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The problem of relaxation is studied via the microscopic Hamiltonian model of an impurity (or
particle of interest) embedded in a linear chain of harmonic oscillators. When the mass of the parti-
cle of interest is suSciently larger than that of the "bath" particle and the system is classical, the ve-

locity autocorrelation function of the particle of interest is known to consist of the sum of an ex-

ponentially decaying term and a nonexponential contribution with a slow tail of oscillatory nature.
The damping of the exponential decay is determined by using a renormalization procedure within
the context of the generalized Langevin equation. By expressing the "bath" coordinates in terms of
normal modes and using a scalar product of the Kubo type, it is shown that the classical I.iouvillian
becomes formally equivalent to the quantum-mechanical Hamiltonian introduced by Friedrichs to
study unstable quantum-mechanical states. In the case of a finite number A of particles (or 2A nor-
mal modes) the excited state of the Friedrichs model largely overlaps an "eigenstate" S), the "ei-
genvalue" of which is straightforwardly expressed in terms of the model parameters. It is shown
that in the continuum limit (X= ~ ) this "eigenvalue" becomes complex and its imaginary part
coincides with the renormalized damping above. It is also shown that the projection approach to
the Fokker-Planck equation leads precisely to the same renormalized damping coelcient. The ma-

jor conclusion is that the Fokker-Planck description refers to the stochastic dynamics of a sort of
dressed variable rather than that of the merely bare velocity. Furthermore, we conclude that
whereas the decay of the autocorrelation function of the bare velocity cannot be exponential in ac-
cordance with the general remarks by Lee [Phys. Rev. Lett. 51, 1227 (1983)], the decay of the
dressed variable is an exact exponential. It is argued that to establish a contact with real experi-
ments, the Kubo approach to the linear response to an external excitation should be reformulated
and that this might naturally lead to the basic tenets of the subdynamics of Prigogine and co-
workers. The relations between the present and a former approach to the Fokker-Planck equation
to be associated to non-Markovian processes are studied.

I. INTRODUCTION

The problem of assessing whether or not the time de-
cay of a relaxation process is rigorously exponential has
been the subject of recent investigations. For a more de-
tailed discussion of the basic literature on this important
issue we refer the reader to the recent work of Lee, ' who
showed that the decay of relaxation process with a
rigorous Hamiltonian origin cannot be rigorously ex-
ponential, since this would conflict with the fulfillment of
a rigorous sum rule, established on the basis of re-
currence relations stemming from the genuine Hamiltoni-
an nature of the microscopic interaction among the com-
ponent of the physical system under study.

On the other hand, recent research work carried out by
Der on the establishment of a time local Langevin equa-
tion shows that under precise circumstances this can
be done by relying on a sort of slowest eigenvalue, which
implies again the introduction of a rigorous exponential
behavior. This seems to contrast not only with the point
of view of Lee, but also with very simple Hamiltonian
models such as that of a particle linearly coupled to a
chain of harmonic oscillators. In this case weil-known
analytical expressions for autocorrelation functions are
available, which, in accordance with the general remarks
of Lee, reveal indeed a nonexponential nature. Let us

focus on the case of an impurity embedded in a linear
chain of particles. This is the model under investigation
in this paper. It is well known that even in the case
where the impurity is characterized by a mass very large
compared with that of the bath particles, the time decay
of the autocorrelation function of the velocity of the im-
purity exhibits a significant deviation from the exponen-
tial behavior in the long-time region, in addition to a de-
viation from the exponential behavior in the short-time
region. In this long-time region the decay process is
characterized indeed by a sort of damped oscillatory re-
gime. This would lead to the conclusion that the ex-
ponential decay is the result of an approximation and the
Fokker-Planck equation, which leads to an exponential
behavior, is itself an approximated equation of motion.

The major aim of this paper is to show that the
Fokker-Planck equation actually corresponds to studying
the motion of a sort of dressed variable, or, adopting a
quantum-mechanical language, of a "dressed state" and
the conflict with the rigorous nonexponential character of
a correlation function is only apparent. The correlation
function corresponds to the decay of a bare state,
whereas the Fokker-Planck equation describes the relaxa-
tion process of a dressed state. If the time-scale separa-
tion between system and bath is rendered infinitely large,
the two descriptions tend to coincide. When the time-
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scale separation between system and bath is not infinitely
large, or, equivalently, the time scale of the bath does not
vanish, the two descriptions lead to different predictions.
This involves the subtle problem of how to actually carry
out a true experiment. According to Prigogine and co-
workers, "' this is an aspect of great relevance which also
applies to the problem of measurement in quantum
mechanics. This dressed state we are talking about coin-
cides indeed with the concept of subdynamics introduced
by Prigogine and co-workers. " Concerning this aspect,
the element of originality of our treatment relies on the
use of the Schrodinger picture, which has the capability
of rendering the derivation of the dressed state very
transparent.

The tendency of a system to precipitate in a dressed
state characterized by a rigorously exponential decay has
already been noticed some years ago in a different con-
text '' and has been the subject of intense discussions by
Prigogine and co-workers. "' If this were proved to be a
general property of the interaction between a microscopic
system and a macroscopic measurement apparatus, the
Fokker-Planck equation, as resulting from the renormal-
ized procedure of Ref. 11 and exhaustively i11ustrated for
the first time in the present paper, would become a
theoretical tool of greater interest.

The paper is organized as follows. Section II is devot-
ed to deriving the renormalized drift coefTicient within
the generalized Langevin picture. In Sec. III we show
that the classical Liouvillian of a linear chain with an im-

purity mass, expressed in the Hilbert space generated by
the Kubo scalar product, is equivalent to the quantum-
mechanical Hamiltonian of the Friedrichs model. ' '

Furthermore, using this equivalence, we determine the
"dressed" state ~S & resulting in a rigorously exponential
decay. Section IV is devoted to showing that the
Fokker-Planck equation provides a description of the sta-
tistical properties of the "dressed" variable S rather than
the "bare" variable velocity U. Connections with a form-
er approach to the Fokker-Planck equation are discussed
in the Appendix. Concluding remarks are found in Sec.
V.

