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Boundary conditions of the diffusion equation and applications
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A particular expression of the mutual coherence function of a wave is first derived for a system of
random layers with rough boundaries, starting from the unified Bethe-Salpeter equation that in-

volves the random medium and boundaries on exactly the same footing. An effective scattering ma-

trix of the medium is then introduced, which is the only medium-dependent quantity involved in the
expression and is obtained as a boundary-value solution of the diffusion equation. The diffusion ap-
proximation is based on an eigenfunction expansion by using a set of eigenfunctions of the medium
scattering cross section that can be even rotationally variant, and the first term is good enough in

the diffusion region. Here each expansion coefficient is obtained as the solution of an integral equa-
tion with terms of the boundaries, and, for the first term, the equation can be converted to a
diffusion equation with a source term, subjected to boundary conditions determined by the bound-

ary scattering cross sections. Here the condition at each boundary is valid even when the averaged
refractive indices of the two media differ from each other by a large amount, as contrasted to the
condition of no reAection used so far when obtaining boundary-value solutions of diffusion equa-
tions. Specific expressions are obtained for both backscattered and transmitted waves through a
random layer, along with numerical examples. The boundary condition is finally generalized to
meet the case of a rough boundary between two random media of different kinds, consistent with

power conservation.

I. INTRODUCTION

To investigate the wave coherence function in a system
having a partial distribution of random media and ran-
dom boundaries, it is possible to construct the Bethe-
Salpeter (BS) equation of the entire system in such a way
that the medium and the boundaries are involved in the
equation on exactly the same footing, and this enables us
to obtain several expressions of the solution to choose
from, by introducing effective scattering matrices (of not
only coherent but also incoherent characteristics) for the
medium and/or the boundaries. ' Here the transport
equation can be conveniently utilized to obtain an ele-
mentary (incoherent) scattering matrix of the medium
alone and thereby to construct the effective scattering
matrices of the boundaries as affected by the medium
fluctuation, for example (Sec. III). On the other hand,
the transport equation has been solved mostly through
numerical methods, while the diffusion equation has also
been utilized as a simple alternative which enables us to
obtain the solution analytically, because of the approxi-
mation involved which is often good enough to get prac-
tical answers. Also for the boundary-value problems,
e.g. , of a random layer with two free outside spaces (Fig.
1) the diffusion equation has been solved simply with the
boundary condition of no reAection, regardless of wheth-
er the average refractive indices of the two media are
nearly equal or differ from each other by a large amount,
as in the case of a boundary between air and water with
random scatterers in it.

The diffusion approximation is based on an eigenfunc-
tion expansion of medium scattering matrices by using a
set of eigenfunctions of the medium scattering cross sec-
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FICx. 1. geometry of a random layer for Eqs. (2.23), (2.57),
and (2.58).

tion which can be arbitrarily anisotropic, and the first
term (to be referred to as the diffusion term hereafter) is
good enough in the diffusion region (Sec. IV). Here in the
case of a random layer, the diffusion term can be obtained
as a boundary-value solution of a diffusion equation once
the boundary condition is found in terms of a given
scattering cross section of each boundary. To this end,
the BS equation provides us with a powerful means by
leading to an integral equation for the diffusion term,
which has boundary terms so that the boundary condi-
tion can be found directly from the equation, and also
showing the expression for both backscattered and
transmitted waves through the layer, in terms of the
diffusion term (Sec. V).
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The boundary condition can be generalized, consistent-
ly with power conservation, to meet the case of a rough
boundary between two random media of different kinds
[Sec. VI].

tween S& and Sz (Fig. 2); hence, with the notation
8'„'=n"8/Bx, where n I" is the unit vector directed
outward normally to S„the boundary equation can be
written as'

II. BS EQUATION FOR THE ENTIRE SYSTEM
AND SCATTERING MATRICES

2—&'„'l(,(p)= g f dp'B.'b"(p
l
p')gb(p') .

b=1
(2.4)

[L, —q, (x)]ttj, (x)=j,(x),
2

a —k„Im(k, ) (0 .La

(2.1a)

(2. lb)

Here q, (x) is the random part of the medium, and j,(x)
is a source term; k, is the propagation constant when the
medium is free from the random part, and the medium is
assumed to be nondissipative for the time being. The
boundary condition is assumed to be the continuity of P
and its gradient normal to the (real) boundary surface,
and consistently with this, the power vector W(x) is
defined by

The coordinate vector in three-dimensional space is
denoted by x=(x, ,x2,x, )=(p, z) with p=(x, , x2) and
z —x 3 where the z axis is taken in the direction normal
to the average boundaries (Fig. 1). The scalar product of
two space vectors a=(a, a, ) and b=(b, b, ) is denoted by
a b=a.b+a, b„where a.b=a, b, +a2b2. We first con-
sider two random layers separated by a rough boundary
which is planar on average, as illustrated in Fig. 2. A
scalar-wave function g(x)e'"', where co & 0 and t is time,
is considered, and is denoted in each layer by P, (x),
a =1,2, whose wave equation is

2

(L. q. )~. -XB.'b'—~b=~.
b =-1

(2.6)

Here both B,'b ' and q, are regarded as x coordinate ma-
trices, defined by the elements

8,'b '(x
l

x')=5(z+d, )B,b (p l
p')5(z'+db), d, =0

(2.7)

Here g, (p) denotes g, (x) bounded on S„and,when the
boundary is nondissipative,

(pip )] =[8 (p Ip)] =8 ~(pip )

i.e., the matrix defined by the elements B,b '(p
l
p') is

Hermitian with respect to both the coordinates and the
indices. This means that B" ' is a real symmetrical ma-
trix when the system is subject to the reciprocity relation
with symmetrical elements of B" '. Hereafter, the
boundary space enclosed by S, and S2 will be neglected,
on letting d 2 ~0, unless otherwise noted; so that
S,2

——S, +S2 at z =0 represents the two reference bound-
ary planes, together.

The wave equations (2.1) and the boundary equation
(2.4) can be unified to be written by one wave equation of
the form

w(x) = —.1t*
1

2l
P(x),

CIX

whose power equation is therefore

(2.2)

and q, (x
l

x') =q, (x)5(x —x'), and the solution is subject
to the new boundary condition that 8'„'g,=0, a =1,2,
inside the boundary space 0 & z & —d2. The proof can be
given by integrating Eq. (2.6) with respect to z over two
infinitesimal regions enclosing S1 and S2, separately.

With a new matrix U,b, defined by
.W(x) = —.[hatt"j (x) —j*l((x)] .

2l
(2.3) (12)

Uab qa ~ab +Bab (2.g)

The boundary condition can be transferred from the
real boundary onto two reference boundary planes, say,
S, and S2 at z =0 and z = —d2, respectively, chosen
such that the change of the boundary height is ranged be-

g (L,5„—u„)g,b(x
l

x')=5,b5(x —x') (2.9a)

the equation of the deterministic Green function of the
new wave equation (2.6), say, g,b(x l

x ), can be written
as

2k1+ q1

or in matrix form as

(L —u)g =1, u =q+8 ' ' (2.9b)

z=0 Here U may be regarded as an effective medium represent-
ing both the medium and the boundary on an equal basis.

-d2

n~2& kz+ qz
S2

FICi. 2. Geometry of a rough boundary for Eq. (2.4). The
real boundary S is distributed within the range 0& z & —d2.

A. Statistical Green functions

Equation (2.9b) enables us to obtain the statistical
Green functions in exactly the same form as those in an
inhomogeneous random medium U, and the results are
summarized as fo11ows. ' The averaged version of Eq.
(2.9b) becomes written as
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(L —M)G =1, G =(g),
in terms of an effective medium M of v, defined by

(2.10) 5(1;2)[M*(1)—M(2) —[G*(1}—6 (2)]K (1;2)I =0 .

(2.21)

MG =(ug ), M =M(~)+M'"'. (2.1 1)

Here M'~' and M" ' are also defined in the same fashion,
by

M'q'G =(qg) M" 'G =(B" 'g) (2.12)

Iab;cd(x)&X2 x )&X 2} (gac(X1 I X1)gbd(X2
I
X2})

or in matrix form by

(2.13a)

and are approximately equal to the independent contribu-
tions from the medium and the boundary, respectively,
with the elements M,' '6,b and M,'& '.

