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Measurements of viscoelastic properties near the sol-gel transition demonstrate that viscoelastic
phenomena are described by power laws. To describe these phenomena, we derive the distribution
of relaxation times for branched polymers, both in the reaction bath and in the dilute solution.
From this spectrum we can compute viscoelastic properties such as the shear relaxation modulus
G (1) and the complex shear modulus G (w). Near the gel point we find G (t)~¢ %, with A a univer-
sal exponent, for times that are small compared to a divergent time 7,: For longer times the decay
is a stretched exponential. The exponent A is found to be sensitive to dilution. Likewise, the
storage and loss parts of the complex shear modulus are found to scale as ®. These results for the
dynamics lead to a theory for the critical growth of the equilibrium shear modulus E above the gel
point, and the divergence of the steady-state creep compliance J? above the gel point. Finally, we
discuss the concentration dependence of the viscosity of a solution of branched polymers.

I. INTRODUCTION

In the last several years rheologists have become in-
creasingly interested in measuring the viscoelastic prop-
erties of chemical gels near the sol-gel transition.! ~> For
experimental reasons, the complex shear modulus G (),
which describes storage and dissipation in an oscillating
strain field of constant amplitude,® is usually measured,
with the result that at the gel point both the storage G’
and loss G"' parts of the modulus are power laws in fre-
quency, G'~G" ~w® By a Fourier transform it can
then be shown that the shear relaxation modulus,® which
describes the relaxation of stress after a constant shear
strain, must decay as G (t)~t 4, and by a Laplace trans-
form it can be shown that the spectrum of relaxation
times® scales as H (7)d Int~7~2d Inr. Clearly, the deter-
mination of the viscoelastic exponent A, a principle goal of
this paper, is a central theoretical problem in the dynam-
ics of the incipient gel.

The decay of thermally induced fluctuations in the un-
diluted incipient gel is a closely related subject. Quasi-
elastic light-scattering measurements have recently
shown that the relaxation of concentration fluctuations is
described by the power-law time decay’ S(g,t)~t "%,
The function S(g,?) has two associated divergent relaxa-
tion times: an average decay time {7) and a typical
(~longest) decay time 7,. Slightly beneath the gel point
S (g,t) is described by a power-law time decay until ¢t =7,:
for larger times a stretched exponential decay is found.
This basic framework is shared by the time-dependent
viscoelastic functions.

A theory for the quasielastic light-scattering exponent
¢ was developed in terms of translational diffusion of the
branched polymers in the reaction bath. The percolation
model was used to describe the statistical properties of
the branched polymer ensemble, and by using the con-
cept of a length-scale-dependent viscosity, good agree-
ment was found between theory and experiment.

In this paper the percolation-based theory used to ex-
plain the relaxation of concentration fluctuations is ex-
tended to the problem of viscoelasticity. Both the reac-
tion bath and dilute solutions are considered. We first
compute the relaxation times of the internal modes of a
single, branched polymer and then obtain macroscopic
properties by summing over the percolation cluster size
distribution. For the reaction bath this yields the expres-
sion A=dv/(dv-+k), where d is the spatial dimension, v
is the correlation length exponent, and k is the viscosity
exponent. In dilute solutions the viscoelastic exponent is
found to be the ratio of the fractal dimensions of swollen
and unswollen clusters.

Although the main goal of this paper is viscoelasticity,
some interesting results are found for time-independent
properties, such as the elastic modulus, steady-state creep
compliance, and the viscosity. For example, by taking
strong and weak limits of the hydrodynamic interactions,
and using Flory-type arguments for certain fractal dimen-
sions, we are able to set the limits 0<k /v<(6—d)/2 on
the viscosity exponent k. This demonstrates that in the
mean-field theory of gelation (d =6) the bulk viscosity
diverges at most logarithmically.

Above the gel point it is shown that the equilibrium
shear modulus E grows as the density of correlation
volumes (‘‘blobs’’) E~kT/§d, where kT is the thermal
energy. Likewise, it is found that the equilibrium
steady-state creep compliance J2, which diverges beneath
the gel point, is the counterpart to the modulus, so
JO~1/E. This simple relation derives from the fact that
each of these quantities involves a storage of energy.
That the storage of energy is related to the density of
blobs may be regarded as a statement of equipartition—
in a unit shear deformation an energy kT is stored per
correlation volume. This result disagrees with the analo-
gy between the shear modulus of a gel and the growth of
conductivity in a random resistor network.