II. SHORT REVIEW OF THE STANDARD RESULTS
ON THE DYNAMICS OF AN IMPURITY EMBEDDED
IN A LINEAR CHAIN OF HARMONIC OSCILLATORS

In this paper we study a physical system described by
the following Hamiltonian:

—p, (t) = —+po(t), (2.3)

p,„ccexp( —Wlkt) T) . (2.4)

%e adopted the synthetic notation dI =dppdp]
dqodq, . . . . By adopting the quantumlike formalism of
Ref. 12 the correlation function of Eq. (2.2) can be rewrit-
ten as follows:

@o(t)= &fo lfo(t) & l&fo lfo &, (2.5)

where the "quantum-mechanical" state
~fo & must be

identified with the variable po. The scalar product fol-
lows the following general definition:

& &~B&=fdr &*(r)B(r)p, (I ), (2.6)

where 3 and B denote two generic functions of the phase
space I .

From the theory of Ref. 12 we also derive that d&o(t)

obeys the following equation of motion:"

d&o(t) = —b, , f dr d&)(r)No(t —r),
where

b, ,
= —

& f, ~f, & l&f iof &o=2klM

(2.7)

(2.8)

and

I, (o)ot)
( ))t=&f ~f)())t&l& f)lf) &=2

not
(2.9)

~ f, & and & f, ~
denote the right and left states of the gen-

eralized Mori chain built up according to the rules of
Ref. 12. Note that the memory kernel of Eq. (2.7) is
nothing but the correlation function of the state

~ f, & re-

garded as being driven only by the interaction with the
remaining states of the infinite Mori chain.

By iteration of this procedure, ' '' ' "it is possible to
show that

1
zj

@o(t)=
1 —p z+p z +no

(2.10)

where

X being the classical Poisson bracket associated with the
Hamiltonian of Eq. (2.1), and the equilibrium distribu-
tion, on which the average of Eq. (2.2) is carried out, is

given the canonical form

(2.1)

and

p=m/M (2. 1 1)

&popo(t) &

@o(t)=-
pa

1 fdrPoPo(t)P (r)
&po&

(2.2)

where the time evolution of the moment po is driven by

where m, =m if i&0 and m;=M if I, =O. By using the
continued-fraction procedure of Ref. 12 we can easily
evaluate the correlation function of the moment po,
defined as follows:

rg)o= 4k /m (2.12)

C denotes the integration path along a straight line paral-
lel to the imaginary axis on the right side of the singulari-
ties of the integrand.

In a very recent paper Lee et aI. ' ' ' shows that a
zero-temperature two-dimensional interacting electron
gas at long wavelengths is characterized by the same
correlation function, the mass difference m —M acting as
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the electron-electron interaction. For p &1 the explicit
expression of Np reads' '"'

+ i (1 —x')' cos(x coot)

(1 —2p)x +p,
(2.13)

In the long-time region this exact expression has been
rewritten by Ullersma and Phillipson as the sum of an
exponentially decaying function and a correction to it.
More in general, throughout the whole time interval
C&o(t) can be rewritten as follows

P~pt

&I —2p

sin(xcoot)(x —1)'
+ dx

(1 —2p)x +p

1—
4„(t)= exp

1 —2p

(2. 14)

Equation (2. 14) has been derived as follows. First of all
we made on the integral of Eq. (2.13) the following
change of integration variable x except. The new in-
tegral is evaluated by integrating from —~ to + ~
minus the integral from —~ to —~pt and that from supt

to + ~. The former contribution is precisely the ex-
ponential function appearing in Eq. (2.14).

Equation (2.14) shows that the rigorous nonexponential
decay of Eq. (2.13), agreeing with the general remarks of
Lee, ' can be seen as the sum of an exponential decay plus
a correction term. The aim of this paper is to show that
this way of splitting the exact expression of Eq. (2.13) is
not arbitrary. On the one hand, we can show that it is
completely equivalent to the result of a fully renormal-
ized Fokker-Planck equation. On the other hand, both
the exponential decay provided by the first term of Eq.
(2.14) and the Fokker-Planck equation derived with the
approach illustrated in Sec. IV correspond to the dynarn-
ics of a dressed state ~S ). This dressed state ~S ) will be
introduced in Sec. III ~

From Laplace transforming Eq. (2.7) we find that the
function &bo(t) is characterized by a pole k in the second
Riemann sheet, fulfilling the following relation:

(2.15)

determining the bare correlation function of Eq. (2.5).
Within this context, therefore, the damped exponential is
certainly an approximation. After introducing a suitably
dressed correlation function —see Sec. III—it will become
clear that its exponential decay with that damping is ac-
tually an exact result.

III. EQUIVALENCE BETWEEN THE CLASSICAL
CHAIN OF HARMONIC OSCILLATORS AND

THE QUANTUM-MECHANICAL FRIEDRICHS MODEL

+ —(q, +q, „)+kx —kx (q, +q„.) .
k 2 (3.1)

The system consists of 2N particles with mass m and one
particle of interest (the impurity) with mass M. After
carrying out the change of indices above the coordinate
of the particle of interest is

qp & qZN+i . (3.2)

Let us split the Hamiltonian & into a part of interest )V„,
an interaction Az, and an "irrelevant" part &b, as fol-
lows:

&=&, +At+Nb, (3.3)

where

2
po M z

2M 2
(3.4)

-at = —kx (qi+q2~) (3.5)

and

2N p. k 2N —
1

+ —g (q, —
q, +i)'+ —(qi+q2. ~)

First of all, on the Hamiltonian of Eq. (2.1) the bound-
ary condition q N

=
qN + &

is imposed. Then with the
change of indices i ~i +N, it is replaced by the following
Hamiltonian:

p 2N p. k 2N —
1

+ & + —& (q, —q+i)'2'
&

2m 2

where 4, (
—

A, ) denotes the Laplace transform of N, (t)
evaluated at —

A, . The next step to get the explicit expres-
sion of this pole, consists of using Eq. (2.9) and carrying
out the analytical continuation of 4, (z) on the left half-
plane. This leads to the following result:

Note that the frequency defined by

n:2k /M =pet) p /2

(3.6)

(3.7)

PCOp

&1—2p
(2. 16)

It is remarkable that we found this exponential contribu-
tion to the decay of 4o(t) without any assumption on the
time-scale separation between the system and its "bath. "
Later we shall show that A, can be regarded as the "eigen-
value" of an "eigenstate" ~S ) with the following remark-
able feature. When the system is initially prepared in the
state ~S ) the time evolution of its projection on the state

~ fo) is exactly given by an exponentially decaying func-
tion with the damping k of Eq. (2.16). It is worth stress-
ing that the Mori theory leading to Eq. (2.7) aims at

2N

pi = g +apt
i 1

(3.8)

where the coefficients T,&
of this transformation are

defined by

fixes the macroscopic time scale T = 1/0, .
Let us diagonalize Ab with the following transforma-

tion of coordinates and momenta, borrowed from the pa-
per of Cukier et al.