For the statistical Green function of second order,
defined by

Here the matrix 6(1;2) is defined by the elements
5(x) —x2), such that 5(1;2)A *(1)B(2) represents

fdx) fdx2@xl X2)A (Xl IX1}B(X2IX2)

= f dx A (x',
I
x)B(x

I

x 2)

=A B(x', lx2) .

The relation (2.21) ensures conservation of integrated
power of the entire system, whereas there exists also a lo-
cal relation that ensures power conservation at every
point in space. These relations approximately hold true
also for each M' ' and K' ' of the medium and the bound-
ary, independently, leading to optical relations of their
own.

I (1;2)= (g*(1)g(2)), (2.13b)

(here and also hereafter, the subscript 1 is attached to the
coordinates of quantities of the complex-conjugate wave
function, and the subscript 2 is attached to those of the
original wave function), we first introduce a matrix bu,
defined by

B. Case of three random layers

The situation is the same also for the case of random
layers as illustrated in Fig. 1, and various equations for-
mally remain unchanged with the setting

Av =v —M =Aq+AB" ',
where

q:q M ~ AB(12) B(12) M(12)

and employ the expression

g =G(1+hug), (b,vg ) =0,

(2.14a)

(2.14b)

(2.15)

(2.22a)

(2.22b)

Thus, using the notation I,'f+' + ', a, b =1,2, 3, for the
second-order Green function in this case, we obtain the
BS equation in 3&3 matrix form, as

I(0+12+23)—U(C)[1+(K(e)+K(12)+K(23))I(9+12+23)]

for both g*(1) and g(2) in the right-hand side of Eq.
(2.13b). Hence we obtain an expression

I(1;2)=G*(1)G(2)[1+K(1;2)I(1;2)] (2.16)

of the form of the Bethe-Salpeter equation, with a matrix
K(1;2), defined by

(2.23)

Here K'q) is a diagonal matrix with the elements K,')
=—K,'~'6, b, and K" ' and K' ' are the contributions pure-
ly from the boundaries S12 and S23 with the nonvanish-
ing elements K,'I', ', a, b =1,2, and K,'b ', a, b =2, 3.

K (1;2)I(1;2)= ( bu*(1)b v (2)g*(1)g(2) ) (2.17) C. Solutions and scattering matrices

in the same fashion as M by Eq. (2.11). Here K (1;2) can
also be approximated by the independent sum of K'~'
from the medium and K" ' from the boundary, as

K( 1;2)=K(q)(1;2)+K(")(1;2). (2.18)

Here K' ' is a diagonal matrix with respect to the sub-
scripts, having only the elements K,' ':—K,', '.„,while the
important elements of K' ' ' are limited to K'b '—:K' '.b&.
Hence, in terms of the notations I($+ ' '=I„bband.

U,'b '(1;2)=G,*b(1)G,b(2), (2.19)

the BS equation (2.16) can be written, in 2&&2 matrix
form, as

I'~+"'= U'"[1+(K'"+K "')I'~+'"] (2.20)

The matrices M and K, as defined by Eqs. (2.11}and
(2.17), respectively, are not quite independent of each
other, subjected to a (optical) relation of the form

I(12) U(C)( 1+K(12)I(12))

Here the solution can be written as

I(12) U(C)+ U(C)S(12) U(C)

(2.24)

(2.25)

in terms of a (incoherent) scattering matrix of K'' ',
defined by

g()2) K(12)( 1+ U(C)g()2)) (2.26a)

(1 K(12)U(C)) —lK(12) (2.26b)

The Green function G,b can also be written in the same
form,

(2.27)

To obtain the solution of the BS equation (2.20), we
first introduce the solution in the special case K q'=0 (on
keeping M'~'&0, however), say, I('2'; so that



39 BOUNDARY CONDITIONS OF THE DIFFUSION EQUATION. . . 13S9

X G."'(z —z'), (2.28)

with

G,' '(z —z')=[2ih, (A)] , 'exp[ i—h, (A)~ ,z —z'
~ ] . (2.29)

Here

in terms of the Green function G,' ' in an unbounded
medium of M,' ', whose Fourier representation in the p
space is therefore

G,' '(x —x ')=(2m )
.

fdic e.xp[ i—A (p, . p—')]

Here

y (1;2)=[7 )(1)]*7( )(2)+[7 (12)(1)]*G—1(2)

+ 7 (12)(2)[Ge(1)]—1 (2.37b)

wherein the interference terms are negligible when the
source and the observer are both separated enough from
the boundary, whereas they are not negligible otherwise
[see Eq. (2.39b)].

By using expression (2.37a), Eq. (2.25) is finally written
as

(g) —[(k(M))2 g2])/2

I(.™(k2+M (q)})/2
(2.30)

I(12) U + U (12) U (2.38)

Here o" ' means a resultant scattering matrix of the
boundary and is given by

where M',q'(A, ), A, =(A, , h, ), is the Fourier transform of
M,'q', and Im(h, ) &0. Hence G,b(x

~

x ') also has the
Fourier transform G,b(z

~

z') from Eq. (2.27), as

G,(, (z z') =G,' '(z —z')6, (, + G,' '(z)T,'b 'Gb '( —z') .

(12) I/()2)+( 1+ I/(12) U)S(12)( Uv(12)+ 1 )

where, from Eqs. (2.37b) and (2.32),

F(c) 1+Uy(12)

(2.39a)

(2.31} =[1+(R'"'*(1)&][1+&R'"'(2) &], (2.39b)

Here

(2.32)

where (R,(1', '&&(Rb", '& is the reflection-transmission
coe%cient of the boundary and, when it is perfectly
smooth, I(q+») I(»)(1+it. (q)7(q+»)

) (2.40)

which can be made more specific by using Eq. (2.34b);
and F ' '=—1+ V" 'U is obtained from F' ' by the trans-
position.

The introduction of I" ' by Eq. (2.24) enables the BS
equation (2.20) to be rewritten as

h1+h2 h, +h2
(2.33)

In the general case where M,'b '&0, (R,'(', '& is given in
2X2 matrix form by'

and hence the solution as

I(q + 12) I(12)+I(12)S(q/12)I(12) (2.41)

in terms of a scattering matrix S'q ' ' of E'q', defined by

( R (12)
& (ih M (12)

)
—1(ih +M (12)

) (2.34a)
S(q/12) It (q)( }+I(12)S(q/12)) (2.42)

or

(R'' '&+1=(ih —M'' ') '2ih (2.34b)

where h is a diagonal matrix with the elements h, b=h, 5,b, and M " ' is the (two-dimensional) Fourier
transform of M" '. Hence, setting z =z' =0 in Eq. (2.31),
use of Eqs. (2.32) and (2.34b) leads to the expression

G(z =0
~

z'=0)=(ih —M" ') (2.34c)

which has a form similar to that given by Eq. (2.10) and is
often referred to as the surface Green function.

Both Eqs. (2.27) and (2.31) can be written in matrix
form by

S(Oq) K(q)( 1 + US(oq) ) (2.43)

so that Eq. (2.42) can be rewritten, on using Eq. (2.38), as

S(q/12) S(oq)( 1+U (12)US(q/12) )

= ( 1 —S(oq) U (12 U) 1S(oq)

(2.44a)

(2.44b)

Hence Eq. (2.41) becomes written finally in the form

with the superscript (q/12) to mean the dependence on
g" ' through I" '. Here the effect of o'' ' can be made
explicit by introducing a solution of Eq. (2.42} in the spe-
cial case 0" '=0, say, 5' ', governed by

G G(0)+ G(0)T(12)G(0)
7(q+12) I(12)+(1+ Uo()2) )I(s/12)( (12)U + 1 )

(2.35)
(2.45)

Therefore, by introducing a diagonal 2 )& 2 matrix
U, b

——U, 5,b, defined by the elements
Here the entire effect of the random medium appears
only through a new matrix I' ' ', defined by

( 1.2) [G(0)( 1 )]scG(0)(2) (2.36)

U '(1;2) of Eq. (2.19) can also be written in the same
form,

U' '(1;2)= U(1;2)+ U(1;2)V' '(1;2)U(1;2) . (2.37a)

I(s/12) US(q/12) U

and given as the solution of
7(s/12) I(Os)( 1+ ()2)7(s/12)

)

where

(2.46)

(2.47)
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I (os) US(oq) U

UK(q)( U+I(os))

(2.48a)

(2.48b)

which is a diagonal matrix with respect to the subscripts,
and tends to zero as K' '~0.