Finally, the concentration dependence of the viscosity
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of a solution of branched polymers is discussed. The re-
sult bears a close analogy to entangled linear chain melts:
The viscosity is found to be a power of the number of
concentration blobs in a typical branched polymer.

II. PERCOLATION AND LATTICE ANIMALS

Before discussing the dynamics it is helpful to review
the percolation model of branched polymers. For a
thorough review one can consult several excellent arti-
cles.* 1 In the bond-percolation model monomers occu-
pying sites on a d-dimensional lattice are randomly bond-
ed with probability p. When p is small only a few dimers
and trimers are formed, but as p increases, very large con-
nected clusters (branched polymers) appear. At a critical
bond probability (extent of reaction) p, an infinite cluster
appears and certain average cluster sizes diverge to
infinity. Thus p =p_. marks the transition from the sol
(finite branched polymers) to the gel (infinite network).
Beyond p. the very largest clusters become attached to
the infinite cluster to form a network, within which are
embedded finite clusters: The average size of these clus-
ters decreases as p approaches 1. Near the sol-gel transi-
tion the percolation model is analogous to a continuous
phase transition, in that many quantities diverge as
powers of e=|p —p_|. For example, as the gel point is
approached from below, the viscosity diverges as 7 ~¢e ¥
and above the gel point the elastic shear modulus of the
infinite network increases as E ~ €%

In the following we will make frequent use of standard
percolation results. The percolation cluster size distribu-
tion is given by® N(m)=m ~Texp(—m /M), where M, is
the mass of a typical cluster and 7=1+d /D is an ex-
ponent that is a bit larger than 2. The exponent D =2.52
(d =3) is the fractal dimension of a cluster smaller than
M, and so relates the mass of a cluster to its radius via
RP—~m. Thus the distribution decays very slowly until
m ~M, where the algebraic decay is nearly truncated by
the exponential.® The z-average cluster mass

M,=3 m’N(m)/ S m>N(m)
diverges like M, ~€~P¥: The radius of a cluster of mass
M, is called the correlation length £. Since £°~M,
~€~P¥ we surmise that the correlation length diverges as
§~e€~". Three-dimensional simulations give v=0. 89.

In six dimensions the percolation model is equivalent
to the mean-field theory of gelation developed by Flory
and Stockmayer on the Bethe lattice.!'™'* The mean-
field exponents have the values D =4 and v=1. It is
often interesting and useful to make comparison to the
mean-field theory of branched polymers.

In addition to these standard percolation results, we
will repeatedly make use of the Flory-type formulas for
the fractal dimension of branched polymers in the reac-
tion bath and in good solvents, given by Isaacson and Lu-
bensky'* and de Gennes.!” In the reaction bath, two-
body interactions between monomers on a cluster are
screened by intervening clusters. Due to this screening
clusters are somewhat compact, having the percolation
dimension, which is approximately!* D =(d +2)/2
(d =6). However, when branched polymers are diluted

with a good solvent, two-body interactions within a clus-
ter are unscreened, and excluded volume interactions are
strong. The fractal dimension D, of these swollen clus-
ters is then given by the lattice-animal model,® with!®
D,=2(d +2)/5 (d =8). Lattice animals are the ensemble
of all possible branched polymers, each occurring with
equal probability, whereas percolation clusters are ex-
ponentially weighted by their surface sites—a low proba-
bility results from a large surface. Therefore, in three di-
mensions it is predicted that the fractal dimension of a
single-branched polymer decreases from 2.5 to 2 upon di-
lution.

Finally, we note that in the reaction bath clusters
larger than the correlation length have the lattice-animal
fractal dimension D,.!® This is due to the fact that very
large, exponentially rare clusters see the surrounding dis-
tribution of percolation clusters as a small solvent. This
point is important when we discuss very-long-time relax-
ation phenomena.

III. RELAXATION TIMES

To compute the relaxation times for either a solution
or melt of branched polymers it is helpful to consider first
the dynamics of a single cluster. A single cluster has
many degrees of freedom, including translational and ro-
tational diffusion, and internal diffusive modes that define
the shape of a cluster. A normal-mode analysis must take
into account the connectivity of the cluster, excluded
volume interactions between monomers on the cluster,
and hydrodynamic interactions between monomers. De-
tailed normal-mode calculations for linear polymers were
first published by Kirkwood and Riseman,!” Rouse,!8 and
Zimm'? in several elegant papers; however, the complexi-
ty of the percolation model has prevented direct calcula-
tions for branched polymers.

