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A triple expansion of the scattering kernel in terms of Legendre polynomials is used to transform
the nonlinear Boltzmann equation into a system of moment equations. The expansion is based on a
vector representation of the scattering kernel in the laboratory system, which can be applied to arbi-
trary collision laws. Low-order approximations result in a remarkable simplification of the moment
equations. The rate of convergence of the scattering-kernel expansion is investigated for isotropic
scattering in the center-of-mass system. A comparison between the differential scattering and
deflecting rate and its approximations define useful truncation indices for practical application.

I. INTRODUCTION

Investigations of Krupp, ' Krook and Wu, and Bo-
bylev enormously stimulated the application of the non-
linear Boltzmann equation. They discovered indepen-
dently exact solutions of the nonlinear Boltzmann equa-
tion under special conditions, nowadays called the
Bobylev-Krook-Wu solution. ' For a simple, but physi-
cally interesting initial-value problem they investigated
the temporal relaxation to equilibrium of an infinite spa-
tially uniform gas with isotropic initial distributions. The
solution of this problem allowed a detailed insight into
the approach to equilibrium, even in the spectral range of
very high particle energies. This is important in deter-
mining chemical reaction rates in the gas phase as well as
in plasma physics. The elegance of the exact solution is
the result of the restriction that colliding particles in-
teract like Maxwellian molecules, where the scattering
cross section is inversely proportional to the relative
speed.

For practical applications approximate methods must
be developed to solve the nonlinear Boltzrnann equation.
For this purpose moment methods have gained impor-
tance. They are based on an expansion of the particle
distribution function in terms of orthogonal polynomials
to transform the transport equation into a system of mo-
ment equations for easier solution. In the case of simple
geometry and simple collision models (e.g. , the already
mentioned case of relaxation to equilibrium of an isotro-
pic Maxwellian gas) all moments can be evaluated analyt-
ically, which consequently results in a complete solution
of the transport problem. For general problems the prac-
tical advantage of the moment method is based on a
series truncation. Grad published one of the first papers
on this subject. He used Hermite polynomials as basic
functions of his expansions in terms of the particle veloci-
ty. Beyond that, Laguerre series were applied. '

Weinert and co-workers ' ' introduced a generalized
moment method, in which the particle distribution was
expanded in terms of Burnett basis functions.

The success of the P~ method' in neutron transport
theory encouraged extension to the nonlinear case. '

This generalization was based on a vector representation

of the scattering kernel. By introducing three variables
which define the angles of the collision trihedral, a triple
expansion in Legendre polynomials of the diAerential
scattering probability became possible. An additional ex-
pansion of the particle distribution function in spherical
harmonics enabled us to transform the nonlinear
Boltzmann equation into a set of moment equations. It is
an advantage of this method that it is applicable to arbi-
trary collision laws and initial conditions. Beyond that,
because of the separation of the speed and direction vari-
ables of the particle velocities, this method is also an ideal
base for the transformation of the nonlinear Boltzmann
equation into a system of multigroup equations. In prac-
tice, the choice of low truncation indices results in a re-
markable simplifi .ation of the moment equations, but the

FIG. 1. Collision trihedral in the laboratory system. vl and

v& are the velocities of the test particle before and after the col-
lision, and v2 denotes the initial velocity of the target particle.
0, and 02 are the first and the second scattering angle, and 0' is

the collision angle.

39 1429 1989 The American Physical Society



1430 G. KUGERL AND F. SCHURRER 39

quality of this procedure is based on the assumption of a
fast convergence of the scattering-kernel expansion,
which should be proved in this paper.

