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Dynamic equilibrium fluctuations of fluid droplets
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The frequency spectrum of the thermal fluctuations in the shape of fluid droplets is derived when
the droplets are coated with a thin film such as a surfactant monolayer or lipid bilayer. The surface
viscosity and compressibility and the inertia and viscosity of the bulk fluids interior and exterior to
the droplet are taken into account, hand their eA'ects on the decay of the surface modes is discussed in
detail.

I. INTRODUCTION

There is a wide variety of phenomena for which the dy-
namics of fluid-fluid interfaces plays an important role.
The nature of the interface is an important factor in
many industrial applications such as oil-displacement
mechanisms in enhanced oil recovery, ' coalescence of
fluid droplets and the rheology of emulsions. Arnphi-
philic molecules tend to adsorb at oil-water interfaces,
and the orientation and interactions between these mole-
cules result in an interfacial behavior different from that
in the bulk phases. The dynamics of interfaces contain-
ing thin surface films cannot be explained on the basis of
surface tension alone, and thin surface films can behave
as two-dimensional Hookean solids, Newtonian fluids, or
can have much more complex viscoelastic behavior.

In this paper we consider the thermal fluctuations in
the shape of small fluid bodies immersed in a fluid with
different properties. The droplets are coated with a thin
film which behaves as a two-dimensional compressible
Newtonian fluid, and which is insoluble in the adjacent
bulk phases. Important examples include lipid vesicles
and oil-water emulsions where the dispersed phase exists
in the form of droplets which are stabilized by a surfac-
tant rnonolayer. In addition, coated fluid droplets are a
reasonable approximation to biological cells when model-
ing many types of hydrodynamic phenomena.

The thermal fluctuations in planar surfaces covered
with rnonomolecular films have been discussed, for exam-
ple, by Bouchiat and Langevin, ' and light scattering ex-
periments have been performed to determine the surface
rheological parameters, "' but the rheology of the sur-
face has not been fully accounted for in work on spherical
interfaces. Ljunggren and Erikkson' have discussed the
thermal fluctuations in the shape of micelles with low
surface tension; however, they included no dissipation.
Schneider et al. ' and Milner and Safran' have con-
sidered the dynamic shape fluctuations in small fluid
droplets correctly neglecting the inertia of the surround-
ing fluid media and also neglecting the viscosity of the
surface layer. A constant surface density was assumed in

the theoretical calculations which is experimentally
justified for the systems studied by these authors. There
are situations however, where the compressibility of the
surface layer cannot be neglected, such as in the vicinity
of a surface phase transition. The density fluctuations as-
sociated with a large surface compressibility can have im-
portant consequences in several biological contexts, for
example, in affecting the permeability of the cell mem-
brane to ions' or the reactivity of enzymes bound to the
lipid bilayer, ' and some bacterial lipid membranes ap-
pear to exist within the phase-transition region at growth
temperatures. ' In addition, lipid vesicles can have rath-
er large surface compressibilities, and increases in surface
area up to 10% have been reported in osmotic swelling
experiments. ' For generality we therefore do not assume
that the surface layer is incompressible and further take
into account damping by both the surface viscosity and
the viscosity of the adjacent bulk fluids. The inertia of
the bulk fluids, important for large droplets, is also in-
cluded.

If R=R (g, g, t)r is the position vector to a point on the
surface, then in equilibrium (R ) =Ro =const, and we
define a fluctuation 6R in the shape of the surface by
5R (H, g, t) =(R —Ro)/Ro, where 8 and P are the polar
and azimuthal angles and 5R &&1. Using the Laplace
transform and expanding 6R in a series of spherical har-
monics Y&, the fluctuations in the mode amplitudes
5Rt (z) can be found by solving the linearized hydro-
dynamic equations for the fluids interior and exterior to
the droplet. Momentum balance equations for the ad-
sorbed surface film are imposed as boundary equations on
the stress. The time dependence of the fluctuations is
given by the correlation function

St t, (t, t') = (5Rt (t)5Rt (t') ), .

the average being taken over an equilibrium ensemble.
The static, or equal time, correlation function St t .(t, t)
gives the amplitude of the fluctuations and can be found
from thermodynamics, and the angular correlations
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S(0,0', P, P', t, t') are found by summing over the modes.
The spectral density of the Auctuations cannot be un-

derstood without an examination of the normal mode fre-
quencies. The dynamics of inviscid Auid spheres was dis-
cussed long ago by Rayleigh (see also Lamb '). The
normal mode frequencies for a viscous fluid droplet,
neglecting the stress exerted by the external fiuid medium
and considering only the surface tension of the interface,
were analyzed by Reid; a good discussion is given in
Chandrasekhar. Miller and Scriven extended the
analysis to fluid droplets immersed in another Auid medi-
um, also taking into account the surface viscosity and
elasticity. They obtained some general results for the fre-
quencies of the normal modes, but owing to the wide
range of possible behavior, they considered in detail only
imcompressible surface fluids and surfaces with vanishing
viscosity. They did not perform the numerical calcula-
tions which are required in the general case. Here we dis-
cuss the normal mode frequencies in some detail in the
case when the damping is due only to the surface viscosi-
ty, and then show how the viscous coupling to the adja-
cent Auids affects the decay of the surface modes. This
analysis reveals some interesting features which, owing to
the complexity of the system, have not yet been
thoroughly explored.

We begin in Sec. II by deriving the amplitude of the
static equilibrium fluctuations in the shape of the surface
and the surface density from thermodynamics. In Sec.
III we solve the hydrodynamic boundary-value problem
and obtain the dispersion relation for the normal mode
frequencies and the Laplace transform of the correlation
function. The normal mode frequencies are discussed in
Sec. IV, and analytical expressions are given in several
approximations. In Sec. V we obtain the spectral density
of the Auctuations in the shape of the surface and also
discuss the angular correlations using parameter values
typical of biological cells, and in Sec. VI we make some
concluding remarks.