2N
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2

,

2N+1

1/2
il m.

2N +1 (3.9)
Due to the translational invariance of the original Hamil-
tonian, the variables x and U turn out to be decoupled
from one another, i.e., we have

It is shown that the transformation matrix T fulfills the
property

2N

A,s—=0 —g =0 .
; —

1 mMco,
(3.18)

(3.10)

When written in terms of these normal modes the Hamil-
tonian & reads

Note that the Hamiltonian, written in terms of these
mixed coordinates, reads

&=A, + g +—co;q + g e;qx,
2m 2

(3.1 1)

2N

v+ g +—coy,
M m2,.

1
2m 2

(3.19)

where the coupling strengths e, are defined by
Let us now carry out a further change of variables.

This is as follows:

2—2k
2N +1

1/2
E 1T

2N+1 (for odd i)
g;+ —= u,'+ iso;y;,

=v ice—;y; .
(3.20)

0 (for even i) .

The frequencies co, are given by

(3.12)
In terms of these new variables the set of Eq. (3.17) be-
comes

X —U

ATE

co; =co0sin i =1, . . . , 2N .
2(2N + 1)

(3.13)

P0
X = =U

M

In terms of the new coordinates we obtain the following
equations of motion:

2N

1
2EMCO,

i=i cu; g,
+ +i v,

mm;

(3.21)

2N

po= —MQ'X —g e, q,',

Pi.
q,'=

(3.14)

p i m~i gi Fix2

Let us now adopt a mixed representation where the
coordinates q,

' are replaced by the new coordinates

(g, ~g, ) =0 for any i,
(g'~g ) =0, p=+, —;p'=+, — for i~j

(v~P) =0, for any pair of p and i .

(3.22)

(3.23)

(3.24)

ice, g,
— i —v.

me@,

First of all let us stress that the basis set ~u ) ~g, ) is
characterized by the orthogonality properties

y, =q,'+X
7

m co;
(3.15)

piUi-
m

(3.16)

while still referring ourselves to the old velocities defined
by

Equation (3.22) expresses the result of energy equiparti-
tion. Equation (3.23) results from the fact that the nor-
mal modes are independent from each other; see Eq.
(3.19). The third equation, Eq. (3.24), depends on the fact
that the new variables P, also depending on x [see Eq.
(3.15)], are, however, certainly independent of u. Equa-
tions (3.22)—(3.24) show that this is a suitable orthogonal
basis set to expand the operator X. After proper normal-
ization, the matrix 3 with components

We thus obtain the new equations of motion (3.25)

X —U

U =

Ei
y; =Ui +U

2N

1 mMcu;

2N g.y.
x —g

i =1
(31.7)

where we follow the ordering

0 U
1 1 2 1

appears to read as follows:
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0
1 +

v 2mM
1

tv& &2mM
1

co& v'2mM
~2 1

tv& &2mM

1

tv, v'2mM
0 0

1

tu& v 2mM

1

~2 &2mM

0

0 0

0 0

0
(3.26)

1

cv, v 2mM
0 0

2X 2&V

=wl, e&&el+ g u ~m &&m~+ g v„,„~e)&m~

In this basis set the variable x is not included, since we
are here interested in determining the dynamical proper-
ties of u and, due to Eq. (3.18), these do not depend on the
dynamics of x.

We are in a position to identify ~v ) with the unstable
quantum-mechanical state ~e ), and the states ~~,—,

' ) with
the quantum-mechanical states ~+n ) of the Friedrichs
model. ' ' Then, the classical Liouville operator —iX
turns out to be equivalent to the quantum-mechanical
Hamiltonian operator & defined by

We are in a position to determine an "eigenstate" of A,
the "eigenenergy" of which in the continuous limit is pre-
cisely —i X.

Let us consider the state ~S ) defined by

v,* lm&
~S)= e)+

m = —2X Wm
(3.29)

It is straightforward to show that ~S ) is an eigenstate of
A' with eigenenergy z. This eigenvalue, in turn, is provid-
ed by the implicit equation "

2A

m = —2A
m;. 0

+ g V,,
* [m )&e[,

in =- —2Ã
m v-0

(3.27)
m ———2V Z Wm

mg0

(3.30)

where

m =- —2'
m —,' 0

It is immediately seen that if the memory kernel N& of
the generalized Langevin equation of the preceding sec-
tion is explicitly written in this representation, it reads

w„, =0, (3.31)

wm =co„& m &0

Vem
= m )0

cu, +2mM
E;

m &0.
co;&2mM

Let us now discuss how to use the Hamiltonian A of
Eq. (3.27) to determine the state ~S ) with an "imaginary
energy" —i A. with X coinciding with the renormalized
damping coefficient of Eq. (2.16). The Hamiltonian B' of
Eq. (3.27) refers to a case of a finite number of Friedrichs
states ~m ), as a result of considering in our original clas-
sical model a finite number of particles.

The leading idea of our approach is as follows. First of
all, let us note that the frequencies of our normal modes
are maintained within the finite range (O,too). Corre-
spondingly, the unperturbed energies of the Friedrichs
states are limited by the lower bound w, „=—coo and the
upper bound w, , =~o. As a consequence of this, upon
increase of X the energy spectrum tends to a continuum.

If we apply now the renormalized expression of Eq. (2.16)
and take the relation k=iz into account, we see that this
important expression leads to precisely Eq. (3.30).