In the case of elastic scattering, the differential scatter-
ing probability is a singular distribution. Hence, to
demonstrate the convergence of its series expansion, we
have to use reduced scattering probabilities. To study the
dependence on the scattering angle, we introduce the
differential deflecting probability. The comparison be-
tween the exact representation and different approxima-
tions will then define truncation indices apt for practical
application. This procedure involves only interactions
under a constant collision angle. Therefore the collision-
angle distribution is extremely anisotropic. Frequently,
the systems under consideration are approximately iso-
tropic and their velocity distribution is of the Maxwellian

kind. For this case, it is useful to define differential
scattering rates as a function of the temperature and the
ratio of the -particle speed before and after collision. A
comparison with its series expansion proves that it is
sufficient to restrict the differential scattering-kernel ex-
pansion to a few terms in order to achieve a good approx-
imation. Finally, it is an important result of these investi-
gations that, if we assume an isotropic velocity distribu-
tion, only diagonal elements of the triple expansion of the
scattering kernel contribute to the scattering rate. This
simplifies the moment equations in the cases of isotropic
or approximately isotropic velocity distributions substan-
tially.

II. P~LM METHOD

The nonlinear Boltzmann equation

a
Bt

f(r, v„t)+V,V,f(r, v, , t)+f(r, v, , t )f dv2f(r, vz, t )~v, —vz~cr(~v, —
v2~ }

= f f dvIdvg(r, vI, t)f(r, v~, t)~VI vz~o(~V—I
—vz~)w(v', ~v, ;vz)+Q(r, v„t) (1)

governs the particle distribution density f(r, v, , t) within a one-component system. Q(r, v&, t) denotes the source densi-
ty. The product of the relative speed of the colliding particles ~v', —

v2~ (the primed velocities are the anticollisional
ones), the integral scattering cross section cr( ~VI

—
vz~ ), and the diff'erential scattering probability define the scattering

kernel

S= ~v'& —
vz~o ( ~v'& —

vz~ )w(VI~V&, vz) . (2)

w(VI ~V&', v2)d v& is the conditional probability that if the test particle is scattered from VI to between v& and dv&, then
the target particle is scattered from v2 to any velocity-space element. The trihedral, consisting of the velocities v'„v2,
and v&, determines this collision process (Fig. 1). It is useful to introduce the angles

0, =arccos[cosg, cosgI+ sing, sing', cos(cv, —tv', )],
Oq

=arccos[ cosg, cos(2+ sing, sin/icos( co, —coq }],
0'=arccos[cosg', cos(2+ sing', sing~cos(cvI —

cued) ],
which have the following physical meaning. Test and target particle collide with each other under the 'collision angle"
O'. The "first scattering angle" O, is the angle between the incoming and outgoing flight directions of the test particle.
The "second scattering angle" O2 denotes the angle between the outgoing flight direction of the test particle and the in-
coming flight direction of the target particle. According to the trihedral consisting of the vectors v'], v2, and v, , the an-
gles O, , Oz, and O' may be interpreted as the sides of a spherical triangle. Therefore the relation

cos(0&+0') ~ cos0, ~ cos(0~ —0') (4)

determines the domain where the differential scattering probability is defined due to these variables.
In order to apply the spherical harmonics method on the nonlinear Boltzmann equation, we expand the scattering

kernel (2) in terms of Legendre polynomials with cosO, , cosOz, and cos0' as arguments:

(2k + 1 )(21+ 1 )(2m + 1 )S( v ), v ), v p, cos0), cos02, cosO )
=

3
k =0 I =0 m =0 (4')

XSkI (v, , v', , v2)Pk(cos0, )Pt(cosO~)P (cos0') .

The scattering-kernel expansion (5) can be applied to arbitrary collision laws. If we assume the scattering to be elastic
and isotropic in the center-of-mass system, then the differential scattering probability takes the form

w ' '(v) v), vI. ~ )dv)
c.m. c.m. c.m.

1
6(v]4~ c.m

U) c.m
)dv

&
d(cosg, )dao, (6)

where we have chosen spherical polar coordinates in the center-of-mass system. The center-of-mass velocity is invari-
ant in the collision process. According to the conservation laws for momentum and energy the particle speed U'& is

c.m.
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also conserved, and therefore the differential scattering probability vanishes if u, &u',
c.m. c.m.