II. STATIC EQUILIBRIUM FLUCTUATIONS

KRobF=o b, A + f [nr(0, y)]'d fI, (2.1)

where cro is the equilibrium surface tension, Ro is the
equilibrium radius of the droplet, and K = —I p(Bcr/
Br}r is the isothermal elastic modulus (C =1/K is the
isothermal surface compressibility). The integration is
over the undeformed surface and dQ=sin0d0dg.

The equal time or static correlation functions for the
surface and density Auctuations can be found from ther-
modynamic arguments as discussed, for example, by
Reichl. At equilibrium the average total area of the
droplet is 30 and the average surface density is
I o=const and we consider Auctuations in the total area
b, A = 2 —Ap and surface density 5I (0,g, t)=[1 (0,g, t)

I p]/rp. Assuming that the total number of molecules
on the surface remains constant and considering only iso-
thermal changes, the total change in free energy can be
written

We will consider a surface which encloses an in-
compressible Auid. In this case the total change in area
of the interface must be found subject to the constraint
that the volume enclosed by the surface remain constant.
It is shown in Ref. 13 that under this constraint the total
change in area of the interface is

Ro
b, A = f 6R (L —2)6R d A,

2
(2.2)

where L is the square of the angular momentum opera-
tor

aL = Vo Vo= . sinO
sinO BO

1

sin 0 BP
(2.3)

l, m

nr(0, y, r}=y~r,.(r) Y,.(0,y},
I, m

(2.4)

where L Y& =l(1 +1)Y& . The total free energy then
becomes a sum over the mode amplitudes

maxI

hF= g crp(1 +2)(l —1)~6RI (t)~
1=2

—1~m ~l
I

+ y ~sr,.(r)~'.
1=1—l~m ~1

(2.5)

The mode l =0 is excluded since by assumption the sur-
face encloses an incompressible fluid and there is no
change in the total amount of surface material. In the
first term l =1 is also excluded since it corresponds to
motion of the center of mass of the droplet. The max-
imum mode number will be of order l „-R o /d, where

0
d -5 A is a typical molecular diameter.

Application of the equipartition theorem to Eq. (2.5)
yields the amplitudes of the static fluctuations

k, T
(6R, (r)5R,* (r)) = 5g6, (2 6)

o.pR p(1+2)(l —1)

k~T(sr,.(ter,*.(r)) =
KRo

(Sr, (r)SR,*, , (r)) =(Sr,*.(r)SR, (r)) =O,

(2.7)

(2.g)

where kz is Boltzmann's constant and T is the tempera-
ture. Equation (2.6) has also been derived elsewhere. '

The fluctuations 5R and 5I are uncorrelated in equilibri-
um, and Auctuations with different mode numbers are
also uncorrelated. The surface density fluctuations are
proportional to the surface isothermal compressibility,
analogous to the density Auctuations in bulk fluids. The
Auctuations in shape can be quite large for very small
droplets with low surface tensions as in microemulsions
and the curvature energy must be taken into account,
however, this will not be discussed here.

The Auctuations 6R and 5I" can be expanded in a series
of spherical harmonics,

oR(0, g, t)=+BR, (r}YI (0,$),
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III. DYNAMIC FLUCTUATIONS

The time dependence of the fluctuations for each l, m
mode is given by the correlation function of the radial
displacement at two different times t and t'

S, i. .(t, t') = (5Ri (t)5Rt', ~ (t') ) . (3.1)

Since equilibrium correlations are time translation invari-
ant we can equivalently write (see, e.g. , Forster )

Si t. (t) = (5Rt (t)5R(*, ~ (0) ) =St ( ( t) .— (3.2)

Equilibrium fluctuations decay according to the linear-
ized hydrodynamic equations. There are two different
but equivalent ways of finding the equilibrium correlation
functions in finite systems. In the first method, one adds
a fluctuating stress tensor to the hydrodynamic equa-
tions. This is treated as a source term, and the equations
can be solved as a boundary value problem using a Green
function. The correlation functions can be expressed in
terms of the correlation functions of the components of
the fluctuating stress tensor. This method is well suited
for Dirichlet problems for which the velocities are
prescribed over the boundary, but is inappropriate for
problems such as we have here in which the stresses must
satisfy conditions on the boundary. Alternatively, the
boundary-value problem can be solved as an initial-value
problem where the initial values are random variables
distributed according to an equilibrium ensemble. The
solutions are linear in the initial values, and the time-
dependent correlation function can be found if the static
correlation function, which determines the amplitude of
the fluctuations, is known. Thus we obtain the spectral
density of the fluctuations in the shape of the surface by
solving the hydrodynamic initial-value problem for the
interior and exterior fluids with linearized surface balance
equations imposed as boundary conditions on the stress.

We begin by finding general expressions for the veloci-
ty fields of the fluids interior and exterior to the sphere
which are assumed to be incompressible and at constant
temperature. The development here follows closely that
given by Chandrasekhar. Writing the Laplace trans-
form of a function f (r, 8,$, t) as

Vs T+n. (P' —P')=0, (3.3)

where Vs is the surface gradient operator, T is the sur-

face stress tensor, n is the normal to the interface and
P'(P') is the stress tensor of the interior (exterior) fluid.
We assume that the surface layer behaves as a compressi-
ble Newtonian surface fluid and that deviations from
sphericity are small. Then Eq. (3.3) can be linearized and
the normal and tangential components of the surface
momentum balance equations become

+ pro(2 L}—
0 0

2K
(Vo v, +2v„)

Ro
=P„'„P„;

~
„~—, (3.6)

~o~ ~+e 2~ 2e+ Vo(VO v, )+
2 Vov„+ v,

R R o n R

+ r VOXv, =r.(P' —P').10~„
Ro

(3.7)

where Io= 88+PP, Vo =8 &3/&)8+ P/sinB &) /&)P, i L= r
XVo, and e and ~ are the shear and dilational surface
viscosities. The surface velocity is v=v, (8,$,z)
+v„(B,&)&&, z)r, where v, is the velocity tangent to the
surface, and to lowest order v„(B,P, t)=&3&R(B,p, t).

