )
—f(xz) I

~ 2e since their
respective squares are disjoint. But this is a contradiction
with the fact that those points are in H(e) This in.equali-
ty (13) being true, Fubini's theorem states that the area
of a set is equal to the integral of the lengths of its sec-
tions, therefore

where c is a real number independent of e. This follows
from the following observation. Let 0&a &b, and let a

family of disks D with diameter a be given. Now, if for
all D, we let D' be a disk with the same center and with
diameter b, then

For all x, 0(x ( 1, let C(x, e) be the square

[x e, x+e]X[f(x—) —e, f(x)+e] .

Finally, let

V(e) = U C(x, e)
O~x ~1

(c) Conclusion: (12) and (14) give

I V(~) I~( «+c
I U(~) l~

For all cx, 0( n ~ 2, we get

(14)

be the union of all those squares: it is an (e, 2~ 2) cover
as described in Sec. II and it satisfies Eq. (10). We always
have b.(Gf )) 1. Since U(e) is included in V(e), we get

b.( Gf ), leading to

b(Gf ) )max( l, b, *) .

To probe Eq. (10), we now show that the inequality holds
in the other direction as well. Let H(e) be the set of
all x such that for all x ' H [x —e,x +e], we have

If(x') —f(x)
I

(e. Let

V, = U C(x, e), V2= U C(x, e) .
x QH(e) x EHt, e)

%'e now estimate the area of those two sets.
(a) If x PH(e), then there exists an x' such that

lx —x'I (e, and lf(x) f(x')I =e. If C(x, c) is—divided
into four squares with side e, then at least one of those
squares is included in U(e}. If we call D the inscribed
disk in this subsquare, and D' the disk with the same
center but radius 2v'2e [which contains C(x, e)], we have

IUD'I2(cl UD„Iz,

U'(e)= U T'(x, e) .
O~x ~1

(15)

It is clear that this change hardly affects the calculations
described earlier, and (10) is still valid with U (e ).

Finally, observe that the profiles that we want to study
are clearly not rectifiable: we can therefore assume that
their fractal dimension is greater than 1. Hence it is not

The critical values of e, for the three terms of this in-

equality, are, respectively, b.(Gf), 1, and b, '. Finally,
then, it follows that

b, (Gf )(max(i, b, *),
which completes the proof.

For calculations, it is better to consider the points of
U(e) for which the x coordinate lies between 0 and l. In
other words, if we let

T'(x, e)=[max(0, x —e), min(l, x+e)]X [f(x)I
be the part of T(x, e) which projects onto [0,1], we can
replace U(e) with
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necessary to keep the maximum in Eq. (10), and for cal-
culations, the corresponding log-log plot is

Implementation

The implementation of the horizontal structuring ele-
rnent is quite similar to the Minkowski-Bouligand im-
plementation presented in Sec. III A. Since information
for a range of e is needed, the distance transforms can
again be used. The "multidilation" with a segment as
structuring element is equivalent to performing a unidi-
mensional distance transform on each line of the binary
array b (i,j ) The. result is a minimal distance array d(i,j )

into which each pixel has a value equal to its minimal dis-
tance to E Aj (Fig. 10), i.e.,

d(i j )= min Is —iI .
(s, f)Conj

10
]

9 -i

8f

(a)

in[P(..&)]
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Once the minimal distance array is obtained, the rest of
the algorithm is absolutely the same as the Minkowski-
cover case.

The undimensional distance transform part will still be
0(RS), but the constant is smaller than in the "chamfer
5-7-11" distance transform. The algorithm is therefore
still 0 (RS).

2. HSEM: results on test curves and discussion

(c)

in Iy(~ k )]
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8 ~

5-
4 i
3

2
1 2 3 4 5 6 7 In(ek)

LFD(~k)

2.0 q

1.8;
1.6 ~-- . . . .

1.4-

1.2
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The algorithm has been run on the usual test curves.
Figs 11(b), 11(d), and 11(f) give the local fractal dimen-
sion. The Iog-log plots look much better than for the
Minkowski-Bouligand or the box-counting method, al-
though the results are still not perfect. The estimates
b, (Gf ) are shown in Table IV.

With the horizontal structuring element method, we
succeeded in eliminating the rolls that were present in the
Minkowski-Bouligand method. However, the method is
still dependent on the size of the window, with smaller R
and 5 leading to large quantization errors. Also,

(e}

FIG. 11. Estimation of the fractal dimension with the hor-
izontal structuring elements method. (a) and (b) are for the
FBM curve, (c) and (d) for the Kiesswetter curve, and (e) and (P
for the WM curve. The left column presents the log-log plots
with P(e& ) = I

U'(e& ) I „while on the right we present the graphs
of the local fractal dimension.

eKciency is still a problem, having not reduced the com-
plexity from 0 (RS). For generalization to higher dimen-
sions one would prefer an algorithm that is 0(A), where
N is the number of points that approximate the curve.
This leads us to the variation method.