The work on linear polymers can be summarized by
recognizing that the Brownian dynamics of these chains
obeys a dynamical self-similarity: If the relaxation times
of a polymer chain are scaled by 7, ~R?/D,, the time it
takes a polymer to diffuse its own radius, then the long-
time part of the nondimensioned relaxation time spec-
trum is scale independent. Thus just as R is the only
length scale in a self-similar object, 75 is the only time
scale for the dynamics. For example, the rotational
diffusion coefficient of any Brownian object is given by
6~'~R?/D,. This implies that regardless of the size of
the object, it will on average rotate through the same an-
gle during the time it takes it to diffuse a distance equal
to its own radius. Trajectories are thus statistically
equivalent when scaled by this time.

The assumption of self-similar Brownian dynamics
leads to the following expression for the relaxation times
of a single flexible polymer (linear or branched) of m
monomers:

Ti~j %g, 15jSm (1)

where j is a mode index. The exponent a can be deter-
mined by expressing the cluster diffusion coefficient as
D,~R7" and noting that the relaxation of short-
wavelength modes should be independent of the cluster
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a

size m, i.e., 7, ~m ~ “Tg ~m?P. This gives

Ti~(j/m) "D 1< j<m )
where D is the fractal dimension of the cluster and 7 is
the relaxation time of the fastest mode, approximately
the time it takes a polymer-entrained monomer to diffuse
a distance equal to its own radius.

If a sudden shear deformation is applied to a macro-
scopic polymeric sample, the polymers will initially de-
form affinely and then will slowly approach their equilib-
rium conformations, thereby relaxing the stress. Accord-
ing to the Boltzmann superposition principle,® the shear
relaxation modulus G,,(¢) of a single cluster can be ex-
pressed as an unweighted sum of the relaxations of all its
normal modes. For times slower than the monomer
diffusion time 7, and faster than the polymer diffusion
time 73 this gives the power-law decay

G,,,(t)=flmexp(—t/7'j)a!j~m/tl’/‘”-”j ,
0<t<rp . ()

To demonstrate the utility of this approach, it is instruc-
tive to apply Eq. (3) to linear polymers. We consider
linear polymers in good solvents, described by the statis-
tics of self-avoiding walks (D =32 for d =3), and linear
polymers in 68 solvents, which in d =3 are described by
random walks (D =2). In each of these cases the hydro-
dynamic interactions between monomers on a chain can
be strong or weak.

If hydrodynamic interactions are strong (Zimm model)
the diffusion coefficient is given by the Stokes-Einstein
formula D, ~kT /noR¢ "2 (b =d —2). Using Eq. (3) we
then obtain G,,(t)~m /tP/?, which gives the well-known
6-solvent prediction® G,,(t)~m /t*’* and the good sol-
vent prediction®*?! G, (t)~m /t3/°. On the other hand,
if hydrodynamic interactions are negligible (Rouse mod-
el) the friction of the chain against the solvent is just the
sum of the monomer frictions §,, giving D, ~kT /{ym
(b=D) and G,,(t)~m /tP/?*D) For the 6 chain this
gives the celebrated Rouse result® G,,(t)~m /t'/2, and in
good solvents this gives G,, (t)~m /t>/11, 1t is widely be-
lieved that an unentangled linear polymer melt®? is a
physical realization of the Rouse model, due to the
screening of both excluded volume and hydrodynamic in-
teractions. Thus the above formulation of the relaxation
times reproduces several well-known results.

In the field of viscoelasticity it is customary to express
results in terms of a logarithmic spectrum of relaxation
times,® H (7)d Int. In this formulation the single-cluster
spectrum, Eq. (2), can be written

Hy(1)=—5 o f (7/7R) @)

In this continuous representation the function f(7/7g)
truncates the spectrum of relaxation times at the longest
time 7. Although the detailed nature of f(x) is un-
known, for x <1 we expect f(x)=1, whereas for x >>1,
f (x) should decay much faster than a power law (e.g., ex-
ponentially). In terms of H,,(t) the single-cluster shear
relaxation modulus is

