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The fluctuation-spectrum theory aiming at the global characterization of temporal and spatial
fluctuations, where the characteristic function A, plays the central role, is reconsidered from the
ensemble-processing viewpoint. The order-q ensemble processing is constructed so as to extract the
statistical-aspect characteristic of the variable q. The quantity a(q) [—=d(qA. , )/dq] is shown to be
the average of the iluctuations in the processed ensemble. The susceptibility y, [—:da(q)/dq] for
the infinitesimal change of the degree of processing turns out to determine the asymptotic probabili-

ty density of fluctuations in the processed ensemble.

I. INTRODUCTION

A new, remarkable trend in a recent study of a wide
range of fluctuation phenomena is the global characteri-
zation. This is based on observing how the fluctuations
of relevant quantities are enhanced or reduced as the
scale over which the fluctuations are defined is varied.
The multifractal theory' concerns the fluctuations in
the probability exponents on strange sets by changing the
cell size. On the other hand, the fluctuation-spectrum
theory, proposed by the present authors, ' aiming at the
global characterization of temporal and spatial fluctua-
tions, concerns how the local average over a finite time
span or a space spread approaches the ensemble average
as the scale is extended.

The remarkable feature of the above theories, where
the Renyi exponent D (Ref. 10) and the characteristic
function A, (Refs. 11—14) play the central role, is to con-
tain the so-called altering parameter q. ' Owing to the
introduction of this parameter, one can describe various
global statistical aspects of fluctuations. However, the
role of q is not so well understood. The fundamental pur-
poses of this paper are to introduce the ensemble process-
ing concept in order to clarify the role of the filtering pa-
rameter, and to discuss the interrelation between the en-
semble processing and the fluctuation-spectrum theory.

Before going into the program, let us briefly review the
fluctuation-spectrum theory for the temporal fluctua-
tions. The extension to the spatial fluctuations can be
straightforwardly carried out (Sec. IV). Consider a
steady time sequence

subsequence (ensemble member). The number density of
subsequences in which o.„ takes a value between 0.' and
a'+da' is given by

N

v„(a') = g 5(a„(m) —a'),
m =1

(1.3)

where the normalization condition is written as

f v„(a')da'=N . (1.4)

The probability density p„(a') that a„ takes a value a' is
therefore given by

p„(a') = lim
N

v„(a') N

lim —g 5(a„(m)—a') .
N m =1

(1.5)

For a sufficiently large n, p„(a') is assumed to be ex-
panded as

p„( )a-&n exp[ cr(a' )n—], (1.6)

where the function

1
o (a') = —lim —lnp„(a')

n~oo
(1.7)

describes the spectral structure of values of averages a, 's

and is called the fluctuation spectrum. By defining the
characteristic function"

1 ~ 1 dkq
lim —lnM (n) for ~0,

n~ oo 71

]nN~JJJ:]+])+2)+3 ~ ~ ~ where q is real and(1.1)

The time sequence is supposed to have the so-called natu-
ral measure obtained for almost any initial condition. We
divide the above sequence into N subsequences each of
which has a time length n, [ u I

",, [ u I
" „+,, . . . ,

[u ]' +„''+&, . . . , {u ]" Iz &~„+,. The N subsequences
constitute the ensemble S, . Let us define

M~(n)=( exp(qna„))
N

lim g exp[qna„(m)]x- N m =1

p, (x' e~' da', (1.9)

n

77 ) ~ ( ~ —] I77 +J( (1.2)
the steepest-descent method leads to

1
A, = ——min .[ —

q a'+ o.(a') ] .A (1.10)
(m = 1,2, 3, . . . , N), which is the average of u in the mth
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The above is equivalent to the Legendre transform

a(q)=c) (qA, ) for c) a(q))0,
cr(a(q)) = —qA. +qa(q)

(c)q A—:c) A /c}q), i.e.,

(1.12)

x„/p, 0&x„&p
x =f(x )= '

n+1 ~ n = (x —p)/(1 —p) p &x

(0 &p & —,
' ). The quantities A,o and D are obtained as

ko=p lnp '+(1—p ) ln(1 —p)
2

(2.6)

(2 7)

o'(a(q)) =q c)qk, cr'(a(q)) =q . (1.13)

II. FILTERING-PARAMETER CONCEPT REVISITED

As is well known, the probability density p„(a') near
its peak position takes the Gaussian form,

p„(a') t/n ex-p
(a' —

A, o)

4D
(2.1)

The fiuctuation spectrum o(a) is a concave function
[o"(a))0] and has a minimal value cr(a) =0 at
a =ho=a(0), the ensemble average of u„.

