
PHYSICAL REVIEW A VOLUME 39, NUMBER 3 FEBRUARY 1, 1989

Microscopic theory for cross-linked macromolecules.
II. Replica theory of the transition to the solid state
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We investigate the statistical mechanics of a set of randomly cross-linked macromolecules. Using
the replica method, we are led to consider a field theory for an order parameter which describes the
breaking of the symmetry of independent translations and rotations between replicas. We construct
the Landau free energy in this order parameter by systematically integrating out the polymer de-

grees of freedom. We find that the system can exhibit two transitions. The first corresponds to the
collapse of a swollen rubber, while the second is a conti~uous transition to an equilibrium amor-
phous solid once the number of crosslinks exceeds a critical value. Very close to the latter transi-
tion, the Landau free energy is of the same form as that for the long-range Ising spin glass, enabling
us to use Parisi's replica —symmetry-breaking scheme to describe the ordered state.

I. INTRODUCTION

In this paper, we shall apply the ideas developed in the
preceding paper' (hereafter referred to as I) to a minimal
model for the statistical mechanics of a system of ran-
domly cross-linked macromolecules. Our goal is to de-
scribe how this system can become solid if it is su%ciently
cross linked. It is often assumed that this transition is
related to the appearance of an infinitely large "percola-
tion cluster, "but this is not at all obvious, for two princi-
pal reasons. Firstly, a network can be connected by vir-
tue of its topology, even in the absence of percolation;
this is because regions may be topologically entangled
without being cross linked. The possible role of topology
in the transition to the rigid state has recently been stud-
ied analytically and numerically. Secondly, if the ele-
ments which comprise the percolation cluster were them-
selves rigid, then the percolation model might be justified.
In this case, then, the question of rigidity of the system
would be a question of architecture. However, the ele-
ments are not rigid; they are Aexible polymer chains, in

thermodynamic equilibrium. To answer the question of
whether or not the system exhibits rigidity, it is the ther-
modynamics which must be considered. As is well
known, and was elaborated in I, rigidity is a consequence
of the spontaneous breakdown of translational symmetry.
In order to describe the onset of rigidity, it is necessary to
show explicitly that translational invariance can be spon-
taneously broken in the system, as the number of cross
links exceeds a critical value. In other words, we propose
to treat the transition to the solid state in exactly the
same way that phase transitions in other systems are
treated. This is the purpose of the present paper; a pre-
liminary account of this calculation has already been pub-

lished.
For simple systems, the transition to the solid state can

be achieved by, e.g. , lowering the temperature, and the
crystalline phase is described as a superposition of density
waves. The transition is found to be first order, since
there is no reason a priori for the absence of terms in the
Landau free energy, which are cubic in the density.
Liquid and solid phases have different symmetries, and
hence it is not possible to pass between them without en-
countering a transition of some sort. There is no reason
for such a transition to be first order, other than that al-
ready mentioned; in principle, the transition could be
second order. It is this possibility which transpires to be
the case in systems of randomly cross-linked macro-
molecules; it turns out that there is a cubic term in the
appropriate Landau free energy, but the restriction that
the order parameter be positive ensures that a first-order
transition does not occur. A similar situation exists in
the Sherrington-Kirkpatrick model of the Ising spin
glass. '

In systems of randomly cross-linked macromolecules,
the transition can occur at fixed temperature as the num-
ber of cross links in the system is varied. A prerequisite
for a Landau theory is the identification of a suitable or-
der parameter. In simple systems, the knowledge that the
transition of interest is continuous, together with con-
siderations of symmetry, allows the Landau theory to be
constructed. An example is the Ginzburg-Landau theory
of superconductivity, where the microscopic interpreta-
tion of the order parameter was given some time after the
theory. In the present case, it is indeed possible to anti-
cipate the relevant order parameter, as explained in I;
however, the construction of the Landau theory is not
straightforward, because there is quenched disorder
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present, in the form of cross links. The present paper is
concerned with the task of deriving the Landau theory
from a microscopic model for randomly cross-linked ma-
cromolecules. In the course of the systematic develop-
ment of the theory, an appropriate order parameter will
naturally emerge, in much the same way that the magne-
tization emerges as an order parameter from a systematic
treatment of a magnetic system. ' In the present case,
however, the relationship of the order parameter to the
considerations of ergodicity discussed in I is far from ob-
vious, and an adaption of an argument due to Parisi" is
required to make the connection explicit.