B. Variation method

We begin with a diferent presentation of the HSEM.
If the graph Gf of f is fractal, there exists at least one
part of the interval [0,1] on which f is nowhere or almost
nowhere dial'erentiable. If p(x, ~') is the slope of the line

FIG. 10. "Horizontal structuring element" cover for the
Kiesswetter curve. This figure presents the result of dilating the
object Gf with a horizontal segment as structuring element.
The cover U'(e) as defined in Eq. (15) is displayed in gray. No-
tice that the rolls that were present in the Minkowski cover
(Fig. 7) and box-counting figures are now eliminated.

Abject

FBM curve
K curve
WM curve

1.4
1.5
1.6

A, (GI )

1.482
1.537
1.595

Dev1atlon

0.082
0.037
0.005

TABLE IV. Estimation errors when applying the HSEM.
First column, theoretical fractal dimension; second column, es-
timated fractal dimension; third column, deviation from the
true value.
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passing through (x, f(x)) and (x', f(x')) of the graph,
the fractal concept is related to the following property:
the upper limit of the absolute value lp(x, x')l is infinite
when x' tends toward x. It is the rate of growth of this
convergence that determines the fractal dimension. It de-
pends on the Holder local properties of f (see Tricot ),
themselves related to the fractional derivatives of f. In
order to measure this behavior, we define a function of
two variables related to f.

Formally, the e oscillation u(x, e) of the function f in x
is given by

lies between the upper and the lower bound of

[f(x'): lx —x' ~eI .

Thus (x,y) belongs to the vertical segment S(x,e), and

U'(e) C W(e) .

(20)b, (Gf ) =max 1, lim 2—
p~0 in@

To estimate fractal dimension using the variation idea,
observe that Eq. (10) can be replaced by

ln( f u(x, e)dx )

u(x, e) = sup f(x') — inf f(x'),
x'ER (x) x'ER (x)

(17)
The corresponding log-log plot for the calculation is then

where R,(x)= [s: lx —sl (e and s E[0,1][, and the e 1ln(1/e), ln —f u(x, e)dx
2 0

(21)

and

(x, sup f(x'))
Jx —x J(e

(x, inf f (x') ),
/x —x'[ (e

respectively. Its length is u(x, e). Let

W(e) = U S(x,e)
O=x (1 (19)

be the union of all those segments. Using Fubini's
theorem, which says that the area is equal to the integral
of the sections, if we take the vertical sections of W(e) to
be the segments S(x,e), then we have

l W(e)l, = f u(x, e)dx .

It remains to prove that the sets U'(e) and W(e) are
identical. Let (x,y) be a point in W(e) The ordinate . y
lies between the upper bound and the lower bound of

[f(x'):
Since f is continuous, there exists an xo, lx„—xl ~e,
such that f (xo) =y. Then (x,y) belongs to the horizontal
segment T'(xo, e) Hence.

W(e) C U'(e) .

variation V(e,f ) of the function f is given by

V(e,f )=f u(x, e)dx .
0

Since f is continuous, the e variation of f tends to 0 as e
tends toward 0. It is the rate of growth of the e variation
that is directly related to the dimension of Gf. In fact,
we shall show that if U'(e) is the cover defined in Eq. (15)
with the union of horizontal structuring elements, re-
stricted to the abscissa included between 0 and 1, then

lU'(e)I2=V(e, f)=f u(x, e)dx . (18)
0

The proof proceeds as follows. For all x, let us call
S(x,e) the vertical segment whose external coordinates
are

The first attempt to use such a method for a real problem
in materials science is in Quiniou.

1. Implementation

Based on the definition of the variation dimension, it is
straightforward to develop an algorithm for estimating
the fractal dimension of 1D profiles. It is important,
however, to have an eScient implementation of the algo-
rithm or the computation could be very expensive, espe-
cially for generalizations to higher dimensions. In this
section we present such an implementation and in Sec.
IV 8 2 we show that the resulting method yields accurate
results on curves with known fractal dimension.

Suppose that the digitized profile data are f(n/N),
n =0, 1, . . . , X. Given a list of integers in increasing or-
der k;, i = 1,2, . . . ,i,„,we would like to compute the
log-log data of Eq. (21). In particular, this involves com-
puting

1 k,
V(e, ,f ) = f u(x, k, /N)dx where E'; =

for i = 1,2, . . . ,i,„.Let us define two new functions, u
and b, that we call the upper envelope and the lower (bot-
tom) envelope (after Peleg et al. , ), respectively (see Fig.
12). Formally, the upper e envelope u, (x) and lower e
envelope b, (x) are defined as follows:

u, (x) = sup f(x'),
x'GR (x)

b, (x) = inf f(x'),
x'ER (x)

where R,(x)= [s: lx —s (e and s &[0,1]I. It follows
immediately that

V, (f)= f [u, (x)—b, (x)]dx .

