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Effective field approach for long-range dissolved DNA polymer dynamics
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Long-range interatomic interactions between distant parts of a DNA helix are known to be dom-
inant factors in determining longitudinal DNA motions. A local field approach has been developed
to account for these long-range forces that both simplifies the numerical complications involved in
the previous treatment of these interactions and rationalizes the physics. The method leads to ex-
cellent agreement with the experimental value for the speed of longitudinal sound ( =2.0 km/s),
where agreement was the chief virtue of the earlier method. A new result of this theory is the pre-
diction of one-dimensional plasmon excitations, analogous to plasmons in higher-dimensional
charged systems. This one-dimensional plasmon has an electromagnetic character in contrast to the
mostly mechanical nature of the slower compressional sound-wave phonon modes. The dispersion
for this plasmon mode is soundlike, having a speed of propagation of some 36.0 km/s. Analysis of
the effect of viscous frictional forces shows that the one-dimensional plasmon waves are well-defined
resonant states for parameter values where the mechanical phonon modes are strongly overdamped.

I. INTRODUCTION

We have long been interested in the mechanical behav-
ior of a DNA polymer chain. The problem of determin-
ing the vibrational behavior of a DNA chain under vari-
ous conditions and perturbations has been a staple calcu-
lation in our group (as well as a number of others) for
some time. The importance of long-range interatomic in-
teractions, particularly for the low-frequency portion of
the DNA vibrational spectrum was discovered by Mei
et al. in the 1980.' These authors determined that con-
tributions to the interatomic potentials from base pairs at
least 15 to 20 units away ( ) 60A) were non-negligible for
computing the velocity of longitudinal sound as well as
other concommitant changes in the normal-mode spec-
trum. Mei et al. ' used absolute values of charges on the
constituent atoms, based on the argument of mechanical
stability of the crystal, in evaluating the interatomic
long-range potentials.

The determination of the low-amplitude vibrational be-
havior of a molecular system involves the setting up and
diagonalization of a "force constant matrix:" the solution
of the algebraic problem

g(D;, to I)q, =0 . — (1)
J

In this D, describes the force on atom i' caused by a per-
turbation from equilibrium position of atom j; I is the
unit matrix. That as many as 40 base pairs of 123 degrees
of freedom each contribute, demands that over 30000
coefficients be dealt with in some fashion or other. For
most calculations, we have used the symmetries of a
homopolymer model to reduce the algebraic problem to a
manageable 123 X 123 D; 's, but the individual
coefficients each still includes &60 contributions that
must first be evaluated prior to the diagonalization pro-
cess.

The symmetry-driven simplification breaks down for
the problem of localized, symmetry-breaking
modifications of the structure. An example of this is an

1VE= ——VP (2)

and P can be directly related to the atomic displacements
[cf. Eq. (52) below].

The relation between P and E is not especially simple,
turning out to be frequency and wavelength dependent.
The complications are introduced by the electrodynamics
of E and 8 as they extend into the surrounding solvent.
An interesting additional feature of the system that we
have emphasized in another article is the appearance of

end to the chain. An attempt was made to treat the bro-
ken symmetry problem by Putnam et al. but the only
way this calculation could be carried out was by simply
dropping the long-range terms. One cannot place great
credence in the numerical results of such an uncontrolled
approximation. Nonetheless, the problem is an impor-
tant one in that biological activity is a property of hetero-
geneous polymers, -the symmetry is broken in a variety of
ways. Hence we persist in a search for a satisfactory sim-
ple method of including long-range forces.

We describe here a substantial reduction of the prob-
lem complexity in which we exploit the physical fact that
these multiple interactions are largely Coulombic in ori-
gin. While the exact distance dependence could not be
pinned down by the arguments in Ref. 1, it was estab-
lished that the forces depend on a very low inverse power
of atomic separation. This, and the fact that because of
the partial charges on the constituent DNA atoms we
know there must exist long-range Coulomb interactions,
makes it reasonable to attempt to describe the many
long-range terms as purely electrical.

To this end, we explicitly introduce the longitudinal
electric field. The force on atom i is then determined by a
single physical parameter. The electric field itself is
found from treating the partially charged atoms as its
sources. At first sight it would seem we have gained little
by this strategy. However, the electric field and the
dielectrical polarization obey the local relation
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a new class of elementary excitations, the one-
dimensional plasmons. These modes are dominantly of
electromagnetic character, in contrast to the mechanical
waves predicted by Eq. (1) when E is not explicitly incor-
porated. They are analogous to the well-known bulk and
surface plasmons of metal and plasma physics while
showing modifications consequential to their lower
dimensionality in DNA.