Our procedure for eliminating the polymer degrees of
freedom in favor of the order parameter is based on the
theory of semidilute polymer solutions. ' This theory has
proved to be a reliable starting point for a
renormalization-group treatment of semidilute polymer
solutions, ' which exhibits very good agreement with ex-
periment' without any adjustable parameters.

Earlier work on the statistical physics of randomly
cross-linked macromolecules has focused not so much on
the onset of rigidity, but on the description of the behav-
ior of cross-linked macromolecular solids under large de-
formations. ' In this large body of literature, it is impli-
citly assumed that the system is solid, but the question of
how this has arisen is finessed. The assumption of solid-
ness can be traced back to the way in which it is assumed
that the mean position of the cross links changes as the
system is deformed. In a sense, then, the present work
should be considered as complementary to the existing
literature. Ultimately, we hope to be able to apply our
approach to study the behavior of randomly cross-linked
macromolecules under large deformations.

The contents of this paper are as follows. In Sec. II we
write down the Hamiltonian for a cross-linked system of
monodisperse chains. Quenched disorder is present be-
cause each cross link joins two specified monomers on
two specified chains, according to a given probability dis-
tribution. For a particular choice of the probability dis-
tribution, disorder averages can be computed from a
Hamiltonian describing n replicas of the system, in the
limit that n ~0. This latter Hamiltonian no longer con-
tains random variables, and so the averages can be com-
puted in a relatively straightforward way. We define for
future use the disorder-averaged free energy of the sys-
tem, and the disorder-averaged probability distribution
for the symmetrized overlaps defined in I. Section III in-
troduces a generalization of the Hubbard-Stratonovich
transformation, which decouples the chains within each
replica. We carefully explain the physical significance of
the generalized Hubbard-Stratonovich field, and show
how it can be used to compute the disorder-averaged
probability distribution for the symmetrized overlaps.
Then, in section IV, we proceed to integrate out the poly-
mer degrees of freedom in order to derive the Landau
free energy for the order parameter. In Sec. V we analyze
the form of the Landau free energy, in an approximation
which treats the most unstable mode only, and we exhibit
the transition to the solid state. Exploiting the similarity
between the present Landau free energy and that of the
long-range Ising spin glass, we compute the disorder-

averaged probability distribution for the symmetrized
overlaps at the transition. From its form, we deduce the
way in which ergodicity has been broken at the onset of
the solid state.

II. GENERAL FORMULATION

Consider N chains of length L, step length l, in a d-
dimensional cube of volume V. Our starting point is the
Hamiltonian' '

N

H I r, ]
=—g f [8,r, (s) ]'ds21, o

N

+ —,
' g f f Uo[r, (s) —r, (t)]ds dt,

t, g =-1 0
(2.1)

N M
Z f Q Dr, e g 5(r, (s, ) —r. ,(s,')) .

i =1 e =1 e
(2.2)

As explained in I, a system of cross-linked, mutually
impenetrable chains cannot explore all of the possible
configurations included in Eq. (2.2). The naive computa-
tion of statistical-mechanical averages over all the
configurations would not account for the inescapable fact
that the system has many disjoint sets of topologically
equivalent configurations all of which satisfy the con-
straints. The reasons for this have been described in I.
Any pair of equilibrium states with distinct topology can-
not be related by a global symmetry operation. It is pos-
sible that within each set of topologically equivalent
configurations there may exist pairs of equilibrium states
which are not related by symmetry.