Note that the results we are commenting on are of very
general nature and are not confined to the case of a
"bath" chain with equal masses and couplings. This con-
ditions basically served the purpose of resulting in analyt-
ical expressions for the transformation coordinates above.
After carrying out the normal-mode transformation
above, in terms of generic transformation matrices, the
memory kernal 4, (t) always turns out to be written un-

der the form of Eq. (3.31). We obtain thus the following
general and important result. The renormalized trans-
port coefficient k, as derived from the generalized
Langevin equations, is not easily recognized as the eigen-
value of a certain eigenstate. After carrying out the trans
formation to the Friedrichs representation, this transport
coefficient is immediately recognized as being the eigenval
ue associated with an eigenstate, and the general expres-
sion for this eigenstate is immediately deriued and it ls

indeed Eq. (3.29).
It must also be stressed that before reaching the con-
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m~p

IV, I' f(w )=j dwlV(w)l'f(w)
dw

(3.32)

From Eqs. (3.28), (3.12), and (3.13) we obtain

V(w)l'= (duo
—w') .2N+1 (3.33)

dm /dw is evaluated by inversion of Eq. (3.13). This leads
us to

tinuum liinit, the solution to Eq. (3.30) is always given by
2N+1 real values of z, as it is obvious, because of the
Hermitian nature of the matrix A. Thus, so to speak, the
related parameter A, = iz is not a genuine transport
coefficient. This is made to become a real transport
coefficient in the continuum limit, via a suitable use of the
technique of analytic continuation. Let us, therefore, ex-
plore this important physical condition.

Let us make this calculation in the special case of our
linear chain of particles. In this case, due to Eq. (3.12),
the contributions of even m vanish and the continuum
limit is attained via the following expression:

Prigogine and co-workers. "' If the "wave function"
of our system,

l g( t) &, at the initial time t=0, satisfies the
property

«lg(0) &
= lp(0) &, (3.40)

IV. THE FOKKER-PLANCK EQUATION

Let us apply the projection technique of Refs. 19—21 to
derive the Fokker-Planck equation describing the equa-
tion of motion of the probability distribution of the veloc-
ity v =po/M of the Brownian particle of the Hamiltonian
system of Eq. (2.1). Let us use the relative coordinates R;
defined by

R, =q, —
q, (4. 1)

the subsequent decay is rigorously exponential. This is so
because Eq. (3.40) means that the "wave function" lies
completely on the subspace characterized by an exponen-
tial decay. We have thus shown that an initial condition
exists, resulting in a time behavior which exactly coin-
cides with the exponential contribution to the correlation
function 4u(t) = (fo l fo(t) &/( f0 l fo & of Eq. (2.5), i.e. ,
the first term on the rhs of Eq. (2.14).

dm

dw

2N +1
(

2 2)1/26)p w
(3.34) Then the Liouvillian L associated with the Hamiltonian

of Eq. (2.1) can be written as

Let us substitute Eqs. (3.33) and (3.34) into Eq. (3.32); we
are led to the following prescription:

2N 0
lV, l'f(w )=j dw~( o

—w )' f(w) .
m = —2N p

m g-0

(3.35)

(u, —
u, , ) + (R;+,—R;)

a k a

(4.2)

with m, =m for i &0 and m, =M for i =0. Since the vari-
able of interest is v =vp, we are immediately led to the
following repartition of X:

By using this prescription to evaluate the eigenvalue z in
the continuum limit, from Eq. (3.30) we obtain

L =L.+L„+L, , (4.3)

z=j "dw
0

(
2 2)1/2

COO W

Z W
(3.36)

where

, =0, (4.4)

The integral on the right-hand side (rhs) of Eq. (3.36)
must be evaluated by analytical continuation. From the
cut on the real axis we obtain

a
aR,

a
aR

k
(Ri —Ro)

av
' (4.5)

z =pz —ip(duo —z )' (3.37)
the latter being also written in the fully equivalent way

which means Li =v kR,+
aR, k T

kRO+
aRO kz T

PCOpZ—
&1—2p

(3.38)

1«=ls&, (sl, (3.39)

Equation (3.38) provides for A=iz, precisely . the same as
expression as Eq. (2.16). The "eigenstates" S & and (Sl
corresponding to the "eigenvalues" of Eq. (3.38) are de-
rived by expressing in the continuum limit the state of
Eq. (3.29) and the left state associated to it.

Note that the projector over the space spanned by the
state ls &,

(R, —Ro) +
M av k&T

(4.6)

By using the usual projection projector P, defined by

Pp(u, b;t)=p, (b) jdb p(u, b;t), (4.7)

where p(v, b; t) denotes the probability distribution of the
variables v and b, b expressing the set of the remainder
variables of our Hamiltonian system, and p, (b) the equi-
librium distribution of these "irrelevant variables. " Let
us also use the properties

being Hermitian, seems to be a special case of that of the PL, =L,P =PL,P =0 (4.8)
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[the last equality depends on the nature of the Hamiltoni-
an W, studied in this paper, the other two are a general
property of the operator of Eq. (4.7)] and let us follow the
prescription described in details in Ref. 21. Then we get
for the probability distribution of u, cr ( u; t )
= J db p(u, b; t), the following equation of motion:

c)cr(u, t) = f dr%(t —r)o(u, r),
Bt 0

contribute. We thus obtain

1)2=f %2(t)dt,

where

A2(t —r) = PX, (t)QX, (r)P .
1

p,q(b)

By using Eqs. (4.8), Eq. (4.18) becomes

(4.18)

where the memory kernel A is defined by

W(t —r) = PX, (t)T1

p,q(b)

Xexp g f X,(t')dt', QX, (r)P
7

with

(4.10)

%2(t)= PX, e 'L, P .
p,q(b)

(4.19)

By adopting for X1 appearing on the left the expression
of Eq. (4.5) and for the one on the right the expression of
Eq. (4.6), using the first of the properties of Eq. (4.8) and
the assumption that the equilibrium distribution p, (b) is
canonical, namely,

X,(t) =e '~X, e
(4.10') (b) b 8

we obtain

(4.20)

and T denotes a time-ordered exponential. -' Note that
this equation is rigorously exact only if the initial condi-
tion

Mu

Bu Bu k T

p(b, u;0) =p,„(b)o(u;0). (4.1 1) X dt d6 R ] Rp

c)o(u; t) =X)o u;t),
Bt

(4.12)

where X) is an operator, the exact expression of which is
still to be determined. From Eq. (4.12), we have

is assumed to be true.
Let us now make the basic assumption that the time

scale of the bath is fast enough as to allow Eq. (4.9) to ap-
proach for t ~ ~ the Markovian structure