This paper is organized as follows. In Sec. II we shall
reconsider the role of the filtering parameter, utilizing a
simple chaotic dynamics. We shall be aware of how con-
cretely the characteristic function succeeds in describing
the global statistics of the temporal fluctuations. The en-
semble processing concept to single out various statistical
aspects of the temporal fluctuations will be introduced in
Sec. III. This immediately leads to the introduction of
the susceptibility. The similar approach to the statistical-
ly homogeneous spatial fluctuations will be developed in
Sec. IV. A summary and concluding remarks are given
in Sec. V. Simple examples are illustrated in Appendices
A and B.

2 p
(2.8)

If we define the variable y„=(u„Ao—)/v'2D, then the
probability density for n 'gi. =, asymptotically takes

J
the Gaussian form with the mean value (y„)=0 and the
variance ((n ' g". ,y ) ) =1/n for a large n Th. erefore
y„'s have a statistically similar structure for any p, if the
Gaussianity is complete for describing tu„]. Figure 1

shows the typical temporal evolutions of the normalized
variable y„ for three values of p. Apparently their statis-
tics depend on the parameter p, and one can easily distin-
guish them from each other. One remarkable feature is
the development of the intermittency characteristic ob-
served for p~0. This is due to the long duration in the
region x„)p for a small p. This indicates that the Gauss-
ian asymptotics characterized with two parameters A,o

and D are insuScient for precisely describing even the
long-time fiuctuation characteristics. Since the law (2.3)
is valid for a sufficiently small ~q~, the above qualitative
difference (Fig. 1) can be traced back to A, with a large
Iql.

Figure 2 shows A, and a(q) for the variable (2.5),
where their analytic expressions are'

for a large n (the central limit theorem result). A.o is the
ensemble average of u„(ko= ( u„) ), and D is given by

A. =—ln[p' q+(1 —p)' ~],
q

a(q) = p
' lnp '+(1—p)' ln(1 —p)

p
1 q + ( 1 p )

1 !7

(2.9)

(2.10)

D=az (, ,=,' y C„, (2.2)

C„:—(u„uo ) —
A, o being the double time correlation func-

tion. This is equivalent to 5"

=A.0+Dq (2.3)

because its Legendre transform leads to 1000

a(q) =a(0)+2Dq, o.(a') =[a' a(0)] /4D—(2.4) 5-

'Itn

u„= ln~f'(x„)~

for the Bernoulli map

(2.5)

[a(0)=Au]. We note that the asymptotic law (2.3) holds
usually for a small q. If we consider only the peak posi-
tion of p„(a'), the difference among various time se-
quences is distinguished through the diA'erence among
numerical values of ko's and D's. Hereafter we will show,
utilizing a simple model, how the analysis only with A,o
and D is far from the overall description of real temporal
fluctuations.

The model is the temporal evolution of local expansion
rates,

n
1000

0-
400 SOO

n
1000

FIG. 1. Typical temporal evolutions of "normalized" local
expansion rates y„=(u„—Xo)/&2D of the Bernoulli map (2.6)
for three values of p: (a) p =0.3, (b) 0.1, and (c) 0.03. These
temporal fluctuations have the mean value (y„)=0 and the
variance ((n ' g",y, ) ) =1/n for a large n

r independently of
p. As p ~0, the intermittency characteristic is developed.
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4-I

stants. The Legendre transformation gives

a(q)=a(e~ ) —ec,i), exp( g, lql ), (2.12)

1 1 a~
o (a') =— la' a(—e~ )lln

7p 7f la' —a(e~ )l
(2.13)

1;
In2

I

0 1
I

10

I

I5-
l

P = 0.01

P =O.05

P =O.15

105
q

FIG. 2. Characteristic function k~ and the quantity a(q) for
three values of p. Critical behaviors of A,, and a(q) as p ~0 are
related to the development of the intermittency characteristic
observed in Fig. 1(c).