The radial components of the stress tensors P" are

BQ
P„„=—p+2g

C) P'

(3.8)

tion is obtained by multiplying by 5R (t =0) and averag-
ing over an equilibrium ensemble. Since the static corre-
lation ( u(0)5R (0) ) is odd under time reversal it vanishes
in equilibrium, and we may without loss of generality
set the initial values u(0) equal to zero.

Equations (3.4) are to be solved subject to boundary
conditions derived from the surface momentum balance
and continuity equations which describe the dynamics of
the interface. Neglecting the inertia of the adsorbed sur-
face layer, the general form of the surface momentum
balance equation is

f(r, B,P, z)= f e "f(r,B,P, t)dt
0

(3.3)
ueB+u~Q

r P IO=~Vou, +gr
r '" ar r

the velocities u'(r, 8, &)&&, z) [u'(r, B,P,z)] of the interior (ex-
terior) fluids are solutions to the Laplace transformed hy-
drodynamic equations

p;,zu"= —Vp "+g;,V u"+u"(0),
(3.4)

since the fluids are assumed incompressible. The surface
tension can be eliminated by using the continuity equa-
tion and writing o. =o.

o
—K 6I, where K is the surface

elastic modulus. The surface density can be expressed in
terms of the velocities by using the Laplace-transformed
surface-continuity equation

V.u ' —0
Io

z 51 (B,g, z) —5I (0)+ (V .v, +2v„)=0,
0

(3.9)

where u(0)=—u(r, 8,$, t =0) and p =p(r, B,P, z) is the
pressure. Here and in what follows quantities referring to
the interior (exterior) fluids will be labeled with an i (e);
p;, are the equilibrium densities and g;, are the shear
viscosities. The Laplace transform introduces the initial
value of the velocity fluctuation. The correlation func-

where 51 (0)=51 (8, &)&&, t =0). In Sec. II we saw that the
static correlation function (5I (0)5R (0) ) vanishes in

equilibrium. Thus any term involving the initial value of
the fluctuations in the surface density will vanish when
we compute the correlation function (5R& (z}5R&. .(0))
and we may set it equal to zero.
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Equations (3.6) and (3.7) are boundary conditions to be
imposed on the stress when solving the hydrodynamic
equations for the velocities of the bulk fluids. In addi-
tion, the velocity must be continuous across the interface,
thus

I+1
U, (r, z) =C, rj&.(q, r) — ™

zp;(l + 1)R o

e 1+1

U, (r,z)=C, rhea (q, r)+(1) ~PlmR 0

zp, lr'

(3.13)

u'(Ro, O, P, z) =u'(RO, O, P, z) =v(O, P, z), (3.10)

where u(R )-u(RO) to lowest order. The general solu-
tion to Eq. (3.4) is discussed in Ref. 20; here we give only
the main results. Since the fluids are incompressible the
pressure is a solution to Laplace's equation V 5p=O,
where the total pressure is p =po+6p, and po is the con-
stant equilibrium pressure. Note that for the reference
surface the discontinuity in pressure across the interface
is given by (p' —p')0=2o0/Ro. general solutions for 5p
are superpositions of functions of the form r'YI and
r "+"Y& and well-behaved solutions for the pressures
6p" are given by

v(O, P,z) = iv& (z) Y& r+ v& (z)VO Yi (3.14)

Using Eqs. (3.6)—(3.14) we find after a considerable
amount of algebra that the tangential components of the
momentum-balance equation, Eq. (3.7), can be written as

where jI is a spherical Bessel function of the first kind,
h&"' is a spherical Hankel function, and q, = —zp, /p„
a =i, e. The coe%cients C;, are determined by the
boundary conditions which to first order may be taken on
the surface of the undeformed sphere. The continuity
conditions allow us to write the surface velocity in the
form

5p'(r, O, P, z)=5pt (z)(r/Ro)'Y, (8,$),
5p'(r, O, P, z) =5pi' (z)(RO/r)' 'Yi (8,$) .

(3.11) (A+LB)vt (g)+g(C+AD)5Ri (g)
Ro

The velocities in the inner and outer regions can be writ-
ten in terms of two scalar functions U, , = U, , (r, z) as

u"(r, O, P,z)= U, , Y( (8,(b)r+ — '
Vo Y(

l(l+1) 1 dU;,
r r dr

(3.12)

and the scalar functions are given by

=(C+XD)5Ri (0), (3.15)

where r, =a/oo, /=zan, is a dimensionless frequency,
and 5R& (0)=5R& (t =0). The dimensionless parameter
X:pR 0 /~ is a measure of the relative importance of the
dissipation in the bulk fluids and the surface dissipation.
The normal component, Eq. (3.6), can be written in the
form

(2
bl(C +AD )v-I (g) —

g a& 1+ +2C —AE 5R& (g) = AE —2C —
a& 5R& (0),

0 I

(3.16)

2aI b(
ni=no

2l + 1+Ap
(3.17)

where b& =l(l +1) and ai =b& —2. We have also defined a
dimensionless frequency QI