The observability of these new plasmon modes hinges
on the question of the damping to be expected for them.
It is useful to contrast their behavior with that of the
similar, lower-frequency compressional waves in this re-
gard. Simple hydrodynamic considerations suggest that
longitudinal sound should be overdamped and unobserv-
able, and although there has been a report of its observa-
tion, other workers have been unable to confirm this.
Hence in the example calculations of this work, we as-
sumed values for the viscous damping parameters that
led to overdamped sound. For this parameter set, the
plasmons are found to be well-defined resonant states.
The reason for the difference, even though both types of
waves involve longitudinal displacements, is that the
plasmons are mostly electromagnetic in character. That
is, for a given A~, a greater fraction of plasmon energy
appears as eE +B /po and only a small part as mechani-
cal kinetic energy subject to damping loss.

Before proceeding to the calculational details, we con-
sider the model of the polymer in solvent. Equation (1),
modified by inclusion of E„ is appropriate to dry DNA
in vacuum; in solution, a sheath of water and positive
ions surrounds the polymer (cf. Fig. 1). Regardless of the
overall ionic strength of the solvent, the counterion con-
centration in this sheath will lie somewhere around 5M
(for monovalent cations); this is sufficient effectively to
neutralize the DNA charge density in about 5 A or less,
not much farther than a single H20 monolayer. A com-
plete Poisson-Boltzmann computation of ion densities
around DNA was presented by Davis and Van Zandt.
The water-ion sheath is considerably modified in its prop-
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FIG. 1. Schematic of approximately cylindrical "dry" DNA
polymer, surrounded by a structurally modified sheath of ion
containing water, the "hydration layer, " all immersed in solvent
ocean. We see here a slab cut transversely to the long axis of
the system, one slice from a long "loaf."

erties by the polymer within, as Tao et al. have shown.
Hence we use a separate coordinate s (z, r) to describe the
near-water longitudinal motion. This "counterion
sheath" coordinate is included in the equations of motion
together with 123 coordinates of Eq. (1). We actually
need to know relatively little about the sheath water dy-
namics; it has an internal elasticity for which we assume
the same values as bulk water, a linear charge density A,

that we take as equal and opposite to that of the DNA,
and viscoelastic coupling constants to the inner DNA
and the outer bulk solvent. The inner coupling we adjust
to overdamp the mechanical sound, and the outer cou-
pling we set to match bulk-water/water viscosity. When
we got to calculate the polarization density P we include
3.4 A of sheath material with each base pair.

Longitudinal motion is thus undertaken by both DNA
polymer and sheath solvent. These materials are oppo-
sitely charged. For the modes in which both oscillate in
phase, detailed local charge neutrality is largely main-
tained and little electric polarization takes place; this is
mechanical sound with a velocity of about 2 km/sec. In
the plasmon case, the phase of polymer and sheath ma-
terial motion is opposite; a large electric polarization
arises as positive sheath goes one way and the negative
DNA goes the other, the restoring forces are dominated
by the electric "stiffness, " and a much higher sound ve-
locity results, some 36 km/sec.

We have restricted the present calculation to the case
where the electromagnetic fields drop to zero at large dis-
tances. The shape of the plasmon spectrum depends on
this in a crucial way, as we have mentioned. This is also
the high hydration, infinite dilution limit. To back away
from this limit in order to consider partially hydrated,
dense DNA systems would require modeling the three-
dimensional structure of tangled, interacting polymer
chains and result in a proliferation of adjustable parame-
ters. Given the present experimental situation of so few
established points, this extension would be unproductive.

In Sec. II we present the equations of motion for the
DNA-sheath-counterion system. The details of the cal-
culation of the effective local electric field are discussed in
Sec. III. Section IV describes the parameter values used
in our calculations and the mathematical procedure uti-
lized to obtain the Iow-frequency vibrational modes of
the system. In Sec. V we present our conclusions and a
discussion of our results.

II. EQUATIONS OF MOTION

In this section we develop the equations of motion for
the DNA polymer in the presence of the counterion
sheath, first writing the equation of motion for the dry
molecule. By taking advantage of the helical symmetry
of the DNA, the equations of motion can be reduced to a
set of equations for atoms within a unit cell. Thus within
the harmonic approximation, the equations of motion of
the dry molecule, in Cartesian coordinates, can be written

9, 10

Q2 cx

(3)
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where m, is the mass and r, is the coordinate a (=x,y, z)

of atom i in the unit cell and 6r, is the corresponding dis-
placement. F, ~ is the force constant matrix for the dry
molecule.