0 1

1 1——c, exp( —i), lql )
7~

(2.11)

for eq ))x (e=+), where r„c„and 71, are positive con-

(A, ,
= ln2). As is seen in Fig. 2, as p~0 the characteris-

tic q regions can be divided into two regions, q (1 and

q 1. The remarkable features for p ~0 are observed in
the enhancement of X„=a( ~ ) = lnp ', and the dimin-
ishment of A. =a( —~)= ln(1 —p) '. The former de-
scribes bursts with the large amplitude ( u = lnpn~ ~ ), and the latter explains laminar states (long-lived
quiescent regions) with u „=p ~0.

The above consideration implies that even a one-
variable time sequence usually contains many kinds of
statistical characteristics which cannot be described only
with two quantities A, o and D. Each characteristic is sup-
posed to be singled out by the scalar parameter q.

Let us expand the characteristic function in the cumu-
lant expansion as X =g, a q '. The relation (2.3)
holds only for lql « a., ic being the convergence radius. '
In the above simple model, x —1/lnp '. For lql ) a., the
cumulant expansion does not converge. Instead A, is

q
is

usually expanded in the following form:

III. ENSEMBLE PROCESSING
AND THE PROBABILITY DENSITY

The majority of the ensemble members in S taken

values a„= & u„) =a(0). In order to amplify the
relevant fluctuation characteristic in the minority we
consider the new ensemble S„(q) by suitably processing
the ensemble S„. This is done by increasing or decreasing
the ensemble members with a„=a' according to

v„(a';q ) ~ v„(a')e~", —oo & q & ce (3.1)

The total number of the ensemble members in S„(q) is
given by

X(q)= f v„(a', q)da' . (3.2)

F«q & 0 ( &0), the number of ensemble members with
large (small) a' values is increased. The ensemble
S„(q =0) is identical to the original ensemble S„,i.e., the
processing with q =0 means that there is no ensemble
processing. In the ensemble S„(q) there are N(q) values
of a„. Renumbering these values as m = 1,2, 3, . . . ,
X(q), the corresponding a„value is written as a„(m ),
where a„(m ) is equal to, at least, one of a„(m ),
m =1,2, 3, . . . , N.

Hence the probability density p„(a';q ) that a„ takes a
value between a' and a'+do." in the ensemble S„(q) is
given by

where a(e~ ) =A, , g, -O(1/ir), and a, —=ec, i),
The existence of the convergence radius ~ means that

the statistical characteristics described with A, can b
roughly speaking, divided into three types,
q ((—i~, lql (&x, and q &&~, which can be never pertur-
batively connected to each other. In the sense that the
parameter q selectively singles out the statistical charac-
teristics relevant to it, it was called the altering parame-
ter. This concept was first introduced in Ref. 14 in con-
nection with the thermodynamics formalism in fluctua-
tion dynamics.

The probability density p„(a') for la' —a(0) l

& O(&2D/n ) is O(v'n ). For a' far from a(0),
p„(a') —v'n e ' '", where cr(a') =O(1). Therefore, al-
most all of the ensemble members in S„with a large n

give a' values in the Gaussian region. These correspond
to lq &(a. Other important characteristics, especially
corresponding to lql &)i~, are contained in the minority
of the ensemble members. They are in the tail regions of

16p„(a ). In Sec. III we will discuss how we obtain pre-
cise information on overall statistical characteristics of
o,„ from the ensemble S„.
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v„(a', q )
p„(a', q ) = limx- x(q)

N(q)
lim 6(a„(m ) —a')

N(q)
N

lim —g 5(a„(m)—a')g„(a„(m);q)
N

where 0 =0 8 . The variance is defined by

From (3.7) and (3.13), one finds

q n
—

OVq, n

(3.14}

(3.15)

=p„(a')g„(a';q),

with the processing factor

e qt? cl

gn (a'i q

(3.3)

(3.4)

(Ref. 20). This shows the explicit interrelation between
the susceptibility and the variance of fluctuations. '

Let us go into the asymptotic form of p„(a', q) for a
large n. First we note that it asymptotically takes the
form

[(g„(a',q)) =l,g„(a';0)=1], where M (n) is given in
(1.9). The average of F(a„(m)) over the ensemble S„(q)
is calculated as

p„(a';q) —v'n exp[ —cr(a';q)n],

o.(a', q ) =o (a') —qa'+ q A,

(3.16)