Xe ' (R, —Ro)p, (b) .
lb' k

M
(4.21)

(4.22)

This can immediately be rewritten in the more appealing
way as

cr(t —r) =e 'o.(t), (4.13)
where

which, replaced in the second term on the rhs of Eq. (4.9),
results in

F(t)= [R, (t) —R, (t)]k
(4.23)

—o(u;t)= f A(r)e ~"dr cr(u;t) .
Bt 0

(4.14)

denotes the acceleration of the Brownian particle.
The explicit expression of the next nonvanishing order

1s

By replacing the upper limit of time integration with ~
and comparing Eq. (4. 14) with the term on the rhs of Eq.
(4.12), we obtain the following implicit equation for the
operator 2):

2)= f A(t)e D'dt .
0

(4. 1 5)

2)= f g %2„(t) e ~'dt,
0

{4.16}

where %2„(t) denotes the contribution of Znth order to
the expansion of R(t) Note that in the case her.e under
study the odd expansion contributions vanish.

At the lowest nonvanishing order, namely the second
order, the exponential on the rhs of Eq. (4.16) does not

By development of the time-ordered exponential appear-
ing in Eq. (4.10) in a Taylor series of the interaction term
L, , we obtain the following expression for N:

2),= f dt[%', (t)+%2(t)e ' ] .
0

(4.24)

This, by expansion of the exponential exp( —A, t) up to
the first order in &2, becomes

d&2(z)
D4 =%2+.82.

dz
+@4(z =0) .

z=0
(4.25)

u

( 2) )1/2 (4.26)

Thus we must evaluate the contribution at the fourth or-
der to the memory kernel A. To do that it is convenient
to express the Liouvillian L in terms of creation and an-
nihilation operators. As to the particle of interest, they
can be defined as follows. Let us consider the dimension-
less variable
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with

& u ), =
king T/I . (4.27)

COO + ~

2
[( A '+ —A '++ '

)b '

oc

i~p

It is straightforward to show ' that the operators

Ba—:y+
By

B

By

fulfill the important conditions

(4.28)

—(A' —A +')b' ] . (4.37)

Due to the canonical assumption on the bath,

A' p, (b)=b' p, (b)=0 or any i (4.38)

This leads us to adopt the Fock notation, according to
which the bath equilibrium distribution can be written as
follows:

[a,a+ ]=1,
BXFp= &u')„+u = —a+a

(4.29)

(4.30)

p„(b)=l0, 0, . . . ) .

By adopting the definitions

+ =A+ —A+,

(4.39)

(4.40)

~n)=, e ~ He (y)
1

(Zvr )
' &n!

and the corresponding left ones,

&ni=, He„(y) .
1

(2n. )
' n!

(4.31)

(4.32)

The Fokker-Planck operator XFp is characterized by the
eigenvalues —n (n means a positive integer) correspond-
ing to the right eigenstates

we have

0—(A+a —A a+) .
2

(4.41)

From Eqs. (4.41), (4.17), and (4. 19) and using the proper-
ty, stemming from Eq. (4.38), that on the right side only
bath creation operators can appear (remember that on
the left side only bath annihilation operators can ap-
pear ), we obtain

The symbol He„(y) denotes a function related to the Her-
mite polynomial H„(y) by the relation

+2 =cxa+ a

where

(4.42)

He„(y) =2 " H„ v'2 (4.33) I dt J db A —(t)A+(0)p q(b)
2 0

(4.42')

The creation and annihilation operators for the velocity
of the particle of interest can thus be written as follows:

From our remarks above, it is evident that the calcula-
tion of A4 will lead us to the general structure

a+= g &n+l~n+1)&n~,
n=0

(4.34)

X)4=aa+a +Pa+a +rja+a a+a3

+5a +a +Ea +a (4.43)

a = g &n ~n
—1)&n~ .

n =]
By taking into account that the operators X and Xb keep
the excitation number unchanged, we are immediately led
to

If we apply the same approach to the bath variables P=e=0. (4.44)

„,+(&Z,2)„)'"

A', —= —(&Z,')„)'/2
BZ,

'

( & 2) )j/21/2

Bv

bi '
+(& 2) )I/2

( i2 )i/2

(4.35)

Then, by using the commutation rule of Eq. (4.29), we get
from Eq. (4.43)

2)4=(a+g)a+a +(a+6)a+a (4.45)

(4.46)

The second contribution on the rhs of this equation
would lead to the breakdown of the Fokker-Planck struc-
ture. However, the calculation of g and 6 leads to the
important result

—[(A —A' )a —(A —A' )a ],
2

(4.36)

with an obvious meaning of the notations, according to
which a+ =6+ and a =b, we can express the intera-
tion term X, and the bath operator Xb as follows:

It is convenient to illustrate again the calculation which
leads to this important result, ' because this will make it
possible to stress the close connection between it and the
transformation to the Friedrichs basis set of the preced-
ing section. This will serve the purpose of illustrating
that the projection-perturbative approach to the Fokker-
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da f dt e "fdb A (t) A+(0)p, (b)
2 idz 0 z=0

(4.47)

6= f db f dtoA (to)

Planck equation is intimately connected to the ideas of
Prigogine subdynamics and to the time evolution of the
state ~S ), leading to exact exponential decay.

From the calculation rules outlined above, we have
A, =gU, A

J
(4.49)

must be used, with the new variable A fulfilling the rela-
tion

(4.50)

This immediately leads to

transformation to the normal modes representation. This
means, that using the general definition [ A, I

=
I v, , R, I,

the transformation

X f dt, A (t, )Q
0

XbtAe b=Ae (4.51)

X J dt, A (t, )A+(0)p„.,(b) .
0

(4.48)

To evaluate the important parameters o. , g, and 6, we
must consider a finite number of particles and make a

From this and applying the calculation rules outlined
above, we obtain

(4.52)

and

n4 ( UOJ U1J )(—Ui 0
'

Uj 1

'—)( Uok Ulk
—)( Uko' Uk i—')

(4.53)

The calculation of 6 is carried oA along the same lines
and it heavily relies on the property

Xbt Q —A t Q Xbteb=e'eb
BA BA

(4.54)

which is, in turn, derived from Eqs. (4.49) and (4.50).
Furthermore, use must be made of the general integration
property

'o H

f dto f dt, f dt~ . f dt„exp —g A, t, .
0 0 0 0 i =0

By inversion of the definitions of Eq. (4.1), we derive
1

qt=x+ g Rk .
l' =1

(4.S7)

By substituting this expression into Eq. (4.56) we find that
the coefficient of x is

2X
+ t Cd( g T((+.