In order to account for the presence of counterions and
the charges on the distant parts of the molecule we recog-
nize that there is an electric field E, in the z direction,
which is taken as the helix axis. This dynamic electric
field arises from the atomic motions of the DNA and the
motion of its counterions, and is in turn coupled to the
charges in the system. In the presence of this electric
field E, the equation of motion of the molecule becomes

2r
m, = g F; ~5r~+e, E, ;

jp

e, is the partial charge on atom i. We are ignoring the
small radial components of E from the distant charges.

Counterions interact strongly with the solvent and
effectively there is no relative motion on the time scale of
interest in microwave absorption experiments. Further-
more, the counterion distribution density is large within
the range of the first water monolayer and decays very
fast as we go away from the helix axis. Therefore we as-
sume that the total charge of the counterions is contained
with the counterion sheath. The sheath is most strongly
coupled to the phosphate-group atoms in the backbone.
We assign a single dynamical coordinate s to the local
sheath longitudinal displacement. This coordinate is as-
sumed to represent the motion, along the z axis, of the
water and the counterions of the sheath. The equation of
motion for the variable s can be written as

02S 2 02Sap, =apv', —~d,E,at' az'

+ g I (r"
,

s—)+ys,
phosphate

group

(7)

—co s = —k v s —
A, d,E, —i co Q I, (q,

' s /q, )5—;~ i co—y's,
I (9)

where e,
' = e, /Qm, , Xd,

——kd, /v'a p,=+ap/m„

D,;t'=F,;,t'/Qm, m, ,

and

I;= I /Qapm; .

y'=y/ap,

(10)

We will use these equations of motion in Sec. IV to calcu-
late the phonon spectrum of the system, where we will
also discuss the numerical values of various parameters
used in the calculations.

III. ELECTRIC FIELD

where 5, is 1 if i is a phosphate group atom and 0 other-
wise. 5, restricts the coupling only to the z component
of the velocity of the phosphate group atoms. Assuming
harmonic time dependence of the form exp( —irvt) and us-

ing the mass-weighted coordinates q, =Qm, 5r, and
s =&aps, Eqs. (6) and (7) are reduced to

—co q,
= g D; ~q ~+ e '; E, —i tv I; ( s q,

—
rt; )5, 5,

j,p

and

052 BS
ap =apv —X,E, ,

at az

where p is the linear mass density of the sheath and a is

the linear pitch of the DNA helix. v is the speed of
sound in the sheath water. —A.d, is the total charge on

the counterions within the sheath (Xd, =g, e, ). For sim-

plicity we have assumed complete charge neutrality
within the sheath outer radius, and therefore have as-

signed the amount of charge on the counterions to be ex-

actly equal and opposite to the total charge on the DNA
molecule.

The coupling of the water of the sheath to the molecule

is considered as a frictional interaction, contributing a
term (s r )I in the —eq'uation of motion for the atom i

We assume a simplified coupling between the z-

component motion of the surface atoms and the sheath,
and no coupling with the x and y components. Finally, a
second frictional coupling is assumed between the sheath
and the bulk water, giving a force term —ys in the equa-

tion of motion for the variable s. Collecting all these
terms, the equations of motion for the molecule and the
water shell-counterion system can be written as

g2 cx

m; = gF, ~5r~+e;E, +I (s —r;)5p5, '

iht j p

(12)

where P is the electric polarization generated by the dis-
placements of the DNA atoms and the counterions, and
e,„ is the average dielectric constant within the cylindri-
cal region of the DNA and the sheath. The contribution
of the electric polarization P to the internal electric field
is confined to the radius of the sheath. To account for
any other contribution to the electric field inside or out-
side r, , we introduce an extra field term E&, which must
have zero divergence, i.e.,

V-E =0 (13)

We are assuming that there is no free charge density out-
side of that accounted for by P.