The method of preparation places the cross links at
random throughout the sample and, in practice, we do
not know which monomers the cross links will connect.
The process of cross linking may be modeled as taking
place simultaneously between randomly chosen pairs of
monomers in contact. Consequently, the statistical distri-
bution of cross links will reAect the instantaneous corre-
lations of the un-cross-linked system. The probability
distribution for the arc-length positions of the cross links
is then'

(2.3)

where the angular brackets denote averaging with respect
to the un-cross-linked system. In the present case, we
shall assume for simplicity that the cross links are uni-

where r, (s) is the position of the ith chain as a function of
arc length s, Uo(r) is the two-body potential, and the first
term on the right-hand side of Eq. (2.1) represents the
Wiener measure. ' Implicit in the Hamiltonian is the
constraint in the double summation, ~s

—s'~ ) 1; this ex-
cludes self-interaction of monomers and multiple interac-
tions between monomers on diferent chains. Let there be
M cross links which permanently connect arclength posi-
tions Is„s,'] on chains Ii„i,'] respectively, for e =1,
. . . ,M. If the system were to explore all possible micro-
states consistent with these constraints, then the partition
function would be given by
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(2.4)

formly distributed, and that the number of cross links M
may vary about its mean value pQV/2 according to the
Poisson distribution

M
1 Po PP'

expM! 2~1. ' 2

This is an approximation which neglects the correlations
between cross links. The correlation arises because if two
chains are cross linked, then they are constrained to be
close, thus enhancing the likelihood of further cross link-
ing. We expect that this effect will be small when chains
overlap significantly, because within the volume occupied
by a given chain, there are monomers from a large num-
ber of other chains. Thus the bias introduced by the
presence of a cross-linked chain is expected to be small.

This same argument ensures that mean-field theory will
be a good approximation when chains overlap signi-
ficantly, as they do during vulcanization. For strong
gelation, on the other hand, corrections to mean-field
theory are expected. Furthermore, we shall eventually
find that the average number of cross links per chain is
close to —,

' at the transition to the solid state; with so few

cross links in the system near to the transition, the
difference between the distributions given by Eqs. (2.3)
and (2.4) would not be expected to affect significantly the
chain correlation functions.

As usual in problems with quenched disorder, we shall
compute the disorder-average of quantities of interest, us-
ing the replica method. ' ' ' Denote the disorder aver-
age of any variable 0 by square brackets [ ], where

M=O il =1

Then, we find that

'M
I

y f' f'Q ds, ds,'OPM .
'M 1 e =1

(2.5)

n

[Z ]=f g g Dr; exp( —A),
a=1 i=1

2

&= g HIr; I
— g f f dsdt g 5(r, (s) —r, (t)),

2NL ',-,

where we have ignored an irrelevant constant and used the fact that

M N N L L M n N L L n

f f P & 5(r, (s, ) —r. , (s,'))ds, ds,'= g f f ds ds' g Q(r, (s) —r. (s'))
i, =1 '=1 e=1 a=1 a=1=1

(2.6)

(2.7)

(2.8)

s =oL

lL
d

1/2

C

(2.9)

(2.10)

uo(r) =u(c),
' —nd /2

IL
P Po

(2.11)

(2.12)

In terms of these variables, the Hamiltonian in Eq. (2.6)
becomes

&=Ho+Ht ~
(2.13)

H =
—,'g g f da(Bc )

i=1 a=1
N n

+ —,
' g g f f do do'u(c, (o)—c (o')),
ij=l a=1

(2.14)

2 N n

H, = —~ g f f d d '+5(;( ) —,( ')).
2%,j, o o

(2.15)

It is convenient to introduce a rescaling of the vari-
ables,

am

(2.16)

Note that after averaging over the disorder, we are
now left with a pure theory (that is, one without random
variables) for a replicated system. The process of averag-
ing over the disorder has introduced an interaction be-
tween the replicas —the final term on the right-hand side
of Eq. (2.15). The Hamiltonian is invariant under permu-
tations of the replicas and independent translations and
rotations of the replicas. The latter symmetry can be
spontaneously broken, and leads to the solid phase of the
system. The permutation symmetry —normally a
discrete symmetry —nevertheless acts like a continuous
symmetry in the limit n ~0; it too becomes spontaneous-
ly broken at the transition to the solid state. This corre-
sponds to the existence of equilibrium states which are
unrelated by global translational and rotational symme-
try.