Example: Case of a random layer (q, =q3=0, q2&0)

The only nonvanishing element of I ' + in Eq.
(2.55) is I(22/' + ' in this case. Hence, when the source is
in the space k, and the layer width L is large enough
such that y2L &&1, I'~+' + ' within the same space is
given by

Example: Case of a semi injin-ite random medium

(q, =-0, q2&0)

+12+23) I( 2 + U I(
11 11 ~ 1~12 21 1 (2.57)

and the transmitted wave into the space k3 is given by
We have I, ' =I1'b ' ——0, and the only nonvanishing

element of I' "is I2'2 ' ', which is the solution of
I(q+»+») U ~(»)I(~~»+») ~(») U31 3~32 22 ~21 1

(2.58)

I(s/12) I(Os)
( 1+ (12)I(s/12)

)22 2 22 22

Here I2 ' is the solution of

(2.49)
where the contribution from I&', + ' is presently negligi-
ble. Here the random medium is involved only through
I2'2 ' + ', which is the solution of

I2 U2K2 ( U2+I2 (2.50) I(s/12+23) I(Os) t I, ( ~( 12), (23) )I(s /12+23) ]22 (2.59)

I(q+12) I(12), U (12)I(s/12) (12)U11 11 + 1
~ 12 22 ~21 1

(2.51)

and the wave transmitted into the space k2 is given by

and, therefore, is subject to the condition of no reAection
at the boundary of K2 ' that is distributed over
0 & z & —~ [Eqs. (3.11) and (3.22)].

Hence, when the wave source is located in the space k,
[Fig. 1], I(q+' ' in the same space is given according to
Eq. (2.45), by

where I(2 ' is the solution of Eq. (2.50) with the K2~' dis-
tributed over the range 0) z ) —L. Here, as for o' ' ' and
o' ', we may utilize experimental values of the boun-
daries, instead of the theoreticals.

Thus the problem is reduced to finding the solution of
Eq. (2.59), which will be obtained in this paper as a sim-
ple boundary-value solution of the difT'usion equation, in-
stead of solving the conventional transport equation de-
pending actually on numerical methods.

I(q + 2) I(12) + ( 1+U (12) )I(s/12) (12) U21 21 222 22 ~21 1
(2.52) III. Q REPRESENTATION

AND SCATTERING CROSS SECTIONS

I(12+23) U g + U (12+23)Uab a ab a ~ab b (2.53}

Also for the case of three random layers, as illustrated
in Fig. 1, the situation becomes exactly the same by intro-
ducing a solution of when I(,' '=0, a = 1,2, 3, say,I'' +" ', and letting I'' + ' do all the roles of I" ' in Eq.
(2.45); that is, the basic equations (2.45)—(2.48) remain un-
changed with the replacement of the superscript (12} by
(12 + 23) and using the expression

A specific expression of Eq. (2.59) is obtained in optical
form by partially making the Fourier transformation.
We first introduce relative coordinates r and p, defined by

r=x2 —x, , p= —,(x2+x, ), (3.1)

and the corresponding Fourier variables u and A, , defined
by

Here, when the distance between the two boundaries, L,
is su%ciently large compared with the wave coherence
distance, say, yz ', so that y2L &&1, o', 'b + ' can be ap-
proximated by

u= —,'(s)(,2+A. )), A. =A, 2
—A)

so that

—x, .A]+x2 A2
——u r+A, -P .

(3.2)

(3.3)

(2.54)

I(q +12+23) I(12+23)+{ ~ + U (12-+23)~I(s/12+23)

X( (12+23)U+1) (2.55)

being the independent sum of the two boundary scatter-
ing matrices, o, 'b

' of S,2 and o „'b ' of S23. Hence, for ex-
ample, Eq. (2.45) is replaced by a 3X3 matrix equation,
as

Then, the matrix elements of K' ' can be written in the
form

K'q (x, ;x,
~

x', ;x2)=K ~'(r
~ p —p'

~

r'), (3.4)

in view of the translational invariance, approximately in
the vertical direction, though; and its Fourier transform
therefore has the form

K (~)(A. );A,2 ~

A, I;A, 2)=(2~)'5(A, —A, ')K '~'(u
~

A,
~

u') .

and, with (2.54), Eq. (2.47) is changed to

I(s/12+23)=I(Os)[1+( (12)+ (23))I(s/12+23)] (2.56)

(3.5)

On the other hand, the corresponding Fourier trans-
forms of the wave quantities, e.g. ,

Here I' " is still governed by Eq. (2.48b).
It may be remarked that, besides expressions (2.45) and

{2.55), several other expressions are possible, which are
also useful depending on particular situations and infor-
rnation required.

I "/' )(u, A.
~

u ', A, ')

of I ' ' ' where I,= (A„X,), cannot be written in the same
form, and, therefore, on suppressing A, and dropping the
factor (2~) 5(A, —A. '), we will hereafter use a composite



39 BOUNDARY CONDITIONS OF THE DIFFUSION EQUATION. . . 1391

expression, e.g. ,

I""'(u,z
~

u', z'),
by making the Fourier inversion only with respect to X, .

As to the transform U, of U„weobtain

U, (u, A, ) = G,*(u——,'A, )G, (u+ —,)A, )

=F5(u —k, )(k, y, i —u A).
with the approximation k,' '=k, and the constant

y, =(2ik, ) '(M,'~'* —M,'q')(u), (3.7)

excluding the case of when the medium is intrinsically
dispersive; the expression (3.6) is a direct consequence of
the identity

G,*(A, , )
—G, (Az) =

I G, (A~) —[6;(A., )] I U, (A, (;A~),

with the approximation of the left-hand side by
2~i5(u —k, ), and is valid under the condition

Hence, on changing the variable u by u = u 0,
du=u du dQ, where u =

~

u
~

and Q=(Q, Q, ), Q =1
is the unit vector, we obtain an important relation that,
for any slowly changing function f (u),

(2vr) f du U, (u, A, )f(u)= f dQ U, (Q, A, )f(Q),
(3.8)

Here the A,, Fourier inversion of U, (Q, A, ) is

XU„(Q',—z') . (3.13)

Here, from Eqs. (2.39) (see also Appendix B),

o "'(Q
~

Q )=Q"
~

(Z "(Q)) 'fi'(Q" Q'"')

+cr' '
( Q~ Q), (3.14)

where Q "=[Q",Q,"]denotes the unit vector in space
k„defined by u =k,0"and

Q(a) +[ I (Q(a) )2]) /2

U, (Q,z) —= f dA, , exp( ik—,,z) U, (Q, A, )
2m.

Q, ' exp[ —Q, '(y, —iQ. A, )z], Q,z )0

0, Q,z &0 (3.1 1)

while the three-dimensional inversion U, (Q,p) is given
by

U, (Q,p) =
~ p ~

exp( —y, ~ p ~

)5 (Q —p/
~ p ~

) . (3.12)

Hence, with the rule (3.8), Eq. (2.38), for example, leads
to the expression

I.',"'(Q,z
~

Q', z')=U. (Q, z —z )S„n'(Q Q )

+ U. (Q, z)o(.',"(Q
~

Q )

where

U, (Q, A, )=(y, —iQ A),
f (Q)=(4~) f (u=k, Q) .