Since in the microwave region we are mainly interested
in the longitudinal modes of the system, as a simplifying
assumption, we consider the electric polarization to lie
only along the z direction, and therefore set

In this section we calculate the effective internal field
E, . We adopt a cylindrical model of DNA and the
sheath, as has been used by Dorfman and Van Zandt
and Davis and Van Zandt. Within the outer radius r

&
of

the sheath, the total electric field E is given by

and
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The polarization and the electromagnetic fields propagate
along the helix axis as harmonic disturbances. Assuming
an infinite helix, the electric fields E and E, should satisfy
the following boundary conditions at the ends of the po-
lymer:

electric fields and the polarization to be independent of
the azimuthal angle 0. The component Ez of the electric
field is assumed to be constant, and can be taken as zero.
Thus Maxwell's equations for the electric field can be
written as

and

P
Ei(z = —&n ) =

&in
(15) BE, Er BE,V'E= + + =0,

Bz r Br
(25)

E(z =+~ ) =0 . (16)
BE„VxE=O
Bz

BE,
Br

(26)

Applying Gauss's law to the regions inside and outside
of the radius r, gives the following relations among the
electric field components:

BE(in)
z 2 (;„) 1 BI'

Bz r, "
e,„Bz (17)

and

BE(out)
Z

Bz
+ E"u"=02

(18)

Continuity of the electric displacement normal to the sur-
face of the cylinder gives the following boundary condi-
tion:

E(out) 6 E(in)—
out r in r z77r

1

(19)

where A. is the time dependent part of the polymer-
counterion charge density. Using the definition of
current density as j=o.E, where o. is the electrical con-
ductivity of the solvent, and using the relation (charge
conservation)

Due to the cylindrical symmetry and assumed properties
of the electric field the magnetic induction B has only the
0 component: B=OB&=8B Th.us Eq. (26) takes the
form

BE,B=
Br

BE„
U

Bz Bz
(27)

BB BB B+z + —=pp(oE+eE) .
Bz Br r

(28)

By separating the r and z components of Eq. (28) and us-
ing Eq. (27) we obtain

BE,
U Br

(29)

and

where we have assumed the propagation of a disturbance
of the form f (z —vt), v being the speed of propagation of
the disturbance through the system along the helix axis.

Ampere's law, applied to the system, leads to

(
—j n)dt,

277r
1

0
(20) BB B+ =pp(o E, +eE, ) . '

Br r
(30}

where n is the unit vector normal to the surface of the
cylinder, one gets

Taking a partial radial derivative of the divergence
equation V.E=O, one gets

E(out)
27Tr

1

(21) BE, & BEr 1 BE„
(31)

Taking time derivative of Eq. (19) and using Eq. (21), the
boundary condition at the surface of the cylinder can be
expressed as

(22)

BE„BEr=o +E
Bz Bz

The partial z derivative of Eq. (29) gives us

B2E

Upo BrBz Bz2
(32)

E(in) E(out)
Z Z Z (23}

Taking the time derivative of gauss's law, Eq. (17), and
using Eq. (23), one gets another relation between the
components of the electric field

The continuity of the tangential component of the elec-
tric field at the surface of the cylinder leads to the condi-
tion BE„

Bz

BE,
U

BZ2
(33)

one gets the following relation for the component E, :

B E„ 1 BE„+
Br2 r Br

1
Er

r

Eliminating d E, /r}r dz between Eqs. (31) and (32) and us-
ing the identity

BE, 2Z + E(in)
Bz r1

& BI'

1 il

(24) , B'E, BE„+(1—Eppv ) +oppv =0 .
Bz Bz

(34)

We now proceed to calculate E, in terms of E. Using
the cylindrical symmetry of the system we assume the

Taking time derivative of Eq. (30), using Eq. (27) and
finally utilizing Eq. (25) one obtains
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a'E, a-'E, 1 aE,+ + — =p„(crE, +eE, ) .
gz2 y ar

(35)
(in) . q ~out + ~ ~/ qVE„'"'(q)=-t—' ""'

Eo(q)H, (ter, ) .
K

(46)

a'E, 1 aE, , a'E, aE,+ — +(1—ep„v') +cry„v =-0 . (36)
Qy r fr gz

' az

Keeping in mind the boundary conditions Eqs. (15) and
(16), we can Fourier transform, with respect to the vari-
able z the electric field components E„and E„as

E„= f E„(q)e'~' ""dq (37)

Once again using the time dependence f (z —vt) for the
field component E„one obtains from Eq. (35)

Fourier transforming Eq. (24), substituting solutions for
E„and E, , and finally using Eq. (46) for E„'",one obtains
the final expression for the electric field amplitude Eo(q):

—
1

p(q) IE &+i a /qv H, (ter, )
E„(q)= 2

E;n
—H„(«r, ).