1
m&7;

and this, using Eqs. (3.12), (3.13), and (3.9), is proven to
vanish for any i. Thus we obtain

=[A,o(A.o+A. , )
. (Ao+k)+ +&„)]

(if A, , ) 0 for any i) . (4.55)

2N 2N

T;(vt + 1 cd&; g R( g T(k
f=] /=1 /c =1

(4.58)

The final result is precisely Eq. (4.46). Note that the cal-
culation of the parameters e, g, and 6 was carried out by—A t

assuming that e ' -~0 for t-~ ~. The next step con-
sists of showing that the parameter o.+q coincides with
the expansion up to the fourth order of the parameter
—iz, the exact value of which is given by Eq. (3.38).

To carry out this demonstration, we remark first of all
that the normal modes g, —, introduced in the preceding
section, correspond to the variables A above. Then we
must establish a relation among the normal modes g,

'
and the coordinates Ui and R, . Furthermore, we must
connect the eigenvalues A, above with the diagonal ele-
ments of the Friedrichs matrix A of Eq. (3.26). Using
Eqs. (3.8)—(3.10), (3.15), and (3.20), we immediately obtain

From the orthogonality properties of the g, resulting
from Eqs. (3.22) and (3.23), and from the orthogonality
properties of the coordinates I v, , R, ) [see Eqs. (4.1) and
(2.1)] and carrying out the proper normalizations, we ob-
tain the following unitary transformation:

2%
+

f =1

Tf m;&2
Vt +i g R, g Tk, (4.S9)

COO f =1 f,- =1

the bars denoting indeed that the variables are properly
normalized. Note that the coefficients of this transforma-
tion coincide with the parameters U; . From Eq. (4.59)
we find, for the transformation coefficients of interest, the
following relations:

UO' = UO =0,
2N 2N lE;

T, , v, +itv; g T&q&+ —x .
/==1 m co,-

(4.56)
2N

Ui*=U( '=+i v 2 g T( .
6)0

(4.60)
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Let us introduce for the eigenvalues A the following,
more detailed definition:

r g+=A+g+ (4.61)

From the matrix A of Eq. (3.26) and from Eq. (3.25) we
have

A~
= +l Q7 (4.62)

This expression must be properly modified. To be con-—A t
sistent with the assumption above, e ' ~0 for t~ ~
we must replace Eq. (4.62) with

A" =+i( t&o+ie), e) 0 . (4.63)

Then the calculation of a and g is made by replacing the
sums of Eqs. (4.52) and (4.53) with integrals over dw. By
using Eq. (3.34) and the property

2

2%+ I CO0

(4.64)

which is easily obtained from Eqs. (3.9), (3.13), and (4.60),
we have the final result

l b t y)tPL, e ' e 'L, e 'p, q(b)dt .
p, (b) o

(4.67)

By defining the superoperator R acting on a generic
operator A as

GAPA =[2),A]
and exploiting the identity'

'Dt~ —,'Dt B~t~

(4.68)

(4.69)

we obtain

ordered exponential in a Taylor power series (this would
lead to the perturbation treatment given, explicitly illus-
trated up to the fourth order) we make a proper ansatz
on it. This ansatz is equivalent to assuming that

T exp Q f X,(t')dt' =e (4.66)
r

Let us substitute this expression into Eq. (4.10) and this,
in turn, into Eq. (4.15). By taking into account that 2) is
an operator acting only on v and therefore commuting
with X~, from Eq. (4. 15) we obtain

a — pcuO &

(4.65)
f PX,e ' e 'X,p,q(b)dt .

p, (b) o
(4.70)

2
P C00,

which is precisely what we wanted to demonstrate, as it
may easily be checked by expanding up to the fourth or-
der the parameter —

A, of Eq. (2.16).
The procedure adopted in Ref. 11 to get a fully renor-

malized drift coeScient within the Fokker-Planck
description is satisfactorily supported by the above re-
sults. To make this paper as self-contained as possible, so
as to get a general and unifying picture, we would like to
briefly review those results.

Let us consider again Eq. (4.9) with the memory kernel
given by Eq. (4.10). Rather than expanding the time-

a a
M Bv Bv k T

+ (4.71)

In other words, the implicit equation of Eq. (4.70) must
only serve the purpose of determining the unknown
damping parameter y.

Note that

Since the higher-order contributions (at least those at the
fourth order evaluated above) do not change the Fokker-
Planck structure, we find it to be reasonable to assume
that the Fokker-Planck operator is characterized by the
following form:

y) Xt 2k~ T ge 'X, =cosh(y t)X, +sinh(yt) X,+
BU

kR)

k, T
+ kR0+

()Ro k~ T
(4.72)

and

kR,+
BR, k T

kR0+ p,q(b) =0 . (4.73)
aR,

k~T
M

X f dt (R, —Ro)e ' (R, —Ro) e~' . (4.75)
0

By using Eqs. (4.72) and (4.73), from Eqs. (4.71) and (4.70)
we then obtain

From Eq. (4.75) we see that this approach leads to

f ™PX,e "e~'X,p, (b)dt .
p,q(b)

(4.74) (4.76)

We now follow the same approach as that which has led
us to Eq. (4.21). The final result is the following implicit
equation for the parameter y:

which means that we recover within the Fokker-Planck
des-ription precisely the same fully renorrnalized trans-
port coefficient as that derived from the generalized
Langevin equation of Sec. II [remember the Der relation
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of Eq. (2.15)]. To completely account for this important
result, let us remark that Eq. (2.15) can be written as

—
i i —Poil t

X=I" ' '
e dt, (4.77)

0 & f, lf, &

where

Ifo& = lv &,

If i &
= —(1 Po )&—If, &

= (R —R o ),k
(4.78)

& vlv &

We have, furthermore,

—(1—P)X= —j + (R —R )
k a

0 b ~ 1 0 (4.79)

V. CONCLUDING REMARKS

From a formal point of view, an element of interest of
this paper is given by our fully renormalized Fokker-

When the rhs of Eq. (4.79) is applied to
lf i ) the second

term of it vanishes. Then we must take into account that
in Eq. (4.75) the operator exp(Xbt) must be applied on
the left. Thus y is immediately proved to be equal to A. .