' 1/2

where p. =e/Ir and P=K/ao is a dimensionless surface
elasticity. The functions Q, , in Eq. (3.18) are

I+bp Jl(xi )

x, j,+,(x, )
'

where IIo=aior, and coo=(iso/pRO)'~ is a natural fre-
quency associated with the inertia of the bulk fluids. If
all sources of dissipation are neglected the modes oscil-
late with the capillary frequency cop. We have further
defined p=p, +p„q=g;+g„and the dimensionless pa-
rameters b p = (p, —p, ) /p and b,rl= ( g; —rl, ) /rl. The
functions 3, B, C, D, and E in Eqs. (3.15) and (3.16) are

Q, =(1—bp) 21+1—

where

x hi+i (x )

h,' "(x, )

1+Ap 2 1 —Ap

(3.19)

(3.20)

b,P g(pa, +b, )—, —

C =2(g+P),

B =2/by+ g (Q;+Q, ),
2T.

Q,
l+1

rF Q,
D = —2g hrl—

E =4/ heal+ g'[(l + 1) Q;+ l Q, ],
2b(~,

(3.18)

We have also defined the characteristic time ~F =pR 0/g,
which is roughly the time for the bulk fluids to reach
steady state following some disturbance of the surface.
Note that ~, /~F =XA0, thus the inertia of the bulk fluids
will be important when either A. or Qp is small.

If we eliminate v& between Eq. (3.15) and Eq. (3.16),
multiply by 5R&' (0) and average over an equilibrium
ensemble, we arrive at the final result for the Laplace
transform of the correlation function S&, (g)
= (5Ri (g)5R,* (t =0) ), . .
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b(g)+a)( A +LB)
Si I. (g) =SI, (t =0)r, (3.21)

where

2

b, (g)=(A +KB) AE —2C —a 1+
Q I

bi(—C +AD)

(3.22)

and the equal time or static correlation function, given by
Eq. (2.6), determines the amplitude of the Iluctuations.

IV. NORMAL-MODE FREQUENCIES

The dispersion relation for the frequencies of the nor-
mal modes is found by setting b, (g) =0. Functions A and
C depend only on the compressibility and viscosity of the
surface, the 0 (A, ) terms arise from the damping by the
bulk fluids, and the O(A, ) terms are the coupling between
the surface and bulk fluids. Thus the dispersion relation
for a surface when only surface tension is considered is
obtained by setting K =a=~=0 which is equivalent to
setting 3 =C =0. If, in addition, the exterior Auid is
neglected, we set p, =g, =0, and the dispersion relation
then reduces to the case considered by Reid and oth-

22 —24

The dispersion relation when the bulk Auids are invis-
cid can be obtained from (3.22) by setting A, =O. The
mode analysis for the general case A,&0 is better under-
stood by first considering this case in some detail. In ad-
dition, if the surface viscosities are very large compared
to the viscosities of the bulk fluids or if the droplets are
very small, the damping of the surface modes depends
primarily on the surface dissipation. Thus there are situ-
ations where to a good approximation the bulk Auids may
be treated as inviscid.

When A, =O, the dispersion relation becomes

I I

+ (4pPai +pal +a( bi )/+ Pa&bi =0 (4.1)

If the surface viscosity is neglected there is only one pair
of imaginary roots, g=+iQz. Note that if we pass to the
limit of a planar surface by taking l~ ~, Ro~ ~, and
1/Ra~q, then co0~(o /p)' q, which is the well-
known result ' for the frequency of capillary waves of
wave vector q. For the X=O case, there will always be
one real root which is sensitive to the surface elasticity
and approaches a constant for large mode numbers; we
will label this root g, . If there is a complex conjugate
pair, we will denote it by g„g,", and when the complex
root splits into two real roots they will be denoted g+.

Even if the inertia is small (QD))1) it can be shown
from Eq. (4.1) that Im(g, )~Q01 for sufficiently large
mode number 1 )1*, where 1 -4p, QQ/(I+p, ) . The
large l modes therefore oscillate with a frequency which
is the same as when the surface viscosity is neglected. If
the inertial effects are large (Q0 « 1), the decay is oscilla-
tory for all I ~ 2. The situation is actually more compli-

cated than this; in certain cases there can be oscillatory
decay for both large and small mode numbers, modes
with intermediate values of the mode number being over-
damped. This will be discussed in more detail later.

The modes are linear combinations of surface velocity
and radial displacement of the interface and depend on
three time scales, r„r/P, and co0 '. The decay times r,
and r, /P are analogous to the RC decay times in an elec-
tric circuit: ~, =~/pro is the time for the elastic energy
stored in a radial displacement of the interface to dissi-
pate, and r/P= ir/K is the time for the elastic energy
stored in a density Auctuation to dissipate. The frequen-
cy coo depends on the inertia of the bulk Auids and the
surface tension.