Kr]
(47)

1E (cv) = cvP(cv)Ho(ter, )

1n

where P(q) is the Fourier transform of the electric polar-
ization P, . The electric field E, is finally given as

E. q
e'&' '"dq, (38)

( i o + cve„„, 2H i ( ter i )

Kr]
—

&AH() (Kr ]

(48)
where q is the wave vector for the disturbance propaga-
ting along the helix axis. By applying the Fourier trans-
form to Eq. (36) we obtain

B'E, (q) 1 BE,(q) crp, v+ — +q' 1 —peov+i E,(q)=0,
r ar '

q
(39)

For the low-frequency modes near the zone center (i.e.,
for small values of q}, one can expand E, in powers of q,
using the asymptotic forms for Ho and H ] in the limit

q ~0, as a reasonable approximation. For q ~0,
K =iqo.pov, and in this limit the functions Ho and H~
behave as

which is Bessel's equation. Thus

E, (q) =Eo(q)HO(«r ),
where Ho(ter ) is the zeroth-order Hankel function and

tc =q [1—ep, ov +i(crpov/q)] . (41)

and

2
H(i(q -~0) = inter,

H, (q -~0) =
7TKr ]

(49)

(50)

Similarly Fourier transforming Eq. (34) leads, for the ra-
dial part of the electric field, to

Using these asymptotic forms in E„ the leading term in
the asymptotic expansion of the electric field give us

E, = ,'P, pov q r
~

ln[ri(—cry.ovq )'~~] . (51)

B E„(q) 1 BE„(q)+ — — E„(q)
Br r 0r r

In terms of the atomic displacernents q,
' and the coor-

dinates s the electric polarization can be written as

cJpov
+q 1 —epov +i E„(q)=0, (42)

1
P, = g e,'q,' —it~,.s

~y ~a
(52)

which has a solution

E„(q)=Ei(q)H, («r ), (43)

E(in)( )
l Eoutqv 0

lE'; qv
E, (q)H, («r, ) .

From the divergence theorem for the electric field, using
the solutions for E, and E„one obtains

E, (q) = —i (q /«)Eii(q) . (45)

Using Eqs. (44) and (45) finally we get for the field E„'"(q)
as

where H, (ter) is the first-order Hankel function.
Now applying the Fourier transform to the boundary

condition, Eq. (22), and using the above solution for
E„(q), one gets

Using Eq. (52) for P, we can carry E, from Eq. (51) back
into Eqs. (8) and (9) to get a set of coupled equations in
the dynamical variables q; and s alone, which can then
be solved for the vibrational models of the system in the
usual fashion. The q dependence of E, in Eq. (51) and
the substitution of E, in the equations of motion indicate
that the efI'ect of the dynamic electric field on the spec-
trum of the system should lead to a mode, in the low-
frequency limit, with the frequency linearly dependent on
the wave vector q. Thus the inclusion of the eft'ect of dy-
namic electric field is expected to gi ve rise to an
acoustic-type mode, with a linear q dependence plus a
very weak logarithmic singularity at very small q. It is
known that the vibrational spectrum of dry DNA, at the
zone center, exhibits two acoustic modes. Our examina-
tion here of the equations of motion of the system, in-
cluding the eAect of the dynamic electric field, indicates
the existence of an extra acoustic-type mode at the zone
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center. We verify this by numerical calculations present-
ed in Sec. IV.

IV. CALCULATION AND RESULTS

In this section we wi11 discuss various parameters and
the forms of the damping constants I and y used in our
calculations. We will also outline the method of calcula-
tion and present the numerical results for the low-
frequency modes of the DNA-sheath system.

The force constant matrix F, ~ is constructed, ' in the
Cartesian coordinate system, by starting from internal
force constants for bond stretch, angle bend, and twist for
the bonded interactions, then making a transformation
from internal coordinates to Cartesian coordinates. The
nonbonded long-range electrostatic interactions are main-
ly accounted for by E„but are specifically included for
atomic pairs within the unit cell. Some further long-
range electrostatic interactions between atoms in the cen-
tral unit cell and the nearest-neighbor cells on both sides
are also included explicitly in the matrix F, ~. These
forces tend to stiffen the polymer chain. In evaluating
these long-range electrostatic interactions we, like Mei et
al. , ' use the absolute values of the charges on the atoms.

The damping constant I for the coupling between the
DNA and the sheath has been discussed by Davis and
Van Zandt. We use their form here:

(53)

where r0 is the radius of the DNA (assuming a cylindri-
cal form), i) is the zero-frequency shear viscosity of water,
taken as 0.01 P. ~& is the relaxation time for the sheath,
taken to be 4X 10 " s from the results of Tao et al. , G is
a numerical factor which accounts for the number and
geometrical orientation of the bonds across the DNA-
sheath interface. Values for G have been discussed by
Davis and Van Zandt and it was found that a value of
G =0.02 can be reasonably justified. We have used this
value of G in our calculations.