We can conclude this section by saying that we have
shown mainly via a perturbation approach that the
damping y characterizing the Fokker-Planck equation of
Eq. (4.71) coincides with the renormalized drift
coeScient A. of the preceding section. A completely ex-
haustive demonstration would imply that the equality

y =A. is proved at all the orders in p. This is beyond our
current capabilities and, via a perturbation calculation up
to the fourth order in X, we could only show that this is
true up to the second order in p. It is plausible that Eq.
(4.76) is satisfied at any order in p, .

Thus, rigorously speaking, even the validity of the an-
satz of Eq. (4.66} would seem to be rigorously proved
only up to the fourth order. Note that this ansatz allows
us to relate the Fokker-Planck equation to the same re-
normalized drift coe%cient as that provided by the
Langevin picture of the preceding section. Since the
Fokker-Planck picture has to be rigorously equivalent to
the Langevin picture, this ansatz is fully legitimate. In
other words, we can say that the expansion of the time-
ordered exponential of Eq. (4.66), if it were really carried
out at all the orders, would lead us to conclude that Eq.
(4.76) is an exact relation. As a more convincing argu-
ment in favor of the fact that this ansatz is exact, we
must stress the interesting result of the Appendix. There
we show that a natural extension of that ansatz to the
non-Markovian case leads to a Fokker-Planck equation
coinciding with that of Refs. 23—26. Note that the
derivation of this latter Fokker-Planck equation only re-
lies on the assumption that U is Gaussian. Since this
statistical property is certainly fulfilled by our microscop-
ic system and our ansatz leads to a Fokker-Planck equa-
tion coinciding with that of Refs. 23—26, we can conclude
that our ansatz is exact in the linear case.

Planck equation. Note that Eq. (4.15) is well known in
the literature concerning the generalized master equa-
tions. A first discussion of it was given by Baus. "A
wide use of it was done within the context of
subdynamics. ' ' However, the replacement of the
time-ordered exponential with the time evolution driven
by the Fokker-Planck operator itself, especially in the ful-
ly non-Markovian case dealt with in the Appendix —see
Eq. (A3)—seems to be an element of novelty in the
present paper.

As a more substantial result of this work, we have
shown that the Fokker-Planck equation corresponds to
the dynamics of a dressed state lS). The derivation of
the Fokker-Planck equation illustrated in Sec. IV is per-
turbative in nature and it is equivalent to determining the
"energy" of the "dressed" state via a perturbation ap-
proach on the discrete basis set. The next step should be
to show that the state lS ) has a real physical meaning
and the experimental eAect of measurement aiming at
detecting the dynamical properties of the state le ) has
actually the eff'ect of building up the state lS ) so that the
correlation function really detected is not

4 (t)=&ele(t))/&ele) . (5.1)

Rather than that, the experiment should be proved to
provide information on

&els(t)&
(5.2}

&sls)
This is precisely the point of view of Prigogine and co-
workers. "' We established an exciting connection be-
tween the Prigogine subdynamics and the problem of
preparation. The Fokker-Planck equation provided by
the projection method corresponds to studying the time
evolution of the system initially prepared in the state lS ) .

According to the central ideas of the subdynarnics of Pri-
gogine the space spanned by (S ) is totally orthogonal to
the nonexponential decay state.

We believe that a satisfactory discussion of this aspect
should rely on a revision of the linear-response theory.
A central aspect of the Kubo linear-response theory is
that the response to an external perturbation can be ex-
pressed in terms of the bare correlation function of Eq.
(5.1). This is why the recursion method of Lee' is ex-
pressed in terms of the Kubo scalar product. On the oth-
er hand, it has been remarked that to meet the van
Kampen criticism of the Kubo linear-response theory,
it would be convenient to operate the perturbation treat-
ment of external excitation after carrying out a contrac-
tion over the "bath" variables. This, in our opinion,
should lead to a response expressed in terms of the
"dressed" rather than the "bare" correlation function of
the variable of interest. This aspect will be the subject of
a further investigation. It must be remarked that this is-
sue is related to those discussed in the work of Ghirardi
et al. ,

' concerning the role of the interaction with an ex-
perimental apparatus. The measurement process itself
should be responsible for the decay process to become
rigorously exponential, even if this is seemingly forbidden
by rigorous theoretical constraints.

A further element of interest of the present paper rests
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on the consequences that these results bear on the deriva-
tion of a Fokker-Planck equation for a nonrigorously
Markovian process. Some years ago this was a subject of
great interest, and the last few years have seen a re-
vival of interest on this problem. " Adelman and
Fox discussed an approach to building up the
Fokker-Planck equation for a non-Markovian system
which heavily relies on the Gaussian assumption and the
knowledge of the correlation function of the variable of
interest. Ferrario and Grigolini showed that the same
result can be obtained via contraction from a multidi-
mensional Markov equation. According to the alterna-
tive approach illustrated in Sec. IV and derived from that
of Refs. 19—21„which, in turn, is based on the Zwanzig
projection method, the Fokker-Planck equation to be
associated with the Hamiltonian of Eq. (2.1) reads

k~T—o(u;t)=A, u+ o(u;t) .
Bt '

BU M Bv2
(5.3)

(5.4)

In many cases, where the memory kernel of the general-
ized Langevin equation is derived using phenomenologi-
cal arguments, " the two Fokker-Planck equations above
are easily proven to lead to the same result. This is so be-
cause in these cases we have

No(t)
llm

No(t)
(5.5)

In the asymptotic limit t~ ~ Eq. (2.14) is shown (see
Ref. 17) to read

(1—p)4o(t) = exp
(1 —2p) &1—2p

In terms of the notation of this paper, the Fokker-Planck
equation of Refs. 23—26 would lead to

d&o(t) g kti T—o(v;t)=- U+ o(v;t) .
a~

' e(t) au

to be associated to a non-Markovian process, we can con-
clude this paper by remaking that we can divide non-
Markovian processes into the following two major
classes.