In I we demonstrated how the nature of the equilibri-
um states can be inferred from correlation functions com-
puted using the replica method, within mean-field theory.
Explicitly we compute the disorder-averaged distribution
function [PIP' k ~(q)] for the symmetrized overlaps

q I„' „'"
I
defi~e by
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where

~m
q Ik), . . . , k

R[, . . . , R
I qR,'k,

'

, . .'. , g

~R)k)+. --+R k 0
Rl, . . . , R

1/2

(2.17)

mine the nature of the equilibrium states. En particular,
the existence of equilibrium amorphous solid states is ex-
hibited through the form of the overlap distributions.

In I, we show that within mean-field theory

[p(„k ((q)]= hm (5(q —
Q(k k

~

))„,
(2.23)

and

N
1 ~

—ik&.c.(7.) ~
o.

l

j=1

(2.18)

where

o.'1). . . ) cx

Q[ki, . . . , k

Rl, . . . , R

R, . . . , R
~R lkl+ . . +Rmk, 0

m 2
~R

1
k', . . . , R, k

1/2

(2.24)

—Fe
F r

e
(2.19) and

The meaning of the symbols is as follows. The weight
w is the normalized Boltzmann weight for the equilibri-
um state a, computed from the free energy

N

Qk' 'k =—g f dr exp
j=1

m—i g k, .c, '(r)
a =1

(2.25)

= —lnTr e (2.20)

where the trace includes only those microstates in the
equilibrium state o. [R, I is a set of cubic rotation ma-
trices, introduced so that the rotation or translation of an
equilibrium state leaves the symmetrized overlap invari-
ant.

In the preceding equations, we only consider sets of
wave vectors for which the denominator in Eq. (2.17)
does not vanish, i.e., there is at least one set of rotations
[R; I for which

R;k;=0.
i =1

(2.21)

o, ~, o' —~k+ . . +k, O

xq " (k~, . . . , k';k, .k2, . . . , k ).k ) .

(2.22)

As discussed in I, the information contained in the
symmetrized overlap distributions is sufficient to deter-

This requirement is related to our notion of macroscopic
translational in Uariance in an equilibrium amorphous
solid, which is the statement that in any state of equilibri-
um, there is no distinguished wave vector. Loosely
speaking, we expect that a snapshot of a solid with mac-
roscopic translational invariance would be indistinguish-
able from a snapshot of a liquid, whereas a single
snapshot of a crystal would be sufficient to distinguish it
from a liquid. On the other hand, a solid with macro-
scopic translational invariance can be distinguished from
a liquid only by taking a subsequent snapshot after a time
interval t. As t~~, the second snapshot is correlated
with the first only in the case of the solid. To be precise,
a necessary condition for an equilibrium state o. to pos-
sess macroscopic translational invariance is that the self-

overlap q k' '
k has the form

Here, Qk' 'k is the microscopic overlap between
I' '' m

configurations in the n distinct replicas of the system,
each of which is subject to identical cross-linking con-
straints. ( )„denotes averaging over all configura-
tions of the replicas, consistent with these constraints.
Thus the replica method allows us to compute the desired
distribution functions.