The force constant y the coupling between the sheath
and the bulk water is taken to be

2&l 1'9
(54)

1 E Q)%2

where ~2 is the relaxation time for the bulk water, taken
to be ~2=10 ' s.

The speed of sound v in Eq. (5) was taken to be
1.5X 10 m/s, as for the bulk water. The conductivity of
the solvent o. was taken to be 1.0X10 mho/m, corre-
sponding to a 5-mM salt solution. As an input for U, the
speed of sound in the DNA polymer (as it appears in the
equation for the electric field E,), we have used a value of
1.8X10 m/s, as measured by Hakim et al. "

Equations (8) and (9) contain co-dependent imaginary
terms, arising from the frictional damping at the two in-
terfaces. If the constants I and y were simply zero, the
set of equations for q; and s would reduce to a simple ei-

genvalue problem and could be solved by direct diagonal-
ization of the dynamical matrix. On the other hand, one
notes that the co-dependent imaginary terms appear only

VI
co 1 l

CO

X
x, = QF,,x, .

j=1
(56)

Now by defining I, =(1—iy;/co)'~ and dividing Eq. (56)

by l, one gets

Ct) X].=
1V

F;x (57)
j= 1

with x;=I,x, and F) =F, /(I, I )."Equation (57) defines a
new eigenvalue problem which can be solved by direct di-
agonalization of F; . Thus an iterative procedure can be
followed to solve the original problem defined in Eq. (55):
One first solves the original problem with all y, =0 and
then uses one of the co (corresponding to a particular
branch of the vibrational spectrum) in defining I;, which
can in turn be used in Eq. (57) to define F; . Equation (57)
is then solved by diagonalization of the new matrix F, .
The solution of this is used as an input to define new 1,

and thus new F, . This defines the iterative procedure
which can be repeated until reasonable convergence is ob-
tained. The procedure must be repeated for each phonon
branch of interest.

A more general form of the procedure outlined above
was used to calculate the low-frequency vibrational
modes of the DNA-sheath system, defined by Eqs. (8) and
(9). A fast convergence, in five or six iterations, was ob-
tained for all the low-frequency modes of interest. In Fig.
2 we present the dispersion curves for the lowest six
modes of the system, as wave number versus 0, where
O=qa is the base pair-to-base pair phase angle. As is ex-
pected we get the usual four acoustic modes: one
compressional, one torsional at zone center 0=0, and
two bending modes at 0=+itt, where i)'j is the pitch angle
of the DNA helix. The slope of the compressional acous-
tic mode near the zone center (0=0) yields a sound-wave
speed of 1.89X10 m/s, in excellent agreement with the
experimental value used as an input in the calculations.

Besides the four acoustic modes cited above, we also
get another extra acoustic mode with a large slope at the
zone center. The speed of propagation of the disturbance
represented by this steep mode turns out to be 36.5 X 10
m/s. Analysis of the eigenvector of this mode shows that
it consists largely of a longitudinal collective motion of
the charged sheath counter to the motion of the opposite-

in very small part of the total equation set, that is, for the

q,.
' of the phosphate group atoms and the coordinate s, as

compared to the 124 size of the full problem. In fact,
since the phosphorous atoms among the phosphate group
are the heaviest and have the maximum partial charges
on them, one can make the very reasonable approxima-
tion that the coupling of the sheath to the DNA is
confined only to the phosphorous atoms. Therefore the
number of equations with co-dependent imaginary terms
is reduced to only three. This problem can be solved by a
self-consistent iterative procedure.

Our equations of motion can be written as

ci) x; —g F; x& I1;cox;
j=1

One can write Eq. (55) in a different form:
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fying the computational procedures, leads to new in-
teresting phenomena. The effective field approach also
leads to an excellent agreement with the experimentally
observed sound-wave speed of the DNA. This suggests
that the method can be extended to other complicated
situations in the studies of the DNA. An important as-
pect of the theory is the form of charge distribution of
the atoms, in the long-range part of the interactions
within a unit cell. As mentioned earlier in the present
analysis we used the absolute values of the charges; how-

ever, we are presently extending the theory to more real-
istic charge distributions, using algebraic values of the
charges in the calculation of long-range electrostatic in-
teractions within a unit cell or between the nearest-
neighbor cells.
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