Since the curve is digitized, we make the following ap-
proximation:

u, (n)= max f(j /N),
n —k (j(n+k

t t

For the other side, let (x,y) be a point in U'(e). There
exists an x, such that (x,y) C T'(x, , e), i.e. , y =f(x, ) and
lx —x, l

(e. Since (x, ,y ) is a point of the graph, then y
b;(n)=

n —k, ~ j(n+k
min f(j /N),

(22)
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u;(n) =max(u;, (n —6, ), u, &(n +6, )),
b;(n)=min(b, , (n —5, ), b, ~(n +5, )) .

(23)

In other words, a pyramid can be constructed in which

with 0 ~ n ~N and where u, (n) [b;(n)] is the approxima-
tion to u, (n/N) [b, (n IN)]. (One has to be careful at

I I

the borders. In Eq. (22), we compute the minimum and
the maximum for j/N E[0,1].) However, if the k, are
relatively close to one another (i.e., if li, = k,—k;, ~ k, , ), then u;

&
and b,

&
can be used to com-

pute u, and b; (see Dubuc ):

the information at a previous level can be used to com-
pute the information at the current level, reducing the
complexity of the algorithm. We finally make the follow-
ing approximation:

f v(x, k, /N)dx = g u, (n) —b, (n).
o

' N+1
„

However, this might not give the best estimates of the
variation when e, is small, for the following reason: if the
curve is digitized into %+1 points, then the smallest e,
possible is e;=1/N. For that value of e, , according to
Eq. (22), we would have

u
& && ( n IN ) = u, ( n ) =max( f( ( n —I ) /N ), f( n IN ), f( ( n + 1 ) IN ) ),

b, z&(n/N) =b, (n) =min(f((n —1)/N), f(n IN), f((n +-1)/N)),

i.e., the maximum and the minimum of the function in a
1/N-neighborhood are evaluated over three points. This
approximation should be reasonable if the fractal dimen-
sion of the curve is low (less than 1.5) but can be very
poor if the fractal dimension of the curve is large (above
1.5). More points are needed to accurately estimate the
maximum and the minimum in a 1/N neighborhood. We
therefore reorganize the data so that estimates are made
not at the N + 1 distinct points, but rather at R + 1 ~ N
equidistant points. Then we would have e, =k;/R and
the envelopes for the smallest e,- would be approximated
as follows:

u, &z(r/R ) =u &(r) = max f (n /N),
(» —1)/R ~ n /A' & (»+ 1)/R

b, q~ (r IR ) =b, (r) =- min f(n IN) .
(» —1)/R ~ n/X ~(r+ I )/8

R is chosen so that (i) it is small enough to give reliable
estimates of the maximum and the minimum in each 1/R
neighborhood, but (ii) large enough so that V(e, ,f ), for
e; =k, /R, suitably approximates the limit as e tends to 0.
We will denote by R, , the "best" R that can be chosen,
in the sense that the reorganization of the points then
minimizes the error in the fit of the log-log plot. R pt can
be found by scanning over the range of all possible R (i.e.,
applying the variation method for all possible values of R
between 1 and N) and choosing the one that minimizes
the fit. We have to note that, using this approach, the di-
gital implementation of the variation method gives re-
sults that differ from those obtained with the HSEM.
This is due to the fact that R varies from one curve to
another (and is chosen to be optimal) rather than taking a
fixed value (i.e., R =400, in our case, for the HSEM). We
thus expect more reliable results from the variation
method. For the rest of this section we suppose that R is
set to R, ,

Cyiven R, the e variation is approximated as follows:

R —
1f ( v, x)ed=xg u, (n) —b;(n) with e; =

R+1
„

R

Since R does not depend on i, the corresponding log-log
plot for evaluating b, (Gf ) is

R —
1ln, ln g u;(n) —b, (n), i =1,2, . . . , i

A pseudocode version of the algorithm just described is
given in Table V.

With the assumption that k, —k, ,
~ k, , (which is al-

most always the case) for each k;, i =2, . . . ,i,„,the al-
gorithm consists of 4R comparisons. Since we assume
that i,„isa con.stant, the algorithm is 0(R). This is a
substantial improvement over the standard techniques, in
terms of both complexity and memory requirements.