Using Eqs. (3), the transformation of the differential scattering probability (6) into the laboratory system results in'
2

1 U1 I I

tu(v)~v)) vp)dv) =, , 5I [u y
+ ~(u ] +up )+ T~u &u2cosO u)u )cosO)~ v1 +v2 —2v1U2cosO'

—u, uzcos82]' —
—,'(u, +u2 —2u', uzcosO')'

X du, d (cosg& )d cu& .

The moments of the expansion (5) for isotropic scattering in the center-of-mass system are given by the following in-
tegral representation:

V

Sk(~ =8~ d cosO' P~ cosO 0 U1 +v2 2U1v2cosO
1

1 V1 U2
X d cosO2 PI eosO2 Pk +—

1 V1

U2
cosO' — cosO2

U1

Xe cos(82 —8')— V1 U2 V2+ cosO cosO2
U1 U1

UZxe, +
U1

I
U2

cos8' — cosOz —cos( 82+ 8' )
V1

(8)

The 6 terms are Heaviside s step functions. On account of Eqs. (3) it is possible to expand the Legendre polynomials in
Eq. (5) by means of the addition theorem of Legendre polynomials' in terms of the direction variables of the particle
velocities in the laboratory system:

(2k+ 1)(21+1)(2m + 1)
3 klrn

k =01=0m =0 (4~)

(k —a)!X Pk(v, )Pk(v, )+2 g
~
Pk(v, )Pk(v', )cos[a(cu, coI)]-k+a)!

( l —P)!X Pt(v, )Pt(vz)+2 g PP(v, )PP(vz)cos[P(cu, —cuz)]

X P (v', )P (vz)+2g; Pr (v', )Pr (vz)cos[y(co', —cuz)]m+y!
Pk, Pp, and Pr symbolize associated Legendre polynomials. Further, we use the abbreviations v, =cosg„v, t =cosg', ,
and vz=cosgz.

The expansion of the outscattering kernel of Eq. (1) yields

2n+1
~v, v2~cr( ~v—,

—
v2~ ) = g o „(u„uz)P„(cos8),

n=0

with

o „(u, , uz) =2m (u, + u2 —2u, u2cosO)' cr[(u, + uz —2u, u2cosO)' ]P„(cosO)d(cosO),—1

and then, by applying the addition theorem of Legendre polynomials, we obtain the series representation:

V1 V2 CT V] V2
2n +1

n=0
o„(u),uq) P„(v))P„(v2}+2g P„(v))P„(v2)cos[p(co) —cu2)]

(n —p)!
n+p! (12)

Finally, we expand the particle distribution function and the source density in order to obtain the moment equations.
In the case of one-dimensional plane geometry in local space these expansions are given by

2n +1f(z, u&, v~, t)= g f„(z,u&, t }P„(vf)
4m

(13)

with
1f„(z,u, , t }=2mdv, P„(v, }f(

.z, u, , v „t )—
1

(14)
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and

2n +1
Q(z, u, , v, , t)= g Q„(z,u, , t}P„(v,),

n=0

where

]

Q„(z,u, , t ) =2vr f dv, P„(v, )Q(z, u, , v, , t ),—]
(16)

if we assume an azimuthal symmetrical velocity distribution. Now we insert the series expansions (9), (12), (13), and (15)
into Eq. (1), multiply it by P, (v&), and integrate the resulting equation with respect to v&. Taking into account the
orthogonality and the recursivity of the Legendre polynomials we obtain the following coupled system of nonlinear mo-
ment equations:

~f„(z,ui, t) 1 n c}f —
& 1 n +1 c}f„+~+ U] + U]2' at 2w 2n+1 Bz 2~ 2n +1 Bz

(2i+ 1)(2j+1)+ g g a„;,f (z, u, , t) f du~cT, (u, , uz}f, (z, u2, t)
=o j =o (4~)

(2k + 1)(2l + 1)(2m + 1)(2i + 1)(2j+1)

k =01=0 m =Oi =0 j =0 (4m )

4 kl~ km~ Imj Y 'g (k+ )f(/+ )f( + )f
1 kl~~km~~lmj

oo oo 1X duIduzSkrm(u»uI, uz)f, (z, u'»t}f (z, zu, t) + Q„(z, &u, t),
0 0 2~

n =0, 1,2, 3, . . . (17)

with

f, (z, u, , t ) =0

and
].

a; k
= dv, P;(v, )P, (v, )Pk(v, ),—]

]
13;,k= dv, P, (v, )P, (v, )Pk(v, ) .