N(q)
(F(a„);q ) —= lim g F(a„(m ) }

n X-(q m=1

N

lim —g F(a„(m) )g„(a„(m );q )
N

F 0,' p„o.', q do' (3.5)

(Ref. 17). Especially, one obtains

(F(a„))=(F(a„);0), (3.6)

which is the conventional average over p„(a'). For ex-
ample, the first moment is calculated as

=0.(a') —cr(a(q)) —cr'( a( q))[a' —a(q)],
(3.17)

o (a', q ) = [a' —a(q)]
cr "(a(q)) z

2
(3.18)

and therefore

(Ref. 22). The function 0(a', q) is concave with respect
to a' [c} .o (a', q ) =cr "(a') & 0] and will be hereafter
called the order-q fluctuation spectrum. By expanding
(3.17) around a'=a(q), it is written, to the lowest order
with respect to a' —a(q), as

(a„;q)= —c} lnM (n) .
1

The quantity

(3.7) a' —a(q)p„(a',q)-&n exp — n
2Yq

(3.19)

y, „=ci,(a„;q ) (3.8)

lim (a„;q ) =c) (qA, )=a(q), (3.9)

(3.8) is written as'

y =c} a(q) ( &0), (3.10)

has the meaning of the susceptibility because it is equal to
the rate of the change of the average (a„;q ) when q is
infinitesimally changed. ' Namely, g, indicates how
(a„;q ) is sensitive when the degree of the ensemble pro-
cessing is changed.

By noting that

for Ia' —a(q)l &0(+y~/n ) (Ref. 23). The probability
density p„(a',q) has asymptotically a Gaussian peak lo-
cated at the average a'=a(q), and its width is deter-
mined by the susceptibility g . If g 's are large for cer-
tain q's, the fluctuations of a„'s corresponding to these
q's are large.

The conventional central limit theorem result corre-
sponds to q =0 [Eq. (2.1)], since a(0) =A.o and y0=2D.
The expression (3.19) is the generalization to the set of
processed ensembles IS„(q)I.

Finally, let us add the asymptotic forms of g and
y(a). Making use of the expansions (2.3) and (2.11), we
get

y =y(a{q)), (3.11)

where y = lim„y „. Since cr'(a(q))=q, the above is
written as

=2D,

y(a) =2D

for Iql «a and Ia —a(0)l « la(+v) —a(0)l, and

(3.20)

(3.21)

with the function y(a) defined by

y(a)=[o."(a)] '
( &0) .

%'e note that

(3.12)
=c,g, exp( —g, lql ),

g(a) =g, la —a(e~ )I

(3.22)

(3.23)

(az;q) =, c} M (n),1 1

nz M (n)
(3.13) ««q» ~ »d la —a(0) I

» la(+~) —a(0) I

For illustrations, see examples in Appendices A and B.
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IV. CHARACTERIZATION OF SPATIAL
FLUCTUATIONS

a v(ro)—:— u (r'+ro)dr',1
V 0 (4.1)

The ensemble-processing concept introduced in Sec.
III can be straightforwardly extended to the statistically
homogeneous spatial fluctuations. Let us consider a
large d-dimensional system with the volume A. In each
point indicated by the position vector r, a scalar fluctua-
tion variable u(r) is defined. The fluctuations [u(r)]
are homogeneous in the sense that its statistical property
does not depend on r.

The local average of u(r) taken over a d-dimensional
sphere with the volume V whose center is located at r0 is
given by

The first moment is written as

&av q&= 8 lnM (V) .
1

V q
(4.9)

The susceptibility

(4.10)

is determined by the fluctuation of a v in Sv(q) as

y, ,
v—= «(av —&av,.q &)', q & (4. 1 1)

Since limv „&av;q & =a(q) [=d(qk )/dq] is finite,
= lim ~ y z is also a definite function of q. We ob-

tain

y—:8 a(q)=1/cr"(a(q)) . (4.12)
where l is the radius of the sphere, V =w" l "/
I (1+d/2), I (z) being the y function. Let us divide the
whole system into the set of subsystems each of which
has the volume V. These subsystems constitute the en-
semble S~, the number of the ensemble members being N.
The number density of subsystems for which a& takes a
value between a' and o.'+do. ' is given as

The probability density pv(a';q) asymptotically takes
the form

p (a'; q ) —i/ Ve (4.13)

where o(a';q) is given in (3.17). The above density has a
single peak at a'=a(q), near which (4. 13) is written as

vv(a')= y &(av(ro ) —a'),
m =1

(4.2) p v( a'; q ) —V' V exp — V
[a' —a(q)

2Xq
(4.14)

where ro is the center of the mth subsystem (mth en-
semble member of Sv). The probability density pv(a')
for which a ~ takes a value a' is thus calculated as

vv(a')
p, (a')= lim

Q~ oo

The order-q moment is introduced by

M ( V) —= & exp(q Va v ) &

p, a' eq~ 'do. '.