(3.9)

(3.10)

and 5z is a specular 6 function of 0 which is not zero
only when the scattering is made in the specular direc-
tion, regardless of the sign of 0,'; o.,b is the incoherent
cross section, given in terms of the Fourier transform
S'"'by

o', b' '(Q~Q')= g (4~) F„.; (u)S", .kl(u~A(=0)~(u')Fk& bb(u').
i,j,k, I

(3.15)

where the notation
~ n means setting u=k, Q" and u'=kb Q' ', and neglecting the A. dependence.

The transform cr,'b '(Q
~

Q ) provides the resultant (including both coherent and incoherent) cross section per unit
area of the boundary for scattering of the wave from direction Q in space kb to direction Q in space k, [Eq. (3.26)],
and is subject to an optical relation resulting from relation (2.21) (with the details in Ref. 1) as

2

f d Q 'k, cr,'b '(Q '
i
Q ) = —kb Q'„')0 .

] 2'

Here Q'„'=n(" Q and the reciprocity [similar to Eqs. (3.20)] holds:

o."b2)(Q
~

Q')=o(b(.2)( Q'
~

—Q) . —

(3.16a)

(3.16b)

The expression (3.13) should be regarded as the matrix elements of I'' ' with respect to Q and z, to be multiplied with a
Q-z vector f (Q,z), defined by Eq. (3.10).

In the same way, the Q-z expression of Eq. (2.49) becomes

I~2
' '(Q, z

i
Q', z')=I2'(Q, z

~

Q', z')

+ fdQ "dQ "'I2' (Q, z
~

Q",z"(.=0))o'' '(Q"
~

Q'")I' ' '(Q"' z"'(=0)
~

Q', z') . (3.17)

Here the original I(2' is the solution of Eq. (2.50), whose Q-z version can be written most simply in the form of the
transport equation, by multiplying the equation to the left with U2 and using the relation
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a
y, +0, U, (n, z) =6(z)' az

(3.18)

from (3.11); wherein the term —iA. .Q has been included in y, . Hence, with the notation (},=(3/i}„

(y, +Q, i},)I',"'(0,
~

0', ')=K',"(0
~

0')U, (0', — ')+ Jdn "K',"(0
~

0")I',"(0",
~

0', ') .

Here z, z' & 0 in the present case, and, from Eq. (3.10),

K (2q) ( 0
~

0 '
) = (4~ ) K (2~)( u( =k 2 0 )

~

A ( =0 )
~

u '( =k, 0 '
) )

=Kg~) ( n— —n),

(3.19)

(3.20a)

(3.20b)

where the last relation is from

K 2("(u
i

A,
i

u')=K (2~'( —u'
i

—A, —u)=K 2(~)*(u —A,
i

u'),
which holds true whenever K2q) is a symmetrical matrix of the coordinates. By the same reason, Eq. (3.7) leads to

y2(0) =y2(u( =k20)) =y2( —0) .

(3.20c)

(3.20d)

Thus K2 '(0 0 ) provides the scattering cross section per unit volume of the medium q2 and is subject to the opti-
cal relation

y, (0)= J dn 'K',"(0 '
i
0) (3.21)

from Eq. (2.21) with M ~M(2'1), K ~K2('1), and G ~G(2o).
Equation (3.19) is the same as the conventional transport equation with a source term in a random medium K('1), and

the solution is subject to the condition of no reflection at the boundary, in view of Eq. (2.50) having the factor U (Q, z)
of Eq. (3.11); that is,

I, '(Q, z(=—0)
~

0', z'( &0)}=0, 0, &0 . (3.22)

~ith known I2 ', I2'2 ' ' is obtained as the solution of integral equation (3.17), and thereby I()+)2) is provided through
Eqs. (2.51) and (2.52).

The same is true also in the case of a random layer, and the expressions of Eqs. (2.57) and (2.58) become

(Q, z
~

0 ', z') =I', ', (Q, z
~

0 ', z')+ f dn "dn "'U, (Q,z)o', '2'(0
~

0 ")

xI'"'+"'(0" "(=0)
~

0"' "'(=o)) '"'(n" jn )U (n

+ "+"'(n '
~

n ' '') = jd 0 "«"'»(0 z+I-)~""(0
l

0 ")

"(0" "(=—I-)
~

0'" "'(=0)) '"'(0"'
~

0')U (0' ')

(3.23)

(3.24)

H«e I22 '(Q, z
~

0 ', z') is obtained as the solution of an integral equation similar to Eq. (3.17), with the add1tional
( 3)boundary term of o.
zz

' at z = —L.
The three-dimensional expressions of Eqs. (3.23) and (3.24) are straightforward by making the Fourier inversion with

respect to the variable k that has been suppressed so far. For example, Eq. (3.23) is replaced by

I(~+12+23)(0 ~0 )
—I( )(0 ~0 )

+ J dp"dp'" f dQ "dQ"'U, (Q,p —p")~I2 (0~0")
XI'"'+"'(n" "(=O)

~

"—"'~0 " z'"( =O) )

Xo'2') (Q"'~Q",U)(Q', p"' —p') . (3.25)

Here U, (n, p) is given by Eq. (3.12), I2'2 ' + '(Q, z
~ p ~

0 ', z') is the k. Fourier inversion of I2'2 ' '(Q, z
~

0 ', z'),
and, from Eq. (3.13),

II') (Q,p ~

0',p')=U, (Q,p —p')5 (Q —0')+ f dp" U, (n, p —p")oI') (0
~

0')U, (0',p" —p') . (3.26)

As to the physical quantities involved, the power Aux is particularly important because of the continuity across the
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boundaries. The averaged power at a point p in space k, for the wave from a point source at p' in space k&, say,
(W,b(p ~

p') ), is generally given according to the definition (2.2), by

(W,„(pp')) =i I b(r p ~

r', p')
r=r'=0

=(4m-) 'f dn fdQ'k. n "I,q(n, p ~

Q', p'),

in terms of the relative coordinates of (3.1) and with the
Q representation by Eq. (3.10).

[1—A (A, )]S~(A,
~

A, ') = A (A, )(2~) 6(A, —A, '), (4.6a)

or, by the Fourier inversion,

IV. EIGENFUNCTION EXPANSIONS
AND DIFFUSION APPROXIMATION

1 —A i
. a

Bp
S„(p

~ p ')= A i 5(p —p') . (4.6b)
Bp

= A (A, )f„(Q,A, ), (4.1a)

fdn'f„(0', A)U2(0 ', A)K2q (0'
~

0)= A (A)f„(Q,A },
(4. lb)

with the normalization

fdn f„(QA, )U~( QA, )f~( QA, )=6~~ .

Here Uz(Q, A, ) is regarded as a weighting function when
making the 0 integration, and A(A, ) is the eigenvalue
and tends to zero as

~
A,

~

~ ~, in consequence of Eq. (3.9).
In terms of the eigenfunctions and the eigenvalues, K2 '

can be exhibited by the series

(4.2)

K~q'(0
~

0 ') = g A (A)f„(0,A )f„(Q', A } . (4.3)

A similar expansion is possible also for the incoherent
scattering matrix S2 ~', i.e.,

S2 ~'(Q, A,
~

0', A, ')= g f„(Q,A)S„(A,
~

A, ')f„(0',A, '),

(4.4)

and, with Eq. (4.3), the substitution into Eq. (2.43), whose
0 version is

S '"'(Q, i
~

Q, A". ) =K'"(0
~

0')(2~)'6(A, —i')
+ f dn "K'q'(0

~

0")U(0",i)
xs "&'(0",i~ 0', i ),

leads to

The Green function I'~+' ', as given by Eqs. (2.51) and
(2.52) for a semi-infinite random layer, is dependent on
the random medium only through the function Iz'z ' '

that is the solution of the integral equation (3.17). Here,
to a good approximation, this equation can be converted
to a diffusion equation so that Izz ' ' can be obtained as a
simple boundary-value solution, including the cases of
when the media's averaged refractive indices differ from
each other by a large amount.