Before proceeding with the analysis, we give some ex-
amples of the magnitudes of the various parameters for a
few physical systems. There is a wide variety of rheologi-
cal behavior for surface films which depends on the
chemical nature of the surfactant and the temperature,
pH, and ionic strength of the Auid media. Among the
common surfactants are the fatty acids and alcohols. For
example, palmitic acid (C,6) at 25'C and spread as a
monolayer on a water subphase of pH 2 has a surface
shear viscosity a=10 g/s when the surface area per
molecule is 26 A (Ref. 4). At this molecular area the
surface pressure 11=0.5 dyn/cm (Ref. 32) and the surface
elasticity K =24 dyn/cm. Droplets of oil in water (or
water in oil) stabilized by a monolayer of this type at a
similar surface pressure have a surface tension
o =o, —II=49.5 dyn/cm, where cr, =50 dyn/cm is a

typical value for the surface tension of an oil-water inter-
face. Assuming sc-e and considering droplets of radius
R =0.01 cm, a typical relaxation time is ~, =2X10 s
and the dimensionless parameters have the values P=0.5,
k = 1, and Qo =0.01 when the Auid media have properties
similar to that of water (p-1 g/cm, i1-0.01 poise). For
the same acid but with a molecular area of 22 A,
II = 14.9 dyn/cm, E = 120 dyn/cm (Ref. 32), and
a=2 5X10 g/. s. Then o =35 dyn/cm, v;=7X10
s, and the dimensionless parameters are P=3, k=4, and
o=0. 04

Phospholipid vesicles of radius 100—200 nm have sur-
face elasticities K —3—150 dyn/cm as determined by
osmotic swelling experiments. ' From the measured
pressure diff'erence Ap across the bilayer the surface ten-
sion can be estimated at cr -0.05 —12 dyn/cm, thus
P-4 —16 for these systems. At a surface pressure of
11=5 dyn/cm the surface shear viscosity for phospholi-
pid monolayers is 3 X 10 g/s (Ref. 33). At surface pres-
sures on the order of 30 dyn/cm (Ref. 34) we assume a
value for the surface viscosity which is larger by an order
of magnitude or so. Taking e —~-0.001 g/s, o = 1

dyn/cm, K =10 dyn/cm, and R =10 cm leads to the
values r, =0.001 s, P=10, A, =10, and Q0=3X10 . In
addition to these examples, the rheological parameters
for red blood cells are given in a later section.

The relative magnitudes of the characteristic time
scales r„r, /P, and boa

' determine the manner in which
the system relaxes back to equilibrium when A. =O, and in
the following we discuss some limiting cases.
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4pA(

pa(+b( ' (4.2)

(1) Qo» l. In this case the inertial resistance to the
motion of the interface is small, which happens, for ex-
ample, when the droplets are very small. For 1 &1* all
the roots are real, and keeping only the highest-order
terms in Ap they are given to a good approximation by

linear in the mode number and Im(g, ) —Qol . The os-
cillation frequency is not sensitive to either p or p when
the inertial effects dominate.

(3) When p«1, g, is again given by Eq. (4.5) and the
other roots are given by

2 Q2 +g
' 2 1/2

1+ 1 — - . (4.10)
pa(+ b, 2pA(

= —X—X—2

g, = —X+ X—

1/2
(

4p
1 /2 (4.3)

Oscillatory decay is possible when

b(+Pa( 21 + 1+Ap
1/2

Ap&
2p 2a(b(

(4.1 1)

where

4'+ b(+pa(X=
8p

(4.4)

For typical values of the parameters for large droplets
e-0.01 g/s, oo-50 dyn/cm (Ref. 4), and assuming p —1,
the l =2 mode is oscillatory when Rp-0. 01 cm or larger.
When Ao«1 the two real roots g+ become a complex
conjugate pair g„g,*, where

The rapid transient behavior associated with the inertial
resistance of the bulk Iluids decays at a rate g+ which is
independent of the surface compressibility and increases
linearly with the mode number when l ))2. Both g and

g, decrease as p increases, and increase as P increases. If
4p,P « br +pa &

2pf1
+i A

pa(+ b(

When 1 ))2

2pOpl
+idol ~

1+p

(4.12)

(4.13)

b(+pa( '

bl+ pal

4p

(4.5)

(4.6)

and the decay rate of the slow mode, g, becomes indepen-
dent of the shape of the interface when 1))2. The fre-
quencies, Eqs. (4.2), (4.5), and (4.6), correspond to a wide
separation of time scales, coo

' « r, « r, /p. When
4pP»b(+pa

4p
(4.7)

(4.8)

thus when the compressibility is small there is a fast
mode which decays on the viscoelastic time scale and is
independent of mode number, and a slower mode with a
decay rate which is independent of the compressibility
and dilational viscosity. The effects of surface elasticity
are more important for the higher 1 modes
i & [4pp/(I+p)]' since these correspond to larger in-
creases in surface area.

(2) Qo « 1. In this case the inertia of tQe bulk Auids is
large, and there is one real root and a complex conjugate
pair for all 1)2. To lowest order in Qp

2pQ(
+iQ(

(
(4.9)

The complex root is independent of the compressibility of
the interface with an oscillation frequency which is the
same as that obtained when the dissipation is completely
neglected. The other mode g, is independent of Qo and is
again given by Eq. (4.5). When l &)2, Re(g, ) becomes

and Eq. (4.13) is also the limiting form for the complex
root for suSciently large values of 1, regardless of the
values of the parameters. When Ap))1 the conjugate
pair splits into two real roots which are given by Eqs.
(4.2) and (4.6) in case (1) above.

The mode frequencies are plotted versus mode number
in Figs. 1 —3 for various values of the parameters and for
the intermediate case Ap-1. Since there are so many pa-
rameters we will restrict our attention to cases where the
interior and exterior fluids have similar properties, thus
we have set Ap=hq=0 in most of the numerical calcula-
tions. Unless specified otherwise we have also taken
P=p = 1, which are reasonable values for many surface
films, and have plotted the negative of the real part of
the mode frequencies on the graphs.

When the inertia of the bulk fluids is in the intermedi-
ate range (Qo-1) there can be three real roots or a real
root and a complex conjugate pair for small values of the
mode number. When 1& i*, the real roots g+ coalesce
into a complex conjugate pair g, g*. An example of this is
shown in Fig. 1 where we have plotted g+ versus mode
number when p= l. For these values of the parameters
1*=Qp and oscillatory decay occurs for all 1 )2 when
Op=1. As Qp increases, l* increases, and when Op=4
the modes with 1 &1*=16are overdamped. Immediately
after the two roots collide the real part becomes linear in
1. The asymptotic region Im(g) —l has not yet been
reached for the larger values of Ap. Similar behavior
occurs for larger values of Qp.