(4.3)

(4.4)

The characteristic function A. and the fluctuation spec-
trum o.(a') are defined as

1 . 1
lim lnM (V),qv- V

p (a~ ) i/ Ve
—a(a') V

(4.5)

(4.6)

where the limit lim ~ should be read as
limv „limn „.The o.(a') is derived from A with the
Legendre transformation as in Sec. I.

Now we introduce the ensemble processing as in Sec.
III. pv(a ) is the probability density in the original en-
semble Sv. We construct a new ensemble Sv(q) so that

p v(a';q ), the probability density that a v takes a value a'
in Sv(q), is given by

This is again the generalization of the conventional cen-
tral limit theorem result for a processed ensemble.

V. SUMMARY AND CONCLUDING REMARKS

In the present paper we have reconsidered the fluctua-
tion spectrum theory of temporal and spatial fluctuations
from the ensemble-processing viewpoint. First, the
order-q ensemble S„(q) [Sv(q)] was constructed by ap-
propriately changing the ensemble members of the origi-
nal ensemble [Eqs. (3.1) and (4.7)]. The quantity a(q)
[=d(qA, &)/dq] turned out to have the meaning of the
average of a„(av) over the processed ensemble S„(q)
[Sv(q)]. Thus the filtering parameter q has also the
meaning of the parameter measuring the degree of pro
cessing.

The ensemble processing immediately leads to the in-
troduction of the susceptibility concept. Namely, the
quantity y [=da(q)/dq] evaluates the change of the
average a(q) when q is infinitesimally changed. Then we
find that the probability density for S„(q) [Sv(q)] asymp-
totically takes the Gaussian form whose variance is deter-
mined by the susceptibility g . Depending on q, it has
quite different q dependences [Eqs. (3.20) and (3.22)].

Next we will discuss the scaling relations near critical
points. Near a certain chaotic transition point, the
characteristic function A, often obeys a scaling law

pv(a q)—=pv(a )gv(a q) (4.7)

with the processing factor gv(a';q)=e~ /M ( V). The
average of F(av) with the ensemble Sv(q) is calculated
by

&F(av);q &
= J F(a')pv(a', q)da' .

A, =a"L(q/~), (5.1)

where p is a constant, the characteristic value ~ evaluates
the convergence radius, and L (x) is a scaling function.
Therefore the relevant thermodynamics variables also
satisfy the scaling relations
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a(q) =a"A (q/~),

o(a) =~"+'S(a/I~"),

'3'(q/w), g(a)=v" '[S"(a/v")]

o (a;q ) =x."+'B(a/~", q/x ),
where scaling functions are

A (x)= [xL(x)],d
dx

S(y)=[x L'(x)]

(5.2)

(5.3)

(5.4)

(5.5)

(5.6)

(5.7)

a
~n b (A 1)

a+b 1 a —b+—ln 2+p, p& cosh (q —q„)

(a )b), where the generation probability of the value
a (b) is p, (p„), (p, +p„=1).

The characteristic function is easily obtained as

1= —in(p, e~'+pbeq ),

B (z, x) =S(z)—xz+xL(x) (5.8) (A2)

[S'(A(x))=x, L( x)= A( x)
—S(A(x))/x], x = 3 '(y)

being the inverse function of A (x) =y. Expanding
B (z, x) around z = A (x), we get

B (z, x) = [z —A (x)]S"(A(x))
2

(5.9)

M (n)=g (n) exp(quan), . (5.10)

to the lowest order in z —A (x). A simple example of the
scaling relations is given in Appendix B 2.