We first introduce a set of eigenfunctions f„(Q,A. ) and

f„(Q,A, ) of the cross section K~q'(Q
~

0 '), defined by the
eigenvalue equations

f d 0 'K'q'(0 ~0 ') U (0 ', A)f„(Q', A )

Here, from Eq. (4.4),

s," q(n, p ~

0',p )

P„(Q,A. ) = U~(Q, A, )f„(Q,A. ),
p„(0,A, ) =f„(0,A, ) U2(Q, A, ),

which are subject to the normalization

fdQQ„U2 'p~(Q, A, )=6„~,
and hence also

(4.8a)

(4.8b)

(4.9)

U2(Q, A, )6(0—0')= g $„(Q,A, )(h~(0', A, ) . (4.10)

Hence, by definition (2.48a) and Eq. (4.7),

I',"(n,p~n, p')

= y(t, 0, ~ „s&(pip )4, 0', —
~

Bp dp

(4. 1 1)

Here it may be remarked that the expansion coefficients
S„(p

~

p') are the same as those in the series (4.7) for
S2 ', and, therefore, that they are essentially medium
waves defined only in the region z &0 where Kz '&0, be-

ing zero wherever Kz~' ——0.
In the diffusion region where change of the wave inten-

sity is sufficiently small within the wave coherence dis-
tance so that

~

A, /yz ~
&&1, the convergence of series

(4.11) becomes good enough to be approximated by the
first term and by the eigenfunction and the eigenvalue
given by the first nonvanishing terms in their series ex-
pansions with respect to A, /y2. Therefore we consider
only the first term hereafter, and assume the form
K'~'(0. 0 ') subject to the rotational invariance, when il-
lustrated by specific expressions; its extension to the gen-
eral case is straightforward according to the methods of
Appendix A and Sec. V.

=Xf~ 0 i „S~(pip')f~
~p Bp

(4.7)
To make a similar expansion of the wave quantities

I'z' and Iz'2 ' ', it is convenient to introduce another set
of eigenfunctions P „(0,A, ) and P„(0,A, ), defined by
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Hence, on suppressing A. and replacing A, by id, when-
ever convenient, we obtain an expression of 3 (A, ) of the
form (Appendix A)

whereas, when z' ( —e, the right-hand side is zero. The
results are therefore summarized, by using Eq. (4.19), as

(2yz) '( —,
' +D a, )S„(z( = —e)

i

z')
1 —3 (ia, )=y, '{y' D—,a, )+O((a, /y, ) } . (4.12)

Here y' ' is a newly added term to represent an intrinsic
dissipation by the medium, for the latter's convenience;
and

1, 0)z ) —6

0, z'( —e.
(4.22a)

(4.22b)

D2 =(3yq) '(1 —a ) ) (4.13)

Also, to the same approximation,

where a, is the average of the cosine of the scattering an-

gle, defined by

a, =y2 ' f dQ(Q. Q ')Kz~'(Q Q ') . (4.14)

Here Eq. (4.21) implies that the radiation from a source
placed at the boundary is allowed only in the downward
direction, i.e., toward the random-medium side; this is
because S„(z

~

z') is a medium wave, as was emphasized
below Eq. (4.11), and is never propagated into the upper
region where K2 ' =0.

(Q, la, ) = y-,
- '( 1 —3Q,D, a, )

p „(Q,i a, ) = (4~) '(1 —3Q, D, a, ),
(4.15a)

(4.15b)
V. BOUNDARY-VALUE SOLUTIONS

OF THE DIFFUSION EQUATION

which become both independent of Q when 0, =0.
Thus Eq. (4.6b) is reduced, on setting A =1 on the

right-hand side, to

y~ '(y' ' —D2a, )S„(z
~

z') =5(z —z') . (4.16)

A. Boundary condition

The 0-averaged power Aux of the diffusion term, say,
( W, ) in the z direction, can be written as a sum of the
components ( W,

—) propagating in the positive and nega-
tive directions, respectively, by

X S'„"'(z( =0)
~

z'), (5.1)

in terms of the notation

( ' '( —a,
~
a, )) =fdQfdQ'(b„(Q, —a, ) ", '(Q

~

Q')

An eigenfunction expansion similar to Eq. (4.11) is
possible also for I2'2 ' ' and, by the substitution into Eq.
(3.17), the coefficient of the diff'usion term, say,S„''(z

~

z'), is found to be the solution of the integral
equation

s,'"'(z
~

z')=s„(z
~

z')+s„(z z'(=0))(oI, ',"(—a,'
~
a, ) )

(w, &=(w+)+(w;) .

Here, from Eqs. (4.11) and (3.27),

( W;-'(z
I z'))

(4.17) xp„(Q',&a, ) . (5.2)

Hence the boundary condition for S„'' '(z~z') is found, by
applying Eqs. (4.22) to Eq. (5.1), to be

dQk 0 0, S ')
Z

(4.18) (2y, ) '( —,'+D, a, }S'"'{z(=0)
~

z'( &0))

where the additional factor P„has been omitted for
short. Hence, when using Eq. (4.15a),

where

=&,,"I(a, ))sI "I( (=o) ~.'( &o)), (5.3)

( W,
—) =k (2y ) '(+ —,

' Da, )S„(z
~

z'), —

and therefore, from (4.17},

(4.19) (,","(a,)&=&,",'( —a, (=0)
~
a, }&, (5.4)

( W, &= —k y 'D, a,S„(z
~

z'), (4.20)

which shows that the left-hand side of the diffusion equa-
tion (4.16) is given, when y'"'=0, by the space diver-
gence of the power Aux vector except the numerical fac-
tor k2.

Here, on the boundary at z =0 (Fig. 1), we observe that
( W, ) =0 in consequence of Eq. (3.22) and ( W'+ ) is con-
tinuous, so that, integrating both sides of Eq. (4.16) with
respect to z over an infinitesimal range 0)z ) —e,
e = +0, the result can be written, when 0 & z' ) —e, as

& (, ',"(a,)) =(2y, )-'((,","),—( I,", I),D,a, ) .

Here

(5.5)

(S.6ai

showing that S~' '(z
~

z') can be obtained as a solution of
the inhomogeneous diff'usion equation (4.16) subjected to
Eq. (5.3), instead of solving the integral equation (5.1)
with known S„(z

~

z').
Here, when using Eqs. (4.15), Eq. (5.4) can be written

in the form

( W, (z
~

z')
& ~,',= —

& W, (z( = —~)
~

z') & =k, ,

(4.21)
(o.I, ',"),= f dQ f dQ'o", ,"(Q

~

Q')Q,' . (5.6b)
2~ 2.
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A. Case of a random layer (Fig. I)

The situation is the same also for I'2'2 ' + ' in Eqs.
(2.57) and (2.58), as long as y2L &~1, and its diffusion
coefficient SA' + ', say, is the solution of the same
diffusion equation subjected to the boundary condition
(5.3) at z =0 and also that at z = —L, given similarly by

(2y2) '( —,
' —D a, )S„''+ (z(= L) —

~

z')

+D a,S + (z(= —L) ~z')

=Z'"'S1 "+"'(z( =
Here

Z))2) (
1 (~(12)

& )y( 1+ ( ~()2)
& )

z'")=(,' —(~,","&„)z(1+&~,",-"&, ) .

(5. lob)

(5.11a)

(5.11b)

0)z') —L,
with

&~,","(a, ) & =(2y, )
—'((~,',"&,+ & o",,"&,D, a, ) .