III. ELIMINATION OF THE POLYMER
DEGREES OF FREEDOM

The systematic derivation of the Landau theory is ac-
complished by decoupling the interactions between the
replicas in H~ using Hubbard-Stratonovich fields. We
start with the representation of the distribution

n N

[P'( ' „)(q)] lim f Q Q Dc, 6(q —Q(„'' ' „ I
)

a=-1 j =1

X exp( —&) . (3.1)

Now we introduce a notation to simplify the presenta-
tion. Sets of replicated vectors such as [c,, . . . , c„ I will
collectively be denoted c. Inner products between repli-
cated vectors will be denoted by k c, where

n

k.c= g g k„c„.
a=1 )M=—1

The measure in Eq. (3.1) becomes

a=1

To introduce the order parameter, we rewrite HI as

(3.3)

2 N

f do. dry(c, (o )
—c~(r))

j, h =1
2 N

f dodr +exp. [ik [c (cr) c„(. )])r—
2%V" j h =1

(3.4)
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We separate from the summation over k the one term
with k =0, which we subsequently drop as an irrelevant
constant, and each of the n terms for which all but one
wave vector in the set [k', . . . , k" ] is zero. We will

I

denote summations and products with these omissions by
and Q respectively. Thus the equation for

)
(q)] becomes

2 N

[PIP' &
~

(q)] lim fDc6(q —Q~&'
'

&
~

)exp Ho—+ g g f der exp[ —ik c (o )]n~0 1''' ' m 0

2

(3.5)

where

n

Ho= g H[c I,
o.=1

N

H[c] =
—,
' g f do[8 c, (cr)]
j=1

N

+ —,
' $ f do. dr U(c, (o)—c„(~)),

U(x)=U(x) — 5(x) .
2p
N

(3.6)

(3.7)

(3.8)

In the sum over k those terms for which k is of the form
(0,0, . . . , k, 0, . . . ) do not couple the replicas, and are
simply absorbed as a contribution to a new interaction
potential U(x). It might appear that the 5-function sub-
traction can have no eft'ect for a real potential. However,
for a real potential, the representation of the cross-linking
constraint as a product of 6 functions is not adequate,
due to the thickness of the chains, and must be replaced where F is the complex conjugate of m, we obtain

(3.9)

by the necessary generalization. For the Edwards Hamil-
tonian, ' where the potential U(x) is modeled by A. 5(x),
the representation in Eq. (2.2) is appropriate. The Hamil-
tonian H describes a fictitious un-cross-linked polymer
system with a pair potential which has been renorrnalized
by the presence of cross links. As long as this fictitious
system would be a homogeneous Quid, then the corre-
sponding cross-linked system can only be unstable to-
wards the formation of an equilibrium amorphous solid.
If the fictitious Auid becomes unstable and loses homo-
geneity then the real cross-linked system can collapse.
Although interesting, we shall not discuss this
phenomenon further.

The quadratic form of the term which couples the re-
plicas can be eliminated by introducing complex variables
Ak for every term in the summation over k. Making re-

peated use of the integral

exp —,')w[ = f exp( —
—,'[z( +ReÃz),d (Rez)d (Imz)

n N

[PI&, , )
(q)] I f Q Q D;D&&(q —

Q (g
a=1 j=1

Xexp — ~ g ~Q& ~ Ho+ Re—g 0& —g f doexp[ik c(o. )].
k k i=1

(3.10)

where the measure DA is given by

DQ= Q d(ReA& )d(lmII& ) . (3.1 1)
k

The field Ak is related in a simple way to the order pa-
rameter of the system. To expose this connection we in-
troduce a convenient notation. When k comprises exact-
ly g nonzero wave vectors we write

(3.12)

where the notation k refers to the k vector in k associ-
1

ated with the a, th replica. In other words, this notation
suppresses the wavevectors in k with zero magnitude,
and the replica indices on Qz

' '
1', indicate with

1 g

which replicas the nonzero wave vectors are associated.
We will refer to terms with g nonzero wave vectors as

residing in the g-replica sector. As an example consider a
term from the two-replica sector of the summation over k
in equation (3.10) for which

k =(O, h, 0, 1,0,0, . . . ), (3.13)

for which 1 o. ] ( o, 2 ( . & a n. This ordering is im-
plicit whenever we perform summations or products over
a. Having defined this notation, let us mention some of
its useful properties. First, the quadratic form in Eq.
(3.10) becomes

with h, l&0 being the only non-zero components of k.
The variable 0k for this value of k is written as Ahr. Of
course, this construction only introduces
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g=2 a k&, . . . , k ~0
Q'

ki, . . . , k (3.14) f1"xQ(x) g f (x )=0, (3.18)