(18)

(19)

The expansion is based on a complete set of functions and
therefore the moment equations (17) are equivalent to the
original transport equation (1). The practical applicabili-
ty of this procedure is found by an approximation in
truncating the series. In contrast to the P~ method, the
truncation index may be chosen differently for the parti-
cle density and the scattering kernel. Therefore we name
our procedure a Pz method, in analogy to the notation
which is generally used in linear transport theory. The
choice of low truncation indices results in a remarkable
simplification of the moment equations. But it is based
on the assumption of a fast convergence of the
scattering-kernel expansion. In Secs. III—VI this con-
vergence behavior is particularly investigated.

III. DIFFERENTIAL DEFLECTING PROBABILITY

The differential scattering probability (7) is a singular
distribution. For investigating the convergence of its
Legendre polynomial expansion, we introduce so-called
reduced or integrated scattering probabilities as, for in-
stance,

wo (u 1 &
u 2 &'9

& Ol )d(cosO, )
1

to

du, d(cosO, )d(cosO2) .

For that purpose we rotate the coordinate system of Fig.
1, so that the z axis coincides with the direction of v, , and

vz is in the xz plane. To make the transformation one-
to-one we restrict the permissible range of co] to the inter-
val [O, vr]. The probability of a particle being scattered
into a differentia1 speed solid-angle element cannot de-
pend on the choice of coordinate systems; hence

2w (v', ~v, ; v2)du, d(cosg, )dc',

= w(u', , u z, O', u, , O, , Oz)du, d(cosO, )d(cosO2) . (20)

The factor 2 is a result of the restriction of the co& interval
to [0,7r]. For every event specified by

( u ),cosj), cu) )

the differential deflecting probability. This is the proba-
bility that if two particles with the initial velocities U',

(test particle) and u& (target particle) collide under the an-

gle 0', then the test particle is scattered to between cos0,
and cosO, +d(cosO, ).

In order to evaluate the differential deflecting probabil-
ity we first transform the phase-space element from

du, d (cosg, )d cu,
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there is a corresponding one denoted by

( u 1 ~ cosg1) 277 cu1 )

which will yield the same value for the differential
scattering probability. In the new coordinate system we

have, according to Eqs. (3),

COS01 —COS$1

cosOz =cosO&cosO'+ sinO& sinO'cosco, ,

and therefore the Jacobian takes the form

(21)

8( u „cos(1,cu, )

a(u„cosH„cosH, )

1

I [cos(0,—0') —cosHz][cosHz —cos(0, +0')]] ' (22}

It will be suitable to transform the 6 function which occurs in Eq. (7) as
I

5I[U1+ ~(V1 +Vz )+ zU1UzCOSH V1U1COS01 U1VzCOSHz] z(V1 +Uz 2V1UzCOSH )

1 I I

, (u, +uz —2u', uzcosH')' 6 cosHz—
U) Up

Ui U)
, + cosO'—

vz

V)

Vp
cosOi (23)

Combining Eqs. (20), (7), (22), and (23), and solving for co yields

2 I 1
&(u'»uz, H', u»0»Hz)dv, =—,5(COSHz —hz}~ uz (u, +uz —2u', uzcosH')'

6(cos(0, —0') —cosHz)6(cosHz —cos(0, +0') )
X du, d(cosH, )d(cosHz),

[ [cos(0, —0') —cosHz][cosHz —cos(0, +0')] ]
'

with

(24)

U] Ui Ui
hz(u, , u', , uz, 0, , 0')= + cosH' — cosH, .