The effect of the surface elasticity on the decay modes
is shown in Fig. 2. As p increases, another region of os-
cillatory decay appears for small values of 1, and when
p=120 only those modes with mode numbers in the
range 11~1&16 are overdamped. The oscillation fre-
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quency in the smaller-I region depends primarily on P,
thus these oscillations are not the capillary oscillations
co=A~I ~ . With further increases in P (not shown), the
small-l region of oscillatory decay eventua11y disappears,
and the small-I modes are again overdamped.

We also find (not shown) that the beha»or as p is
varied is similar to that shown in Fig. 1 in that I* in-

creases as p increases. Thus the small-/ modes tend to be
overdamped for surface films with large values of p.

The other mode, g„ is not sensitive to the inertia when
QQ is either very large or very small. However, when
QQ-1 the real root and the complex root can collide and
exchange real parts. An example of this is shown in Fig.
3. The upper curves (a, b, and c) correspond to the real
root g„and the lower curves (f, g, and h) correspond to
the complex root. As QD increases, g, decreases and
Re(g, ) increases until they collide near IIo-1. When
QQ=1 there are three real roots for I ~ 5 for these values
of the parameters.

%'e see from these examples that the conditions under

which there are damped oscillations are by no means sim-
ple. In general, the decay will be oscillatory when Qp and

p are small, and the low modes can oscillate when P is
large (but not too large). This would correspond, for ex-
ample, to large droplets coated with a film which has
small compressibility. Regardless of the values of the pa-
rameters, for large enough values of the mode number
the decay will be oscillatory. We note that when inertial
eft'ects are neglected, the decay rates are independent of
the droplet radius when X=O.

We now show how the damping by the bulk fluids
alters the mode frequencies. The dispersion relation is
transcendental and the roots must be found numerically.
There are an infinite number of roots; the large roots are
associated with the zeros of the Bessel functions, but we
will restrict our attention to those which reduce to g„g„
or g when X=0. These are the smallest and most impor-
tant roots. Before discussing the results in the general
case, let us first consider the case when the inertia of the
bulk fluids is small compared to the dissipation.

800

300 '

600

200
-Re & 4oo

100 200

200

100
250—

0.01

0 Im 0(

—200

—250
75 120

—300
10 14

—500
20 26

FIG. 1. Coalescence of the two real roots g and g+ into a
complex root g, for various values of Qo and P=p= l. The neg-
ative of the real part of the mode frequency and the imaginary
part are plotted vs mode number /. In the top graph, the upper
(lower) curves correspond to g+ (g ), the straight lines to Ref, .

FIO. 2. Coalescence of the two real roots g and g+ into a
complex root g, for various values of P and 00=5, @=1. The
negative of the real part of the mode frequency and the imagi-
nary part are plotted versus mode number l. In the top graph,
the upper (lower) curves correspond to g+ (g ), the straight
lines to Re(, .
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bulk fluids, and the modes decay slowly when the viscosi-
ty of the bulk fluids is large. Thus the correlation time
for the uctuations is large when the viscous co 1' tup lng 0
t e exterior medium is large, and is also largest for the
1=2 mode. The surface elasticity and surface tension
contribute in a similar way, and regardless of the value of
p, there will be one mode with frequency pl/2A, and
another with frequency l/2A, . Note that the damping is
due only to the viscosity of the bulk fluids, the decay
rates depend inversely on the droplet radius.

The roots of the dispersion relation for intermediate
values of A, were obtained numerically using a complex
zero finder. Some caution must be taken since the disper-
sion relation involves functions with branch points. The
velocity in the exterior region goes as e'~" at 1, 'th

1/2
a arge r, with

q ——g) . With the branch cut taken along the posi-
tive g axis q will have a positive imaginary part, giving
the correct behavior for r ~ ~.

Fiigures 4—7 show the mode frequencies g, and g
versus I for several values of k when the inertia of the
bulk fiuids is small (II0=100). Figures 4 and 5 corre-
spond to a very compressible surface film (p=0.01). The
large k result g ——1/2A. is a good approximation when
A. —4 for the larger root g (Fig. 4), thus the decay of this
mode is primarily due to the damping by the bulk fluids
for fairly small values of A, . As in the A, =O case, we have
found that g is fairly insensitive to P when f3 is small.
The other mode frequency g, (Fig. 5) is smaller and
ther ferefore more important. The asymptotic behavior

pl /2A. is r—eached only when A, ~ 100, thus the sur-
face viscosity is significant in the damping of this mode.
We also see that the k =0 approximation gives a fairly ac-
curate description of the low-frequency behavior of the
interface when the elasticity and the inertia are small.
The approximations to the modes obtained from Eq.
(4. 1 ) coincide with the exact numerical results except in4.15)

4 f.

2[

100
0

10

FI~.G. 5. Negative of the real root s, vs mode number / for
various values of A, . Parameters as in Fig. 4.

some cases when A. is very small and the boundary-layer
effects are important as discussed below. When the inter-
face has no surfactant then P=O and the fast mode g is
the only mode of decay.

Figure 6 shows g, for a larger value of P (P= 10), cor-
responding to a surface phase with a much smaller
compressibility. The other mode frequency g is similar
to that shown in Fig. 4, except that the asymptotic value

——Pl /2A, is reached only when A, —100. When
A. -1—10 or larger, g, ——l/2k is independent of p and sur-
face viscosity, thus the effect of surface viscosity is less
important for this mode. Regardless of the value of
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1 0
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FIG. 4. Negative of the real root g vs mode number I for
various values of A.. Qo= 100, P=0.01, and p = 1.