The first sum in the preceding equation runs from 2 to n

because the zero- and one-replica terms are absent from
the summation, as discussed below Eq. (3.4). Second, the
measure for integration over 0 becomes

DQ= g Q + d(ReQg' g'}d(lmQq' t') .
g=] a k&, . . . , k &0

(3.15)

Third, the Fourier transform in replicated real space is
defined by

Q(x ) =— Q-e'" "
Vn

. XX X
g=2 k, , . . . , k ~O

a,
Xexp i g k, x '

a =1

for any functions [f
This decomposition into sectors makes for a particular-

ly simple interpretation of the order parameter. We will
now show that [PIP' z }(q)] can be exactly expressed

in terms of A. In terms of the new variables, the last
term in the exponent in Eq. (3.10) becomes

n

Re g g g Qq' 'q'g q
'' 'q'=Re g Qqg„- .

g=2 a k), . . . , k ~0 k

(3.19)

We can obtain the Q dependence in the 5 function of Eq.
(3.10) by differentiating with respect to Q:

X
[&If' z }

(q)] ~ lim fDQ exp — ~ g ~Qz ~

n~0
k

yn

P g~ 1' ''' rn

Iki, . . . , k

n gQ' ''(x' x'}
yn —g

(3.16}

where

NwI QI (3.20)

Fourth, there are the following useful orthogonality
properties:

fd" xQ(x)=0, (3.17) and

+l
B(Rez) B(imz)

(3.21)

ex~~+ = fDc exp He+(lx N/V )Re X fl—&g"e fDce '—:(exp tp XIV")Re X fix g.
& )k n

(3.22)

(3.23)

The disorder-averaged free energy per chain is given by

f= lim —([Z"]—1),1

n-0 Nn

evaluated at the stationary value of 0 with positive
semidefinite Hessian. The expectation value ( . . ) „ is

taken with respect to the Hamiltonian of Eq. (3.6).

[Z"]~ lim fDQexp — g IQI. I +&~[Q]
n~p 2V"

(3.24)

In the thermodynamic limit N~ ~, the saddle-point ap-
proximation becomes exact, and we obtain

2f [QJ = lim — ~ g [Qq) —W'[QJ
n-0 n

IV. LANDAU THEORY QF THE TRANSITION

The liquid phase corresponds to Q=O. We are unable
to compute IV[ Q I for arbitrary Q, but we can exhibit the
instability of the liquid phase by expanding W[ QI about
0=0. To fourth order we obtain

2 l 2f [QJ= lim ~ g a-~Q-~' ——
n~p 2@n k k N yn

k

Q„-Q-,Q I „, V"5„-~-,+
k, l, m

4
p
V'n

Q„-Q-,Q Q„r'„", V"
k, l, m, n

r'"' vs „
,k, p

2
g (p~)= 1—

N

¹(g g )

k+1+m+8 0

(4.1)

(4.2)

(4.3)
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, 2) X
max (4 4)

Taking the n ~0 limit, v e find that the fluid phase is un-

stable when X„exceecls X/2.
(2)

The location and value of the maximum of I
&

is

straightforward when n ~ 1, but becomes a delicate issue
(2)

when n-~0. The maximum value of I
&

is achieved at
the smallest k, which is no longer necessarily zero in the
limit n ~0. For example, in the noninteracting fictitious
fluid approximation, V'&

' increases without bound for
negative k . We have not been able to resolve this issue,
and in the remainder of this paper, we shall assume that
I ' is maximal near the origin; thus the instability sets in
via the longest allowed wavelengths at finite p . If this is
the case, we expect that all coefficients in the Landau
theory can be related to thermodynamic quantities by us-

ing the appropriate sum rules.