U~ Up

(25}

The inequalities (4) restrict the domain where & is defined with respect to 0„0z, and 0 . This domain is formally ex-
tended to a cube of the side length ~ by means of Heaviside's step functions.

The following integral defines the differential deflecting probability w@
..

1

tvs (U1&vz 0 ~01)d(cos01) du, d(COSHz)1v(U1 uz~0 ~U1~ 01~ 02)d(cosH, )
l 0 —1

If we insert Eq. (24) for & and perform the integration over cosH, we obtain

2 1 1
1ug ( U 1, Uz, 0;01)d(COS01)—

vz (U, +Uz —2U', vzcosH')'

6(cos(0, —0') —hz)6(hz —cos(0, +0') }
X lU)Ui d(cos01) .

I [cos(0, —0') —hz][hz —cos(0, +0')] I
'

(26)

(27)

The arguments of the step functions appear as a product
in the radical term and lead to special singularities of the
integrand. Therefore the numerical integration is done
by applying the Gaussian quadrature formula. The solid
curves in Figs. 3 —5 show numerical results for the exact
differential deflecting probability for different collision
parameters v &, Uz, and cosO'. We want to emphasize two
important properties.

{i) For certain combinations of the collision and
scattering angles, the differential deflecting probability
vanishes because of the conservation laws for momentum
and energy.

(ii) Several parameter combinations result in singulari-
ties of w& . Detailed investigations proved that the singu-

I

lar behavior of m& depends on the kind of poles of the in-
1

tegrand. If multiple roots occur in the radicand of Eq.
(27) the integral becomes divergent.

We can also construct the differential deflecting proba-
bility by means of a vector diagram as shown in Fig. 2.
There we consider a collision of two particles specified by
the initial velocities v& and vz, and collision angle O'. lf
we assume isotropic scattering in the center-of-mass sys-
tem, the points of the possible final velocity vector v, c.m.

in the center-of-mass system are uniformly distributed on
the sphere of radius U', =U, . This scattering, of

c.m. c.m.

course, is not isotropic in the laboratory system. The
probability wz that a particle is scattered to between

l

cosH, and cosH, +b, (cos01) will be obtained by means of
the following construction. The hatched segment of the
unit sphere corresponds to the given scattering angle in-
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are defined by the intersection curves of the two cones
with the large sphere. The ratio of the dotted area and
the sphere is equal to the probability for the deflection
into the interval

[cosO, , cos0, +b, (cos0, )] .

The dellection probability represented in Fig. 5(c) is
based on about the same parameter couple u ', /u 2 and
cosO' as the construction in Fig. 2. It is now possible to
compare the two results. For cosO& = 1 the reference area
consists of two opposite spherical segments (I). At first,
the reference areas (I,II,III) decrease with increasing
scattering angle O, . A further increase of the apex angle
results in a sliding cut between cone and sphere, and
therefore the reference area becomes especially large.
This is just the scattering angle for which the differential
deflecting probability becomes singular. If the apex angle
goes beyond a certain value, no interaction occurs and
the differential deAecting probability vanishes.

IV. P ' APPROXIMATION
OF THE DIFFERENTIAL DEFLECTING

PROBABELITY

FIG. 2. Geometrical construction of the difterential
deAecting probability.

terval. The center of the unit sphere and the hatched seg-
ment determine two cones whose apex angles are the lim-
its of the given cosO] interval. The dotted areas in Fig. 2

The rate of convergence of the scattering-kernel expan-
sion is now studied by comparing the exact differential
deflecting probability of Sec. III, with its P approxi-
mations. Combining Eqs. (2) and (5) together with Eqs.
(20) and (22) yields the P expansion of the differential
scattering probability in the (u„cosH, ,cos02) representa-
tion:

iu(u', , uz, 0', u, , 0, , 0z)du, d(cos0, )d(cosOz)

e(cos(0, —0') —cos0, )e(cos0, —cos(0, +0') )

lv', —~',
l

~
I [cos(0,—0') —cos0, ][cos0,—cos(0, +0')] I

'~'

xg (2k + 1)(2t + 1)(2m + 1)
Ski (v, , u', , vz)P&(cos0, )Pi(cos02)P (cos0')du, d(cos0, )d(cos02) .