FIG. 6. Ne gative of the real root g, vs mode number I for
various values of X. Ilo= 100, P= 10, and = l., an JM=
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then decreases when A, -40 or larger. The imaginary part
is fairly insensitive to A, when k is O(1) or smaller. As A,

increases the complex root splits into two real roots. One
of them (not shown) is large and proportional to A, . The
higher-I modes are overdamped, and oscillatory decay
occurs only for small values of 1 until eventually (A, ) 100)
all the modes are overdamped. This is in contrast to the
X=O case where the modes oscillate at large values of I.
Similar behavior is found for the larger-I modes when
Ao-1. Neglecting the viscosity of the bulk fluids is a
reasonable approximation when k is small for the lower
mode numbers.

The other root, g„ is real when A, =O and has an imagi-
nary part which rapidly increases from zero when A. is
small. This is shown in Fig. 9 for P= l. For this case the
elasticity and surface tension are comparable, and the
damping rates and oscillation frequencies of the two
modes are the same order of magnitude when the mode
number is small. When A, «1, [Ref, (A, )

—Ref, (A, =O)]
-PA.', and eventually Re(, becomes linear in the mode
number for large values of A, . Im(g, )-PA, '~ when A, is
small, and for very large values of A, it approaches zero.
Again the dependence on A,

' indicates a boundary-layer
effect, and it is interesting that this can lead to the ap-
pearance of a second oscillating mode. As the surface
elasticity increases the interface behaves somewhat more
like a rigid boundary; the velocity gradients will be larger
in the vicinity of the interface. This may account in part
for the enhancement of the boundary layer effect when
p)) 1. Similar behavior occurs when Qo- 1, although we
have found that these effects are most important when
the inertia is large.

V. DYNAMIC CORRELATION FUNCTION

Since Si i. .(t) is an even function of time, the fre-
quency spectrum of the fluctuations

Si, im (~)=J e'"Si, i m (t)« (5.1)

is an even function of cu, and the stability of the equilibri-
um state also requires that it be positive. Its amplitude is
determined by the static correlation function which is di-
agonal. SI (co)=Si

&
(co) is given by the real part of

SI (g) (Ref. 27),

S, (a~) =2 ReS, (g= —ice+@) . (5.2)

Here co is a real, dimensionless frequency expressed in
units of ~, . The spatial correlation function between
two points on the surface is

S(8,8', P, P', oi) =2 ReS(8, 8', P, P', g) ~&; +, , (5.3)

where S(8,8', P, P'g) is found by summing over the
modes

S(8,8', P, P', g) = (6R (8,$, $)5R *(O', P', t =0) )

max
I
max

1=2 I'=2
—I ~ m + I —I' + m' + I'

X Y,
" (O', P') . (5.4)

Using Eq. (2.6) for the amplitude of the static fluctuations
and Eq. (3.21), our final result for the spectral density of
the two-point correlation function is

2k& Tr, m~~ b, (g) ai( A +KB )

S(y, co) = Re g
(2l + 1)

X P/ ( cosy),
a,

(5.5)

where A0=4nR0, PI(cosy) is a Legendre polynomial,
and b, (g) is given by Eq. (3.22). The angle y is defined by
r(8, $) r '(O', P') =cosy, where r and r ' are unit vectors to
two points on the surface and cosy =cosO cosO'
+sin8sin8'cos(t)) —P'). In deriving this we have made
use of the fact that SI is independent of the mode num-
ber m and have used the addition theorem for spherical
harmonics. Since the Legendre polynomials have the
normalization PI(1)=1, the equal point (y=-0) correla-
tion function S (O, io) is given by Eq. (5.5) with
P, (cosy )= l.

With b, (g) given by Eq. (4.1), the correlation function
for A, =O is

S(y, co) =
k T m» [gl P

~0 0 i=2
p

Co

0I

2bi+gyro (pa&+bi)] PI(cosy)2 2I +1
a

2

—4pco +co 4'+�(pa(+bi) 1—
2 (5.6)

(5.7)

In the general case there are several peaks in S(O, co). These are resonance peaks near co-0&', the widths are propor-
tional to Qol, and the heights to l 'Qo . When Qo))1 the only peak is at co=0 with a height ~uk&T j(croA0), which
is independent of P and proportional to R 0

When XA,O&& 1 the surface dissipation is negligible and the damping is large and due entirely to the interior and' exte-
rior fluids. In this limit inertial effects are negligible, b, (g) is given by Eq. (4.18), and the correlation function is

2k&T ' - (2l+1) I, c2(21+1)aico +[co (2l+1)aI]Pb&at
S(y, co) = PI(cosy) .

a (A, co cz /3b, a, ) +(A.coto)—
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FIG. 12. Dimensionless spectral density S'(y, cu) of the angu-
lar correlations for dift'erent values of the angle y. Inertial
effects are neglected and p= 103, hq = 1, p= 10, and k =0.02.
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FIG. 10. Dimensionless spectral density S'(O, co) for P=p, = 1
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2The peak is at co=0 with a height. ~ rIRckg T/(0'pA )o,

which is again independent of surface elasticity and pro-
portional to R o

'.
In Figures 10—12 we plot the dimensionless correlation

function S'(y, co)=S(y,co)oooo/(k&T&, ) versus fre-
quency co; we take b,p=b, g=0 and p=p=1 unless
specified otherwise. Figures 10 and 11 show the one-

oint correlation function S'(y, co) [Eq. (5.6)] for the casepoin c
~ ~ ~ ~

A, =O. When the inertia is large all the modes are oscil a-
tory, and the spectrum shows many resonance peaks cor-
responding to the capillary frequencies 0& [Fig. 10(a)],
which become smaller as Qo increases [Fig. 10(b)]. When
Qo-0. 5, the effects of both surface tension and surface
elasticity can be seen, and the width of the peak at ~ =0

is proportional to P when P is small. As Qo increases fur-
ther, the spectrum becomes dominated by the slow
modes, and the peak shifts to zero frequency. The damp-
ing by the bulk fluids particularly affects the high fre-
quency, large mode-number oscillations as shown in Fig.
11. Since Qo is small here, the exact expression for b, (g)
[Eq. (3.22)] must be used in computing the correlation
function.