Finally, let us give a comment on a temporal correla-
tion. ' If M (n) is written as

where

1 Pb
q, = ln

a —b p,

Its Legendre transform yields

a —a a —a 1 a —bo(a) = ln + ln
a —b a —bpb a —b

a —b 1

a —b p,

a+b a —b a —b
a(q) = + tanh (q —q, )

2 2 2

(A3)

(A4)

Q'" =J' '+J" „(— ), (5.1 1)

where lim„n ' lng (n) =0, then the explicit temporal
correlation is contained in Q (n). In Ref. 28 we reported
models having temporal correlation, where Q~(n)'s are
given by the superposition of the exponential decaying
terms. Let us take a time series whose Q (n) is given as X, =X, sech'[+X, (q —q„)],

y(o. ) =(a —a)(a —b )
'2

(A6)

(A5)

Therefore, o.(a;q ) can be obtained with (A2) and (A5).
The susceptibility is obtained as

where J' ' and J"' are constants and y )0. This is the
simplest case having a temporal correlation. The above
correlation function can be described with one damping
rate. If one tries to discuss the temporal correlation by
observing the temporal evolution of

where

b(a~a (A7)

(a„;q)—a(q)= —8 lng (n)
1

n
(5.12)

a+ba(q„)=
'2

(A8)

[Eqs. (3.7) and (5.10)], then the right-hand side contains
an infinitely many exponentially decaying terms even for
the simplest case (5.11). Only one of them is the funda-
mental term, i.e., exp( —y n ). This indicates that it is
not convenient to deal with (a„;q ) for the study of the
explicit temporal correlation in Iu„I. Instead, as has
been emphasized previously, ' it is convenient to ana-
lyze Q (n) itself or its Fourier transform

a —b
(A9)

(A10)

[y + =y +, y(a+a(q, )) =y( —a+a(q, ))]. The

and y(a) have peaks at q =q, and a=a(q„), respec-
tively, and their heights are equal to g . The width 6 of

is evaluated as

:"~(co)= g Q~(n) cos(con ) .
n=0

(5.13)

In fact, the poles of:" (co) immediately describe the fun-
damental characteristic frequencies and the damping
rates of characteristic motions in [ u„ I.

It should be noted that the susceptibility g in an arbi-
trary two-value stochastic process is determined by two
parameters q~ and y [Eq. (A6)].

Next we turn to the concrete examples.

APPENDIX A

In this appendix we consider a two-value pure stochas-
tic process

1. Coin-tossing model

The first example is the coin-tossing model, where

a =1, b= —
1~ pa pb (A 1 1)
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This leads to

q„=0, rr(0) =0, Zo= I, (A12)
ln

1 p
1/2 2

(A16)

and

=sech (q),

y(a) =1—a

The width of g is 6=2.

(A13)

(A14)

Therefore as p ~0, a( 1) and gt diverge as

a(1)= —,
' lnp

g, = —(lnp ) ~~ .
—1Z

4.

(A17)

(A18)

2. Fluctuation dynamics of the local
expansion rates

The second concrete example is the fluctuation dynam-
ics of the local expansion rates, i.e., the time series is gen-
erated by u„= In~ f'(x„)i, where x„obeys the Bernoulli
map (2.2). In this case we have

The width of g is evaluated as

(A19)

as p~0. The susceptibility g thus becomes steep at
q = 1 as p ~0. Simultaneously, a(0) and go decrease as

a= lnp ', b= ln(1 —p) ', p, =p, pI. 1 p .

(A15)
a(0) =Xo-p lnp '~0, (A20)

The A, and a(q) for three values of p are drawn in Fig. 2.
Figure 3 shows the order-q fiuctuation spectra for several
values of q. The characteristic quantities are given by

go =2D =p ( lnp '
) ~0 . (A21)

Figure 4 shows y and y(a) in the scaled form [Eqs. (A6)
and (A7)].

= -0.5

I-5

0.5

0
0

Ck
'

= 1.5

FICx. 3. Order-q fluctuation spectra o(a', q)'s for the pro-
cessed ensemble S„(q) for the time series of local expansion
rates of the Bernoulli map with p =0.1. Each o.(a';q) has one
minimal value o.=0 at a'=a(q).

FIG. 4. Susceptibilities pq and p(a) for two-value pure ran-
dom processes. They are universal functions [Eqs. (A6) and
(A7)].
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APPENDIX B

In this appendix we further give two examples. In con-
trast to those in Appendix A, they have temporal correla-
tions.