)(: =01=0 m =-0 (4~)
(28)

The moments S&»„(u i, u i,uz ) are given by Eq. (8). Integrating Eq. (28) over v
~

and cos02 yields the requested difFerential

deflecting probability in the P approximation;

L
( ', 0', 0, )d( o 0, )

2 ~ ~ ~ (2k+1)(21+1)(2m+1 I , ( ', ,')J, (0, , 0.')
&Z ~ a=O(=om ——O (4~)

XPi, (cos0, )P (cos0')d(cos0, ),
with

I&»„(u', , u,')= I dviS»i~(vi, ui, v2)
0

and
e(cos(0, —0' ) —cos0 )e(cos0 —cos(0, +0') )

Ji(0, , 0') = d(cos02)P, (cosOz)
[ [cos(0,—0') —cos02][cosOz —cos(0, +0') ] I

'~~

(3O)

(31)

The coefficients I&I are to be calculated numerically, assuming O. =const, and the integral in Eq. {31}can be evaluated
analytically. Using the subsitution

cosa = cosOz —cosO, cosO'

sinO
&

sinO'

Eq. (31) can be written as
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J&(8,0') = da P&(cos0, cos0'+sin0, sin8'cosa) .I~

Now we apply the addition theorem of Legendre polynomials and obtain

JI(0&,0')= da PI(cos0, )Pt(cos0')+2 g 'Pi (cos0&)PP(cos0')cos(ma)(I —m )!
0 , (I+m !

m =1
(33)

The integration with respect to u results immediately in

Ji(0„0')=~P, (cos0, )Pi(cos0') . (34)

Figures 3 —5 show the comparison of P approxima-
tions of the differentia1 deflecting probability for different
velocities and collision angles with exact results. Because
of the cos0& dependence in Eq. (29), the PK™approxima-
tions are curves of (E+L)th order Th. erefore any ap-
proximation due to the index triple (O, O, M) with arbi-
trary M is a horizontal line. The I' ' as we11 as the I''
approximation are straight lines of positive or negative
slope. The plots in Figs. 3(b), 4(b), and 5(b) are to be con-
sidered as special cases. According to the assumption
cosO'=0 only terms of even index 3 and m make a contri-
bution to the sum in Eq. (29). [P;(cos0') vanishes if
cos0'=0 and i is an odd number. ) Discontinuities and
singularities in Figs. 3(c), 4(c), and 5(c) would require a
high-order approximation. But for practical solutions of
the moment equations (17), low-order approximations are
necessary. The I' approximation provides only a con-
stant value, but its order of magnitude is acceptable as il-
lustrated in Figs. 3(a), 3(b), 4(a), 4(c), and 5(b). The ap-
proximation is essentially improved if we choose the
truncation triple (1,1,1) [see Figs. 3(a), 4(a), and 4(c)].
Starting from the I'"' approximation to increase one of
the three indices results only in a negligible correction
[see Figs. 3(c), 5(a), and 5(c)]. However, if we increase the
other indices too, a further improvement can be obtained
as shown in Fig. 4(b). In summation, we note that it is
possible to approximate the differential scattering proba-
bility in a quantitatively satisfactory way using trunca-
tion indices K,I., M 3. But it should be noticed that our
research was based on an extremely anisotropic test

case —the collision angle O' was kept constant. Hence
the rate of convergence is not as good as in the isotropic
case, which will be proved in Secs. V and VI.