(a) Strongly non Markouian processes. If the motion of
the variable of interest significantly depends on the cou-
pling with some macroscopic and very slow variables, the
approach which led us to Eq. (5.3) cannot be followed.
This agrees with the point of view of van Kampen and
Oppenheim, who say that their treatment of the
Brownian motion as a problem of eliminating fast vari-
ables ignores the slow hydrodynamic modes of the Auid.
The coupling between the variable velocity v and the slow
hydrodynamic modes would result indeed in a strongly
non-Markovian process. In this case, as pointed out in
Ref. 23, the only practicable way would seem that of us-
ing the fully non-Markovian Fokker-Planck equation of
Eq. (5.4). It must be stressed that an irretrievably non-
Markovian behavior, triggered by the dynamics around
an inverted parabola, has recently been met in the field of
colored noise. ' ' This is another case, where the ap-
proximation in terms of an effective Markovian process,
namely, the major assumption behind Eq. (5.3), is not ad-
mitted.

(b) Weakly non Markovia-n processes. The model stud-
ied in the present paper with a very small parameter p be-
longs to this class. In this case, the long-time deviations
from a rigorous exponential decay are shown in this pa-
per to be closely related to those in the very-short-time
regime. In other words, monitoring the deviation from
the exponential decay in the long-time regime would be
virtually equivalent to providing a detailed microscopic
picture. This raises some fundamental questions concern-
ing the dependence of the dynamics of the system of in-
terest on the interaction with a measurement apparatus.
Thus, intriguing aspects of the Fokker-Planck equation
(5.4), such as the appearance of a divergent transport
coefficient in the long-time region, would be fully cured
by adopting Eq. (5.3), which is completely equivalent to
accepting the major suggestion of the Prigogine sub-
dynamics.

p
(1 —p)'

1/2
77

sin 0 4

(5.6)

APPENDIX

Our aim is to write Eq. (4.9) under the following form:

This means that in the long-time region this correlation
function is basically a harmonic function of time with an
amplitude slowly decreasing upon increase of time; i.e.,
the second term on the rhs of Eq. (5.6). Therefore, this
asymptotic limit cannot fulfill the condition of Eq. (5.5).
As shown in the Appendix, this discrepancy stems from
the fact that Eq. (5.3) has been obtained by replacing the
upper limit of time integration in Eq. (4.14) with ~ and a
suitable use of analytical continuation. This shows that
this assumption plays a fundamental role in recovering a
result in line with the Prigogine subdynamics. If this as-
sumption is not made, our renormalization procedure is
shown to be compatible with the Fokker-Planck equation
of Adelman and Fox.

As the problem of the correct Fokker-Planck equation

a—o. ( v; t ) = il( t )X„po ( v; t ) . (A 1)

.X)=yL Fp
= 1im g( t )4„p, (A2)

to the case of a time-dependent operator. Thus we obtain
the obvious generalization

T exp Q f L, (t')dt' =exp X„pf rl(t')dt'
7 7

(A3)

By substituting Eq. (A3) into Eq. (4.9) and taking Eq.
(4.10) into account, we obtain

The operator LF„ is defined in Eq. (4.30). Let us now ex-
tend the ansatz of Eq. (4.66), thought of as applying to
the time-independent operator
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t)(t)XFp= f P C(e exp X„pf t)(t')dt' X)p, (b)o.(r)dr
p, (b) o

r

PX)e "'exp XFPf »1(t')dt' J )p, (b)cr(t —r)dr . (A4)

The counterpart of Eq. (4.13) becomes

cr(t —r)=exp X„pf r)(t')dt' o.(t) .
|'

Using Eq. (A5), from Eq. (A4) we have

(A5)

r 1

g(t)XFP= PX)e ' exp X„», g(t')dt' J )exp —XFp f t)(t')dt' p, (b)dr . (A6)

This equation is obviously the counterpart of Eq. (4.67)
and for t ~ (x) it coincides with Eq. (4.67) if the condition
of Eq. (A2) holds. In such a case, we have

exp(+X)r)=exp +X»p f »)(t')dt'
l —7

(A7)

X exp g t' dt' (A8)

By using Eqs. (2.7), (2.8), (4.77), and (4.78), from Eq. (A8)
we obtain

rI(t)=b, , f dr(I))(r)exp f rl(t')dt'
0

which, via the change of variable ~—~t —~, becomes

q(t)=h') f drC»)(t —r)exp f g(t')dt'
0 T

(A9)

(A10)

Let us see under which condition the solution of Eq.
(A10) is given by

(I)o( t)
g(») = ——

(I)o(t)

which then leads to Eq. (4.67). By suitably adapting to
this time-dependent case the way we followed in Sec. IV
from Eqs. (4.68) to (4.74), we get the counterpart of Eq.
(4.75), which reads

—
1

f d7. (R, —R())e " (R, —R())
Q

from Eq. (4.9) without replacing the upper limit of time
integration t with ~ and supplemented by the ansatz of
Eq. (A3), coincides with that of Refs. 23—26, under the
limiting condition that C»o(t) is always positive. Actually,
it seems that this is also a condition for the Fokker-
Planck equation proposed by Adelman and Fox ' to
hold. Should (I&0(t) assume a negative value at a certain
time t, continuity arguments would imply that at a cer-
tain earlier time I&0((t) would vanish, thereby producing a
divergent value of g(t). The corresponding Fokker-
Planck equation, being a partial-derivative equation,
would correspondingly become meaningless after the
divergence point. We can thus conclude that the region
of validity of our Fokker-Planck equation is the same as
that of Adelman and Fox, and the two Fokker-Planck
equations coincide.

In the special case where the limit of q(t) for t~ ~ ex-
ists and it is positive, the rhs of Eq. (A9) becomes coin-
cidence with Eq. (2.15) and divergent. This divergence
must be cured with the adoption of the same procedure
of analytic continuation as that used in Sec. II, which re-
sulted in the fully renormalized damping of Eq. (2.16). If
the g(t) function defined by Eq. (A10) does not admit a
definite limit for t ~ ~, as it happens in the special Ham-
iltonian case studied in this paper, the Fokker-Planck
equation of Eq. (5.4) has an unclear meaning, whereas
that of Eq. (5.3), corresponding to the dynamics of the
dressed variable S, can be used without any drawbacks.
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