(5.7)

(5.8)

Here the operators (o', 1', (a, ) &, as defined by Eqs. (5.4)
and (5.2), are subject to a relation resulting from the opti-
cal relation (3.16a};that is,

A plane-wave solution of the diffusion equation (4.16)
is given by

S1)2+ )(z
~

z') —C 1) )(z )
1 )(z ) (5.12)

Here z and z designate the larger and the smaller of z
and z', respectively, and ))1)" '(z) and )i)) (z) are solutions
of the homogeneous diffusion equation subjected to the
boundary conditions at z =0 and —L, respectively; CA is
a constant given by

2

y k. &~.","(a, )&= ' I dQQ,")y„(Q,)a, )

l'2
C

2

(12) (23) (23) (12)
BZ BZ

(5.13)

=k2(2y2) '( —,
' Da, ),— (5.9a)

Hence, with the notation )~= (y' )/D2 )'~, we can set

and, similarly,

3

g k, (e', '(a, )&=k (2y ) '( —,'+D, a, ) .
Q =2

(5.9b)

(12)
))p

' '(z) =y'' '(0) cosh(irz) — sinh()~z)
~D2

))))' "(z)=y' '( L) cosh[—)r(z +L) ]

(5.14a)

Also the boundary equations (5.3) and (5.7) can be rewrit-
ten, on using Eqs. (5.5) and (5.8), in the form

Da, S„'"+—"'(z( =O)
~

z')
Z(23) .

sinh [i~(z +L ) ]
~D2

(5.14b)

—Z)»)S))2+»)( (
—P}

~

z ) (S.IOa) and determine CA at z =0; hence

Z'
Sz' + '(z( =0)~z'( = L))=y2 Z'—' ' cosh()rL)+ sinh(ILL) +)rD2 sinh()rL)+Z' ' cosh(vL)

vD2
(5.15)

(23)S„"+ '(z( =0)
~

z'( =0))=S„'+ '(z( =0)
~

z'( = L)) cosh()~L—)+ sinh(sL)
vD2

(5.16)

B. Case of a nondissipative medium (y' '=~=0)

In this case, Eq. (5.15) is reduced to

S1»+»)(p
~

L)—y Z)») I+Z'») +Z123)L
A

—y2 D 2

(5.17)

which tends to zero as L ~ ~, being therefore a cutoff solution. Here holds the important relation

Z112)S1)2+23)(p
~

p)+Z123)S112+23)( L
~

(}) (5.18)

which can be shown more generally by integrating Eq. (4.16) over the range 0)z ) Lwith z = —0 and follo—wed using
(5.10).

C. Angle distributions of the scattered waves

From Eq. (3.23), a specific expression of I', 1+' + ' to the diffusion approximation is obtained in the form

I,(+' + '(Q, z
~

Q', z')=I", , '(Q, z
~

Q', z')+U, (Q,z)cr", '(Q
~
a, )S„"+ (z(=0)

~

z'(=0)}o. ', '( —a,'
~

Q')U, (Q', z') .
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Here the first term is given by Eq. (3.13), and

'' '(Q[B, )= f dn'cr", '(Q[Q')P„(Q',iB, ),0 &0
Z

~I~I2'( —a,
~

n) = f dn 'y, (n, —is, )~,","(n
~

n),
&0

which are related to ( o',&(0, ) & [Eq. (5.4)] by

(5.20a)

(5.20b)

(~'.,'(a, ) & = f dn ~.,'(n ~
a, ),4~

and, when using Eqs. (4. 15),

4 ", '( —B,
~

—Q)=), ' (+Q
~

~), )= fdn', ' '(Q
~

Q')(1 —3n,'D 8, ) .

Also, from (5.10a),

0, = —z" '/D

while, from (5.14b),

sinai hn(vL)+(Z' '/D2) cosh(ILL)

c soh( LIr)+ (Z' 'IirD2 ) sinh(I~L)

(5.20c)

(5.21)

(5.22)

(5.23)

In the same way, for the transmitted waves of Eq. (3.24),

I,~~+' + "(Q,z
~

Q', z')=U3(n, z)o'3~ '(Q
~
B, )s„'' + '(z(= L)

~

z'(=0)—)o.~, '( —8,'
~

Q')U, (n', z') . (5.24a)

Here cr3z '(Q
~
8, ) differs from o, '2 (Q

~
8, ) in Eq. (5.19), not only by k3 and k, , but also by the sign of the coefficients of

8, ; and

a, =+Z'"'/D, , —a,' =+Z'"'/D, . (5.24b)

When the medium is nondissipative, power conservation is strictly ensured by the boundary conditions; that is, the
total scattered power away from both sides of the layer, say, ( W,

'
&, is given from Eqs. (5.19), (5.24a), and (3.13), by

( w, "&=f dnk n ' I„+'+ '(Q (=0)
~

Q', ')+ f dnk, n,' 'I', +' + '(Q, (= L)
i
Q', ')——k,2' 2.

=k( dn 0]] 0 0 U] 0 Z

+4 [k, &",,'(~, )&s,'"'"'( (=o)
~

'(=0))

+k, (~,",'I(a, ) &S„'"+"'(z(=—I )
~

z'(=0))]oI',"(—5,'
~

n') U( n'z'), (5.25)

in consequence of Eqs. (3.11) and (5.20c). Here, as it is proven below, the term in brackets [] in the last term is the con-
stant kz independent of z', resulting in the fact that —8,' involved in the following factor o I2'i '( —2,'

~

Q ') becomes
eff'ectively zero. Hence the entire contribution from the last term is reduced to

fdn k, ~,",'I(n
~

n ') U, (n ', z'), (5.26)

being the incident power through S,z. To prove the above statement, we first eliminate the term of ( 82&(B, ) & from each
of the boundary equations (5.3) and (5.7) by using relations (5.9), to get

[y2 'k~D28, +k, (o', ~ '(B, ) &]S„"+ '(z(=0)
~

z'(=0))=0,

[—y2 'k D 8, +k (cr' '(r) ) &]SI' + "(z(= L)
~

z'(=0))=0-,
and then sum up the above equations with the aid of Eqs. (5.10) and (5.18); hence the proof is given by obtaining

k, & ~I',"(a, ) &S'„"+"I(z( =O)
~
O)+k, & ~",,"(a, ) &S'"+"'(z(= L)

~

0)=k, . —

(5.27a)

(5.27b)

(5.27c)

D. Numerical examples: Case of a nondissipative
random layer with smooth boundaries

Shown in Fig. 3 is a curve of Z" ' versus k, /k2, given
by Eqs. (5.11) when the boundary is perfectly smooth,

with the details of the calculation in Appendix B. As
k ] /k2 changes from 0 to 1, Z' ' ' changes from 0 (perfect-
ly conducting surface) to 0.5 for a boundary of no
refiection [Eq. (4.22b)], as is expected. shown in Fig. 4
are the angle distributions of both backscattered (solid
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FIG. 3. Z" of Eqs. (5.11) is shown as a function of k, /k,
for a perfectly smooth boundary in a nondissipative medium,
with the eigenfunction of Eq. (4.15a).

00 30 60 90'
curves) and transmitted waves (dash-dot curves) through
a random layer with diffusion constant D2 [Eq. (4.13)],
width L, averaged propagation constant k2, and separat-
ed by two smooth boundaries from the outside free spaces
with the equal propagation constants k, =k3 (Fig. 1).
The basic equations used are Eqs. (5.19), (5.24), and (821).
The curves are shown for a normally incident wave and
(a) k, /k2 ——0.99, Z" '=0.4863; (b) k~ /k2 =0.2,
Z" '=0.004122, by using the numerical distance L/Dz
as a parameter. The sum of the backscattered and
transmitted wave intensities are independent of L/D2 in
each case, rejecting the power conservation; here the
sum in case (b) is smaller than that in case (a) by the
different amount of specular refiection by the respective
upper boundaries. The backscattered waves are generally
stronger than the transmitted waves when L/D2 ——100,
whereas the situation is inversed when L/Dz ——5 al-
though the two waves are nearly of the same intensity in
case (b); the smaller k&/k2 is, the more the waves are
trapped inside the layer as a consequence of an enhanced
multiple reAection between the two boundaries.

VI. GENERAL THEORY

The boundary equation can be written in a more gen-
eral form so that the equation is applicable also to the
case in which media are random on both sides of
a boundary with the cross section of the general form
cr,b(Q

~

Q '). We designate the eigenfunctions of the
diffusion term in space kb by P'„"'(Q,A, ) and P'„'(Q,A, )

[Eqs. (4.8)], and first introduce two matrix operators,
defined by

FIG. 4. Angle distributions of both backscattered and
transmit ted waves through a random layer with perfectly
smooth boundaries and numerical width L/D2. The wave is
normally incident and the medium is nondissipative with (a)
k, /k, =0.99; (6) k, /k, =0.2. The backscattered waves are
shown by solid curves and the transmitted waves by dash-dot
curves.