We have retained only those terms which contribute in
the n-~0 limit, and the linear term vanishes due to the
translational invariance of the liquid phase.

If, for a given p, any ak is negative, then the liquid

phase is unstable and the system will form an equilibrium
amorphous solid. If, and when, this happens is deter-
mined by the correlations of the fictitious fluid, intro-
duced earlier. Suppose the number of cross links,
X =p X/2, is increased from zero. The instability will
first set in when (u exceeds N/21 ','„, where I','„ is the
maximum value of I k

' over all values of k.
The important feature of the fictitious fluid is that the

interactions between the chains can stabilize the homo-
geneous phase if the interactions between chains in the
real system are sufficiently strong. Provided the homo-
geneous phase is stable, the correlation functions only
determine the coefficients I '"' which themselves deter-
mine the coefficients in the Landau free energy of Eq.
(4.1). We do not expect the precise numerical values to
be important, and it may even be reasonable to approxi-
mate the correlation functions I" by the values they
would have for noninteracting fictitious chains. For
noninteracting chains and n + 1, we can use the result
that k ~8~ /V "and I &' is a monotonic decreasing
function of k . Then for large V

gaf3 age
kl ~ k+10 ' (5.1)

Inserting this ansatz into the free energy, Eq. (4.1), we ob-
tain

f IcoI = lim
n~0

r

y —,Tr(~ )
dp (2) 1

2p

y' 'Tr(co )
—

y 'Tr(co )
n n

P (4) y ( a/3)2( a) )2
12d '

aPy

3d '
/2 (4) y (

a/3)4

a, P
(5.2)

where the coefficients depend on the long-wavelength
limits of the correlation functions,

»m
kl, . . . , k„ I

0

p(r)
kl, . . . , k,

(5.3)

PI ) /( (g):6(q) (5.4)

and the system is a fluid. For e )0, we can use Parisi's
solution" to obtain

2 (4)

Ã "k'/ (v) l
=

j ~ I (3) i2 6 (3)

(4)
+ 1— '6 q—

4(y(3) )2 12 6y(3)
(5.5)

and, hence, the system forms an equilibrium amorphous
solid. This is a good indication that the complete calcula-
tion would exhibit the solid phase with broken replica
symmetry. A full treatment of the problem, without
truncating to the longest-wavelength modes, and includ-
ing all replica sectors is required.

The result obtained for f Icoj has the same form as that
of the Sherrington-Kirkpatrick model, even up to the
signs of the terms. This is crucial because it is the sign of
the coefficient of g &(cu ~) which is responsible for the
breaking of replica symmetry.

Writing e=2y( ' —(p-) ', it follows that for e (0,

V. ONSET OF RIGIDITY
IN THE TWO-REPLICA SECTOR VI. CONCLUSIONS

In this section we discuss a severe truncation of the
complete problem: the two-replica sector. In fact, al-
though this sector is far simpler than the complete prob-
lem, it is still too difficult. Here we shall treat the case of
the onset of rigidity, examining only the very-longest-
wavelength modes. We retain only modes in the two-
replica sector, each with wavevectors of the minirnurn
non-zero magnitude. We assume also that the saddle
points are translationally invariant, and we choose the
form of Sl to be A, k' 'k'=0 unless g =2, and k, and k2

have the smallest nonzero magnitude 2~/V' . In this
case,

In I we showed that the statistical mechanics of ran-
domly cross-linked macrornolecules, taking into account
both the topology of the network and the disorder of the
cross linked, can be described by the probability distribu-
tions for the overlaps. In the present paper, we have at-
tempted to evaluate these distributions using the replica
method. We have demonstrated the instability of the
cross-linked fluid of randomly cross-linked macro-
molecules to the formation of an equilibrium amorphous
solid. Furthermore, we have found indications that the
Landau theory has broken replica symmetry, which is
consistent with the theory of I; this leads us to be op-
timistic about the applicability of the replica theory.
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