1. Symbolic dynamics

because the transition probability is small. Hereafter we
put ~( —,'. The stochastic dynamics is determined by the
evolution matrix

1 —K K
(89)

The erst example is symbolic dynamics,

0, 0&x„&P
1, P '&x„&1 (81) (1—~)eq

]ce q

~e

(1 —~)e
(810)

With the largest eigenvalue of the extended evolution
matrix"

generated by the p transformation

Px„, 0&x„&P
X (82)Px„—1, P '&x„&1

with p=(&5+1)/2 (p —p —1=0) which allows the un-
stable period-2 cycle. The largest eigenvalue of the evolu-
tion matrix

(H =Ho), the characteristic function is obtained as3'

The Legendre transform yields

(811)

= —ln(cosh(q)[1 —~+[a +(1—2~) tanh (q)]' I ) .
q

p
—I q

P
—2 0

gives the characteristic function

1 (1+4eq)'~ +1
A. = —ln &5+1

(83)

(84)

(1 —~)tanh(q)
[s +(1—2a. ) tanh (q)]'~

a
1

h(a, ~)+ma (1—a2)'~~
o a =—ln + lnh(a, x) —~a h(a, x)+~

(812)

(813)

Its Legendre transformation is easily calculated as

1 1a q)= —1—
q)1/2

(85) (a)

CXcr(a) =a ln
1 —a

1 —2a+ ( 1 —2a ) ln + ln
1 —a

&S+1
2

005 01

cr(a;q) is determined with (84) and (86). We obtain

(86)

eq

(1+4eq)

y(a) =a(1 —2a)(1 —a}, 0& a &
—,
'

The susceptibility y has a single peak at q = —ln2.

(87)

(b)

2. Stochastic model

The next illustration is the stochastic model for the
symmetry change as in the band-splitting phenomena,
where u„can take two values +1 or —1. Let K be the
transition probability from the + ( —) state to the —(+}

state in a unit step. The [u„ I has temporal correlation
except for the special case ~= —,

' where this model reduces
to the coin-tossing model. If we apply this model to the
symmetry dynamics in the vincinity of the band-splitting
phenomena, ~ is taken to be small. ' This leads to the in-,
termittency characteristics in the sense that once the +
(
—) state appears, the state continues in a long duration

—0.1 0.05 0.1

FIG. 5. Characteristic function A. and the quantity a(q) for
the stochastic model in Appendix B2. The values of K are 0.02,
0.01, and 0.002. As sc becomes small, the slopes of A.

q
and cx(q)

at q =0 become monotonously steep.
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ed»tely g
1/21+x')—

L, (q/K), L'(
xq

(818)

(814)

where

1/2(1 —a )~h(, )=[ +' 2'
jvesdynzmtcs y

( ) Figure 5 111u

s mmetry
stratesand a( a) .

creased

)=a(a', q)] n
1 t'es are obtaine

[ ( a' q 'f Th susceptib» 1efor several values of q. e s

2 —1/2
qa(q) = — 1+ (819)

2)1/2o.(a)=Ir[1 —(1 —a ) (820)

~ Thisrjstics those regjons.1 out the characte
3i 32

to sing e o
h caling lawsivest escjmm

as

1+ tanh (q)g =yosech q 1+
q

—3/2

(815)

f k aroundradius oThe~e valuates t eh convergence d o
e obtains, for ~~0,=0. Therefore, one o a

1 —21'2
1y(a) =go(1 —a 1 — a

with

' 1/2

(816)

qa(a;q)=irB a, —

Xq 1+
' 2 —3/2

(821)

(822)

1 —~
+0 (817)

2 3/2y(a) =1r '(1 —a (823)

It shou ld be noted that as

p

0. T11i f'v

}1

take the limit ~~0 by eepin

where

x 2)1/2 ( 1 y2)1/2 xy

tion B(y,x) is concave vvit respTh scaling function p
and has a minima va

-Yq

(824)

=-0.03

f-5

= 0.03

0.06

10 Ct'

) for the stochasticn s ectra o.(a', q or. 6. Order-q fluctuation p
model in Appendix B2 wi

10
Cl

odelfor the stochastic mode. 7. Susceptibilities gq
The solid lines inix h scaling forms. ein Appendixix82int e

for ~=act results ( 5) ( )(b) are the exac
sl approach thee scaling unc0.2. As ~~0, the

the dashed lines in th g(B22) an d (823) denoted by the as e
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