,„(Q
~

—i3„)=f dQ', (Q
~

Q')P'„'(Q', —$'„"'),
( —b)

(6.1a)

(6.1b)

similar to those defined by Eqs. (5.20). Here
$'„"'=n' 'i3'„', where i3'„'=n' '3/Bp, is the differential
operator directed normally to the boundary toward the
space kb, aiid the integration ranges (+b) designate the
half solid angles of Q'„'=n' ' Q~~O, respectively. Here,
since U2( —Q, —X)= U2(Q, A, ) in the eigenvalue equa-
tions (4.1) as a consequence of the reciprocity (3.20d), it
follows that P'z'(Q, X) and P'~'( —Q, —A, ) are the same
function except for a numerical factor, and, therefore, the
same is true also for cr&, (B„~Q) and cr,i, ( —Q

~

—8„),in
view of Eq. (3.16b).

We also introduce an operator ( cr,b( —8„)), defined by
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&~.„(—a„)&= f dn f dn y'„'(n,k=o))~.„(n
l

n )y(,"'(n, —i$'„")
(+a) ( —b)

= ' f dn .,(nl —a),
477 (+a)

(6.2a)

(6.2b)

p+(a ) dn n(b)y(b((n )$(b()
477 (+b)

(6.3)

which is reduced, when using Eqs. (4.15) with
O'„"'0'„"',y2 yb, and D2 Db, to

where use has been made of Eq. (A7); and similarly
p„—(a„),defined by

Hence, using Eq. (6.5),

g k.p. (a„)s„"'=y k. &~., ( a„)&s~'(
a, b

= —y k„p,-(a„)s,'",
b

which can be written, in terms of the notation

(6.14)

p,
+—(a„)=(2y, ) '(+—,

' —D, a'„"). (6.4) p. (a„)=p.+(a„)+p.-(a„), (6.15)

p,.(a„)s,'(= y &~., ( —a„)&s(„'(. (6.5)

Now, the generalized version of boundary equation
(5.3) is written as

by

y k.p. (a„)s„'(=o. (6.16)

p. (a. ) =p.
, o

—p., (a".

& ., ( —a„)& = & .„
&,+ & ., &,a'„".

(6.6)

(6.7)

In 2&&2 matrix form, Eqs. (6.5)—(6.7) can be written
simply by

Here S„"denotes the boundary value (and its normal
derivative) on the side of space k, , and the left-hand side
means the power scattered toward the space k, by the
boundary. From Eqs. (6.2) and (6.3), we can write p,+—(a„)
and & cr, (, ( —a„)) in the form

Here the sum means the total (angle-averaged) power
away from both sides of the boundary, as is clear from
the definition (6.3).

The function S~ ' in each space is governed by the
diffusion equation from Eq. (A31), i.e. , with p~ ~p (f, by

.p '„'(a/ap)s '(pip ') =5(p —p'), (6.17)
Bp

where &,~ (n
l
n ') can be even rotationally variant. Here

p, (a„)of Eq. (6.15) is the same as the component of p '„"
in the direction n ",and can also be written in the form

p+(a„)s„=&( —a„)&s„,
p-(a. ) =pa —p( a.

( —a„))=& ),+& ),a„,

(6.8)

(6.9)

(6.10)

n" p'~'(a. ) =p. (a. ) =p., o
—p.,

(a". . (6.18)

Here p, o is generally dependent on the horizontal
A, =i8/Bp although it is identically zero when the scatter-
ing cross section is rotationally invariant.

where p
—+(a„)is regarded as a diagonal matrix with the

elements p, (a„).Hence Eq. (6.8), upon substitution of
Eqs. (6.9) and (6.10), becomes written finally in the form

B,S~ =ZS ~

or, more explicitly,

b

(6.1 la)

(6.11b)

Here Z is a 2 Q 2 matrix, defined by

z=(p~+&~), )-'(p+ —&~)„). (6.12)

g k, &cr,(, ( —a„))= k~p(, (a„). — (6.13)

Equations (6.11) and (6.12) obviously correspond to Eqs.
(5.10) and (5.11), respectively, and they are in fact
equivalent to each other in the case of a semi-infinite ran-
dom layer.

To confirm the consistency of the boundary equation
(6.5) with power conservation, we observe that the
&o,(, ( —a„))'s are subject to a constraint resulting from
optical relation (3.16a), as

VII. SUMMARY AND DISCUSSION

For a system of random layers with rough boundaries,
it is generally possible to construct the BS equation in a
unified form so that the random medium and boundaries
are involved on exactly the same footing, as given by Eq.
(2.23) for a random layer with two rough boundaries (Fig.
1). There are several expressions of the solution to
choose from, depending on the situation and information
required. One of the expressions is Eq. (2.55) with
specific expressions (2.57) and (2.58) for the backscattered
and transmitted waves, respectively; which are particu-
larly convenient in the present case because the only
medium-dependent function is I22

' + ' so that the
di6'usion approximation can be limitedly applied only to
this function, without aftecting the other terms and fac-
tors at all.

The diffusion approximation is based on the series ex-
pansion (4.7) for the scattering matrix of the medium
alone (free from the boundary characteristics) by using
the eigenfunctions of the medium cross section [Eqs.
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(4.1)]. Here the expansion coefficients are given as solu-
tions of Eqs. (4.6), and the first (diffusion) term is general-
ly good enough in the diffusion region, the second- and
the higher-order terms being short-range functions de-
creasing rapidly with the distance from the source. It
should be mentioned, however, that, when the forward
scattering is absolutely dominant as in the case of light
wave propagation through a turbulent medium, the first
several terms of the series become equally important and
the eigenfunction expansion is therefore not useful any
longer. The present method of the eigenfunction expan-
sion is quite general in the sense of the applicability for a
wide class of medium scattering cross sections including
those rotationally invariant in space (Appendix A).

The boundary-dependent diffusion term is governed by
Eq. (5.1), wherein the second term provides the entire
boundary effect due to S,2 and the first term is subject to
the condition of no reAection that has been the only con-
dition used so far whenever solving diffusion equations,
regardless of whether the average refractive indices of the
two media are nearly equal or differ from each other by a
large amount. ' In the case of a random layer, the
boundary conditions are written in the form (5.10) with
Eqs. (5.11), which are simple enough to obtain the
boundary-value solution of diffusion equation (4.16); and
the resulting backscattered and transmitted waves
through the layer are given by Eqs. (5.19) and (5.24a).
Here power is strictly conserved in spite of the diffusion
approximation that discards all the terms other than the
first in the series expansion, primarily because the
second- and the higher-order terms are not directly con-
cerned with the propagation of power, provided that the
two boundaries are separated enough so that their multi-
ple reAection between the boundaries is negligible.

In Sec. VI, the boundary equation was generalized to
the case of a rough boundary between two random media
of different kinds. The equation is given by Eq. (6.5), and
ensures power conservation in virtue of relation (6.13) re-
sulting from the optical relation for the boundary cross
section.

f«'~,"~(Q
~

Q')P, (Q')=ay&/, (Q),

dQ', Q' E2 ' Q' Q =ay~ Q'

subjected to the normalization

fdQp, y2pb(Q)=5, b .

(A4)

(A5)

(A6)

Here we directly see that a =1 is one of the eigenvalues
with the eigenfunction of a uniform distribution,
Hence, according to (A6), we can set

P, (Q) =(4ir) ', P, (Q) =y~ (A7)

(1—a) f d Q yzP, ( Q)= 0,

which shows that

(A8)

a=1 if dQy2, A 0, (A9)

whereas

dQyz, Q =0 if a~1 . (A10)

To obtain P „

in a series of the P, 's, we set

, Cb~, C, a
——1,

b

(Al 1)

which, substituting into Eq. (A 1) and using (A3)—(A6),
lead to

(~ —b)c,„=i~y (Q.i)„c,„,
C

in terms of the notation

« i)„,= f dQy, Q iy, .

Equation (A12) gives, to the first order of A, ,

Cb„——i(a b) 'a(Q. A, )b—„b&a.