V. MAXWELL-AVERAGED DIFFERENTIAL
SCATTERING RATE

X exp

I 2
V2

dvzd(cos0'),

(35)

makes this example comparable to practical applications.
The density of the target gas is normalized to 1 and

1/2
2kT

(36)

denotes the most probable speed of target particles. Thus
the Maxwell-averaged differential scattering rate is given
by

We consider the Maxwell-averaged differential scatter-
ing rate R(vI~v, )dv, as a further test case to investi-
gate the convergence of the diff'erential scattering proba-
bility expansion. This rate is to be interpreted as the
probability that a test particle at initial speed v1 interact-
ing with target particles of Maxwellian velocity distribu-
tion will be scattered to between v, and v, +dv, . We ap-
ply the co11ison law valid for rigid spheres, a = o.0=const.
The differential scattering probability w is then given by
Eq. (24). Assuming the target particles to be Maxwellian
distributed, as

M(v2)dvzd(c so'0)=27r(rrv )
~

v2

R(vI ~v, )dv, = f dv2M(v2) f d(cos0') f d(cos0, ) f d(cos02)lvI v2loow(v', , vz, 0';v, , 0, , 02)dv, . (37)
0 —1 —1 —1

Because of the 6 function in w [see Eq. (24)], the integration over cos02 is immediate and Eq. (37) turns into the triple-
integral formulation

2oov, „M(v2) e(cos(0, —0') —h, )e(h, —cos(0, +0') )
R(v', ~v, )dv, = dvz d(cos0') d(cos0, ) dv]

7T 0 U2 1
t [cos(0, —0') —h z][h2 —cos(0, +0')] ]

'

(38)

h2 is given by Eq. (25). With the abbreviations

=cosO]cosO A 2

B=sinO, sinO',

the integral over cos0, in Eq. (38) can be written as

e(B+ A )e(B—A )

[(B+A )(B—A )]'" (40)

The product of step functions in Eq. (40) is equivalent to
the condition

(41)
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1,5 1,5—

1.0 1.0—

K A M

EXACT
0 0 0
0 l 3
l. 0 I1 1 0

3 3

0.5- 0, 5—

-0
~ 5 0, 0 0. 5cos O.

I

1,0
0.0

-1.0 -0.5 0 ~ 0 0.5cos O.
1.0

1.5 1.5- (b)
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FIG. 3. Comparison of the exact differential deAecting prob-
ability m~ with various P approximations as a function of
the cosine of the first scattering angle O&. Ratio of the test and
target particle velocity before the collision v', /v&=0. 1. Cosine
of the collision angle: (a) cosH'= —0.707, (b) cosO'=0, and (c)
cosO' -0.707.

FIG. 4. Comparison of the exact differential deflecting prob-
ability mz with various P approximations as a function of
the cosine of the first scattering angle Oi. Ratio of the test and
target particle velocity before the collision v', /v,' =1. Cosine of
the collison angle: {a) cosO'= —0.707, (b) cosO'=0, and (c)
cosO' =0.707.
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which results in a further limitation of the domain of in-
tegration:

the integral vanishes too. The terms a, b, and c are given
by

x ) COSO( xp

and we find

(42) U)a—
I

U2

U]+ cosO',
U)

ah+ [c (b +c a—)]'~
(b+c )

(43)
b=

V2
+cosO (45)

For the inequality

b +c —a «0 (44)

c =sinO' .

%'e then represent the polynomial of the radical term of
Eq. (40) as a product of its roots and obtain instead

e(b +c a)—
d cos01)

(b +c')' "1 [(cos61,—x, )(x2 —cos6, )]'i2

This is a special case of integral (31). Hence we obtain for l =0 according to Eq. (34):

e(b +c a)—
(b2+ 2)1/2

and the Maxwell-averaged diff'erential scattering rate (38) results in

(46)

e(1+ V]
2

V]
2 I 2

U]
cos 9')

M(u2)
R(u', ~u, )dv, =2crou, f dv2, f d(cos0')

0 —1 V(1+
Vp

V]U2

2 I
V)+2, cosO'
Up

]/2 (48)

Integrating over cosO' we get

R(u', ~u, ) =4cro
2 I

U, ~~, V, „M(U2)f du 2M(u 2 )+ f du 2
V] o V] "'1 U2

for downscattering (u, ~ u', ), and

R ( V
1 ~U1 ) = 4(TO

Ul (u,'+u2 —u, )', ~ M(u2)
dU2 M(u2)+u, dv2

U ] (U
1

—
U I') V2 I U2

for upscattering (V1) u'1 ). Finally, using Eq. (35) and integrating over u2 yields