2. Results on test curves for the variation method

When the variation algorithm is applied to the test
curves, note that the estimated local fractal dimension
(dotted line) [Figs. 13(b), 13(d), and 13(f)] is very close to
the true value for the dimension (solid line). Notice also
that in the log-log plots [Figs. 13(a), 13(c), and 13(e)] the
points really lie on a straight line, as opposed to the
Minkowski-Bouligand or the box-counting examples.
The evaluation errors using this technique are shown in

TABLE V. Pseudocode for the 1D variation method to illus-
trate the key steps in the computation. In this pseudocode ver-
sion, we omitted implementation details such as what to do on
the borders, how to implement it with just one matrix, etc.

Compute u] and b],
For i =2 to i,„do;

6=k, —k,
Forn=Oto R do;

u, (n)=max[u;, (n —6), u, , (n 5+)];
b;(n)=min[b;, (n —6), b; ~(n +6)];

end;
end;
Compute log-log data
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FIG. 12. "Variation cover" for the Kiesswetter curve. This
figure shows the function f with the upper envelope u and the
lower envelope b. Here we had R =350, N=4096. We plotted
0 3p (x ) and b 30 ( x ). Notice that the area bounded by u and b is
equivalent to the gray area we had in Fig. 10.

1.3(i .

1.35 1.45
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FIG. 14. Summary plot of estimated vs theoretical fractal di-

mension for all the test examples in the paper. Ideal behavior is
indicated by the solid line, or which estimated fractal dimension
equals theoretical fractal dimension. Distance from this solid
line therefore indicates performance deficit. In this plot, MB
stands for the Minkowski-Bouligand method, BC for the box-
counting method, PS for the power spectrum method, HSE for
the horizontal structuring elements method and VAR for the
1D variation method. This plot is a graphical recapitulation of
what was presented in Tables I—IV and VI.
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Table VI, and from that we see that it is significantly
more accurate than the other "standard" algorithms. In
this example R =2200 (for the Kiesswet ter curve),
R = 1000 (for the WM curve), and R = 5120 (for the FBM
curve) were chosen.

C. Summary

To summarize all the experiments with objects of
known fractal dimension, we plot in Fig. 14 the estimated
fractal dimension versus the theoretical fractal dimension
for each of the algorithms presented in Secs. III and IV.
Ideal behavior is indicated by the solid line. Among the
algorithms examined, for the Weierstr ass-Mandelbrot,
fractional Brownian motion, and Kiesswetter profiles, the
variation method clearly performs the best.

V. CONCLUSIONS

The concept of fractal dimension is connected to the
notion of roughness, a key variable in many physical situ-

(e)

FIG. 13. Estimation of the fractal dimension with the varia-
tion method. (a) and (b) are for the FBM curve, (c) and (d) for
the Kiesswetter curve, and (e) and (f) for the WM curve. The
left column presents the log-log plots with P(EI, )= V(ef, ,f ),
while on the right we present the graphs of the local fractal di-
mension.

Object

FBM curve
K curve
WM curve

b, (Gf )

1.4
1.5
1.6

6,, (Gf )

1.408
1.495
1.588

Deviation

0.008
0.005
0.012

TABLE VI. Estimation errors when applying the variation
method. First column, theoretical fractal dimension; second
column, estimated fractal dimension; third column, deviation
from the true value.
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ations, so algorithms for measuring it are becoming
widespread in both theory and applications. However,
what appears to be the unexamined assumption behind
the algorithms is that, since fractal dimension is well
defined mathematically, then the algorithms derived from
the definitions should work correctly as well. But this is
not the case, as we showed in this paper by evaluating the
fractal dimension of several well-known mathematical ob-
jects with the standard algorithms. The mathematical
objects were chosen both because we could compute their
fractal dimension exactly, and because they provide
profiles typical of those obtained in a diversity of applica-
tions.

The problem with most of the standard algorithms is
the manner in which measures are taken, especially as the
necessary limits are approached. In particular, at the
heart of most algorithms is a cover, or a measure of the
area that the curve fills at some scale (e'). Fractal dimen-
sion is then obtained as an estimate of how this area
varies with scale for a given curve. In light of this prob-
lem, then, we further proposed a new method for evaluat-
ing fractal dimension based not on coverings with disks

and pixels, but rather with appropriately defined inter-
vals. The resulting cover leads to a new class of algo-
rithms yielding significantly more accurate estimates of
fractal dimension. Our best algorithm —the variation
method —is much more efficient than the others as well.

This paper is the first in a series of two, in which we
both critiqued the standard algorithms and introduced
the variation method. All analyses and experiments were
done in one dimension, however, and in the companion
paper' we show how to generalize the variation method
to higher dimensions. The result is then a reliable and
eScient algorithm for estimating the fractal dimension of
surfaces.
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