(A12)

(A13)

(A14)

where y2 is the angle-averaged value of y2(Q), and use
has been made of the reciprocities (3.20). Also

~

a
~

(1
is proven. The Q integration of (A4) on both sides and
followed by use of Eq. (3.21) lead to the important rela-
tion

APPENDIX A: EIGKNFUNCTION EXPANSIONS
ASSOCIATED WITH DIFFUSION APPROXIMATION

The eigenvalue equations for P„and P~ become, on
using Eqs. (4.1) and (4.8), as

f d QKq~'( QiQ')(h„lQ', A, )= A (A, ) U'p2„(Q,A),

Hence, particularly when a =1 (diffusion term),

y, =y, +i y y, (1 —b)-'(Q i)„,
b(~&)

and the eigenvalue 3 is given from (A12), by

1 —~(i)= y (1—b)- (Q.k),„(Q2)„
b(~&)

i f dQ—(A, Q)P„(Q,A, )4~

(A15)

(A16)

(A17)

f dQ 'P„(Q', A, )X'~'(Q '
~

Q)= 3 (X)Q„U (Q, &),

(A2)

where

(where (Q.A, )» ——0), which provides the nonvanishing A,

term of A (A, ) to the lowest order.
Here, when assuming the conventional form

%~2~'(Q Q ') for Kz~', we can choose pb, b& 1, as

U2 (Q, A, )=y2 —iQ.A, . (A3) Pb(Q) =Q, Pb(Q)=(3!4vryi)Q, j=1,2, 3, (A18)

Hence, when A, =O, P„andP„arereduced to P, (Q) and

P, (Q) with the eigenvalues a, respectively, defined by
which are consistent with (A6) and also have the ortho-
gonality with respect to the subscript j. Hence
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(n i),„=-,'x„(nx)„=y, -'x, , (A19)

and the eigenvalue b is found, by substitution of (A18)
into (A4), to be

—i fdn i.nI ',"'(n, i
~

n ', 2 ')

= f d QK'~~'( Q~ 0')U2(Q ', A, ')(2m) 5(A, —A, '),

b =a,:—y
' f dQK'~'(0 0')0 0' .

Thus, in terms of the notation

D~ =(3y~) '(1 —a, )

Eq. (A16) can be written finally as

1 —3 (A. ) =@2 D2A.

(A20)

(A21)

(A22)

(A29)

reproducing the Fourier transform of what is given by
the 0 integration of the transport equation (3.19). Note
that the source term on the right-hand side (rhs) of Eq.
(A28) tends to zero as A. ~O for all the terms except the
diffusion, in view of Eq. (A10).

Here, for the diffusion term, definition (A27) gives, to
the first order of A, ,

and, from (A15) and (A7),

$„(QA, ) = yq '(1+i3D~Q g), (A23)
pg(A, )= fdnnp„(Q, A, ),4~

(A30)

y2U2 ——iQ A, U2+1

in the left-hand side, can be rewritten as

(A25)

1 —A (A. ) = —i f dn A, 0$~ (Q, A, ) f dn f„(Q,A, )

(A26)

i kp„—(A. ), .

Hence the substitution into Eq. (4.6a) shows that

i f dn A. 0(5—„(Q,A, )S„(A,
~

X')

= A (A, )(2~)'5lA. —A, ') fdn f~(Q, A, ),

(A27)

(A28)

which represents the power equation for each wave of
S, (p ~ p '); in fact, by multiplying Eq. (A28) with

P ~ (Q ', A, ') and summing up over all the A' s, we obtain
the entire power equation for IP" from Eq. (4.11), as

which leads to Eq. (4.15a); Eq. (4.15b) for p„is also ob-
tained in the same manner.

The eigenvalues A ( A. ) are directly connected with
power fuxes carried by the respective eigenfunction
terms, as follows: The 0 integration on both sides of Eq.
(4. 1a) and use of (3.21) yield

f dny, U~f„(Q,A. )= A (A. ) f dn f„(Q,A, ), (A24)

which, upon substitution of

which is consistent with Eq. (A17), and Eq. (A28) [Fq.
(4.6a)] becomes written as

iA—p~,(A, )S„(A,
~

A, ')=(2~) 5(A, —A, '), (A31)

with the approximation A (A. ) =1 on the right-hand side.
Here, using Eq. (A23) in (A30),

p„(A,)=iyz 'D2A, , (A32)

and Eq. (A22) is reproduced by Eq. (A27). It may be
remarked that the form (A32) remains unchanged even
when the scattering cross section Kz '(0

~

0 ') is rota-
tionally variant in space, with the replacement of D& by a
3&&3 matrix to be multiplied by A, , as given from Eq.
(A16) with (A27).

APPENDIX B: COHERENT PART
OF BOUNDARY SCATTERING CROSS SECTION

The coherent part of o",b '(0~0 ') in (3.14) is given by
the Fourier transform of matrix V" ' [Eq. (2.37b)] which
can be written in the form [see also Eq. (3.5)]

V,"i, '(u
~

A, (=0)
~

u')=(2vr) 5(u —u')V,"i, '(u) . (Bl)

Here, neglecting the interference terms and using Eq.
(2.32),

V,"„'(u)=4
~
h, (u)(R,'„' '(u))

~

= Vb', ( —u) . (B2)

Hence, according to (3.10), we obtain

V,
'-' (0

~

0')=(4ir) 'V,'"'(u(=k, n)
~

A(=0)
~

u'(=k 0'))
=0"~

~

(R" I(u(=k 0")))
~

'5 (0' 0'I')
n~b~

~

(R I»I(u( k QI»)) )
~

~52 (0 ~bI 0 I&I')

(B3)

(B4)

(as)

where use has been made of

h =k n'"' du=k n"dQ"a a z ~ u a z (B6)
V,'„' '(0

i
0 ') = V„",'( 0'

i

—0—), (B8)

5(u —u')=(k'0"') '5'(0' —0'') .

Here we have the reciprocity

(B7) although this is not quite clear in the expressions (B4) and
(B5) wherein (R,b )&(Rb, ).

To evaluate (o'2z ') of Eqs. (5.6), it is more convenient
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to rewrite the equations in terms of (cr')2 '), on using re-
lation (5.9a) in Eq. (5.5), as (816)

2

(89) cosh x sinh x=4c dx
sinhx +coshx

(817)

k2
(810) where

x, =arctanh(k) /k2) . (8 1 8)
so that, from Eq. (5.11a),

Z'' '=(k(/k2)(&12 )0/[2 —(k (/k2)(&12 )1] . (811)

Here, when the boundary is perfectly smooth, use of ex-
pression (84) yields

~'")(nIn')= n, '
I
(R "'(n)) I'(3'(n'" —n" )

In the same way, for Eq. (810), we obtain

k X 3 2
1

( (12)) 12 3f d
COSh x Slnh x

(sinhx +coshx)
(819)

Hence Z" ' is given by Eq. (811) with (817) and (819),
and when x, —k( /k2 «1, is reduced to

(812) Z'"'-
—,'(k, /k, )', Ik, /k2I «I, (820)

where

(R ('2)(n) ) —2n(2)/[n(2)+(k, /k )n(1)]

and, when k, /k2 & 1,

( k /k )n(1) [(n(2) )2 c 2]1/2

c =[1—(k, /k2) ]'i

(813)

(814)

while, when k /k2 —1 so that x, —+ ~, Z" '=0 5,
reproducing the condition (4.22b) at a free boundary.

To evaluate the associated o. (, 2
'(n

I
8, ) in (5.19) in the

present case, it is convenient to use Eq. (5.21) with (85),
because of the 0 ' ' integration involved. Hence

). (2"(nI~, )=4

Hence, when the expression (812) for a smooth bound-
ary is used in Eq. (89), change of the variable of integra-
tion by

=(1—3In,'' D r), ) n,''I
)& I(R ' '(n))

I
(821)

n( '=c coshx, (k(/k2)n, '''=c sinhx

leads, according to definition (5.6a), to

(815) where 0,' '&0, 0,'"~0, and

( R " '
( n ) ) =2n," /[n' '+ ( k /k )n' "] (822)
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