V]
2o.o, erf

U] Uw

I
U] U[

R(UI ~V1)= '

U]
2o.o exp

U)

2 '2'

2

U)
erf IU])U]

(49)

This result agrees with that quoted by Williams' and Heinrichs' for the differential scattering rate and the effective
differential scattering cross section, respectively,

but it was found in a quite different manner. A three-dimensional plot of the Maxwell-averaged differential scattering
rate (49) is given in Fig. 6.

VI. I' APPRC3XIMATIQN QF THK MAXWELL-AVERAGED
DIFFERENTIAL SCATTERING RATE

Introducing the series expansion (28) of the diff'erential scattering probability into Eq. (37) yields the P approxi-
mation of the Maxwell-averaged differential scattering rate as
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with

(2k+ 1)(21+1)(2m + 1)
vI ~U) —~ z Pklm V I )V I )Akim

k =0 I =0 J71 =0 (4m. )'

and

I 00

Pk(~(u„v, )=2 du2M(v2)Sk(~(v, , u', , v2)
0

1 d(cos0')P (cos0')—1

6(cos(0, —0') —cos0 }B(cos0 —cos(0, +0') }
X d cos0, )Pk(cos0, ) d(cos02)P((cos02)

I [cos(0, —0') —cos02][cos02 —cos(0, +0')]) '

(51)

(52)

0. 5—

0. Z5-

The Maxwell distribution M(uz) and the moments SkI
are given by Eqs. (35) and (8), respectively. The
coefficients mkl involve an integral over cos02 of the type
given in Eq. (31). The result of this integration reduces
Eq. (52) by means of Eq. (34) to a double-integral expres-
sion and finally, by applying the orthogonality relation of
Legendre polynomials we obtain

0. o
0. o

I

Q. 5
I

&.0
Vlf'VI

2.Q

2
klm 2k +1 kl lm (53)

(b) Thus all off-diagonal elements of the triple expansion in
Eq. (50) vanish, and we get a result which is similar to a
P approximation of the Maxwell-averaged differential
scattering rate:

2k +1
R (V', ~U, )= 2, Z Pkkk(U, , V', ) .

(4m )
(54)

I

0. 5 l.O
Vl r'VI

5 . 0

(c)

EXACT
K=O
K= 1.
K=%

O
O. o

I0. 5 l. . 0 1 ~ 5
Vl IVI

I2.P

FIG. 8. Maxwell-averaged differential scattering rate
R(v& ~v& ) and various P approximations in units of the cross
section o.o as a function of the inverse ratio of the particle speed
before and after the collision u 1 and u&. Ratio of the speed of
the incoming test particle u 1

and the most probable velocity of
the particles of the target gas u: (a) vl/u =0.1, (b) v1 /u„, =1,
and (c) v 1 /u =10.

The coefficients pkkk are to be calculated numerically.
Figures 7(a)—7(c) display in a three-dimensional represen-
tation the convergence behavior of the P approximation
of the Maxwell-averaged differential scattering rate. A
comparison of the exact scattering rate with various de-
grees of approximation, K =0, 1, and 3, is given in Figs.
(8)—8(c). From these figures we can see that already a few
terms of the expansion result in a good agreement with
the exact behavior.

It is remarkable that for isotropic velocity distributions
the off-diagonal elements of the P approximation of
the differential scattering rate vanish. This behavior al-
lows an important simplification of the moment equations
(17). Thus, for isotropic distributions, only terms in con-
junction with Skkk contribute to the fivefold sum of the
inscattering term in Eqs. (17). If the distributions are ap-
proximately isotropic, contributions from off-diagonal
terms are negligible, and the fivefold sum reduces to a tri-
ple one. We expect that for determining particle distribu-
tions of approximately isotropic velocity distributions,
the P~ method will become similarly as important as
the Pz method in linear transport theory.
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