In Fig. 12 we have plotted the two-point spectral densi-
ty using surface rheological parameters typical of red
blood cells which have been the most extensively stud-
ied. We therefore take @=0.01 g/s, E =100 dyn/cm,
and will assume o.o=0. 1. We use a typical cell radius
Ro=2X10 cm and neglect the viscosity of the sur-
rounding aqueous medium compared to the viscosity of
the interior fluid. The dilational viscosities are not
k own' we shall assume ~-0.1e. In addition, we neglect
inertial effects and use Eq. (5.5) with b(g) given by q.
(4.15). These values correspond to the dimensionless pa-
rameters p= 1000, A, =0.02, b g = 1, and p = 10. The an-
gular correlations are shown in Fig. 12 for various values
of the angle y. We see that the correlation function be-
comes negative when y -48'. When the angular separa-
tion of two points on the surface is in this neighborhood,
on the average one point will have a positive radial dis-
placement and the other a negative one. This is due to
the fact that when the inertial effects are small the pri-

11-/mary contribution to the spectrum is from the sma-
modes. For l =2 for example, P2(cosy) is positive wheny(, an(55 and negative when y) 55'. Thus information
about the dominant shape fluctuations can be inferred
from the angular dependence of the two-point correlation
function.

0
0

FIG. 11. Dimensionless spectral density S'(0,~ ) for
P =p = 1, A. =0.3, and Qo =0. 1.

VI. SUMMARY AND CONCLUSIONS

We have investigated in some detail the fluctuations in
a fluid droplet immersed in a fluid medium when the in-
terface between the two fluids has viscosity and compres-
sibility in addition to surface tension. We considered an
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interface containing a compressible Newtonian surface
fluid which is a fairly simple model, but even in this case
the dynamics of the interface can be quite complex.

The frequencies of the normal modes depend on the
surface rheological parameters, the extent of the coupling
to the adjacent Auids and the shape of the interface.
When A. =O there will be damped oscillations for large
enough values of the mode number regardless of the ex-
tent of the surface dissipation. This is no longer the case
when the Auids have viscosity, and the viscous drag by
the adjacent Auids on the interface leads to the vanishing
of the large mode-number oscillations. When A, is small
the boundary layer effects can be important and are
enhanced when both the fluid inertia and surface elastici-
ty are large. In this case there are two oscillatory modes
of decay. One of these is associated with the surface ten-
sion and is fairly insensitive to A, when k is small. The
other mode is associated with the surface elasticity, has
an oscillation frequency which is dependent on the
viscous coupling to the bulk fluids, and is strongly
affected by the boundary layer. Neglecting the viscosity
of the bulk fluids cannot account for this second mode
and in this case is a poor approximation to the much
more complex behavior which actually occurs.

Even in the simpler case X=O we found that there is no
simple condition which determines the way in which the
Auid droplet relaxes back to the equilibrium spherical
shape. In some cases the low mode-number oscillations
decay in a manner which is very different from the
higher-frequency capillary oscillations which are associ-
ated primarily with the surface tension. These depend on
the surface elasticity and may be related to the second os-
cillatory mode which was found in the nonzero-k case.
Regardless of the values of the parameters, for large
enough values of the mode number the decay will be os-
cillatory. For small droplets, oscillations occur only for
very large values of the mode number and are very rapid-

ly damped, and will therefore not be important in any
practical sense. When the inertial efFects are small, the
decay rates depend inversely on the droplet radius if the
surface viscosity is neglected and are independent of the
droplet radius if the viscosity of the bulk fluids is neglect-
ed.

The spectral density of the fluctuations in the shape of
the surface has a complicated dependence on frequency
owing to the presence of the spherical Bessel functions.
The stochastic variable 5R (t) is therefore non-
Markovian, and the memory effects arise in part from the
coupling to the adjacent bulk fluids. Since the inner and
outer fluids are incompressible the radial motion of the
surface induces tangential flow in the inner and outer
Auids, and if they have viscosity, this causes a tangential
surface flow since the tangential component of velocity
must be continuous. The tangential surface Aow in turn
induces a radial displacement of the interface. There is
therefore an interesting hydrodynamic feedback, and the
radial displacement at time t depends in a complex way
on the radial displacement at an earlier time t' & t, espe-
cially if the fluids have inertia and do not respond instan-
taneously to the motion of the interface. When the iner-
tia is large the spectral density of the fluctuations in the
shape of the surface shows many resonance peaks each of
which corresponds to a different F& normal mode. We
expect these oscillations primarily when the droplets are
large. In this case though the results are not so interest-
ing from the point of view of thermal fluctuations. How-
ever, the equi1ibrium Auctuations decay by the same
dynamical processes which determine the response to
some smal1 external perturbation. Thus the spectral den-
sity S(o,co) also describes the response of the droplet to
an impulsive force if the static correlation function is re-
placed with the initial value of the radial displacement.
The spectral density in this case summarizes tke subse-
quent dynamical behavior.
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