Gu()=[" H, (1) /" In7 . (5)
I’\TO

We will now apply this to branched polymers.
IV. A BRANCHED POLYMER

The relaxation time spectrum for a single, branched
polymer can be obtained from an understanding of
diffusion in the reaction bath. To understand diffusion
we must first digress to consider the structure of the inci-
pient gel, as described by percolation. The incipient gel is
a self-similar distribution of fractal clusters of all sizes,
from monomers to the infinite cluster. In order that all
clusters see a scale-independent environment, the average
separation distance S between clusters of radius R +d InR
must be proportional to R. By using S ~1/N(R)'/?~R
we obtain the self-similar distribution N(R)d InR
~R ~% InR. From the fractal relation R2~m the well-
known hyperscaling relation® N(m)dm ~m ~'=4/Pdm is
obtained for the mass distribution at the gel point. As we
have mentioned, away from the gel point the distribution
is only self-similar for clusters smaller than M,: For
larger clusters the self-similarity is truncated by an ex-
ponential cutoff ® giving

N(m)dm ~m ~' "4/ Pexp(—m /M, )dm ,
or equivalently,
N(R)d InR ~R ~%exp[ — (R /£)°)d InR .

Consider a cluster of radius R attempting to diffuse in
the incipient gel. Since branched polymers of comparable
size cannot overlap, it is reasonable to describe the
diffusion as Stokes-Einstein, but in a medium with a size-
dependent viscosity”?3 (i.e., the viscosity depends on the
cluster size). In other words, the diffusion coefficient of a
cluster of radius R is expected to be proportional to that
of a sphere of radius R. On the time scale on which this
cluster relaxes (moves a distance proportional to R)
smaller clusters will have already relaxed, but much
larger clusters will appear nearly stationary. Thus the
smaller clusters form a fluid with a finite viscosity, em-
bedded in a medium of essentially immobile clusters
which form a tortuous system of caverns through which
the cluster must diffuse. From self-similarity we recog-
nize that the tortuosity is the same for all clusters, and
simply reduces the diffusion coefficient by some fixed,
radius-independent amount. Thus the central issue is the
viscosity n(R) of the fluid of clusters of radius less than
R. Noting that the cutoff in the size distribution is the
correlation length & (the typical cluster radius), a fluid of
viscosity n(R) will be observed e~R ~!/¥ beneath the gel
point, where §~€~*. Beneath the gel point the bulk
viscosity diverges like 7~¢ "%, so the viscosity felt by a
probe of radius R scales like 7(R)~R*’”. Using the
Stokes-Einstein formula D,(R)=kT/6mmR for the
diffusion coefficient then gives D,(R)~1/R'"*/¥, In d
dimensions this becomes D, ~1/R? ~2Tk/v,

We can obtain the same result if we assume that a
probe larger than the correlation length feels the bulk
viscosity 7),, and a probe smaller than the correlation
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length feels a finite viscosity, i.e., independent of 7 since 0
diverges. This formulation leads to the scaling relation
N(R)~n,h (R /E)~n) for R <E. Using n, ~EX'Y then
gives n(R)~R*/V for R <E.

Physically it seems reasonable to interpret the term
R¥*’V as representing the screening of hydrodynamic in-
teractions. If the reaction bath corresponds to a Rouse
model, where hydrodynamic interactions between mono-
mers on a cluster are completely screened by smaller clus-
ters, we recall that the diffusion coefficient should be
D,~kT/Egm ~1/RP, where &, is a monomeric friction
factor. In this case D =d —2+k /v. However, since the
assumption of complete hydrodynamic screening is
unjustified we should expect the reaction bath to be be-
tween the Rouse and Zimm limits, so d —2=<d —2
+k /v < D. Using the percolation estimate D =(d +2)/2
then gives 0=k /v=(6—d)/2. This inequality demon-
strates that in the mean-field limit (d =6) k must vanish,
and the viscosity must diverge at most logarithmically,’
i.e., m~In(1/€). The experimental limits are
0<k=1.35.

For a single branched polymer in the reaction bath the
result for the diffusion coefficient leads to b=d —2
+k /v. The spectrum of relaxation times is then

H, (7) 7/Tg) (reaction bath) (6)

_ m
B ,rDv/(dv-é-K)f(
with the longest relaxation time scaling as
TR ~m'4vTR/Dve - Using Eq. (5), the shear relaxation
modulus of a single branched polymer (not the macro-
scopic sample) immersed in the reaction bath is

m

~ S Dv/dvER) (reaction bath) . (7a)

t) To<t <Tg

m

If the branched polymers are diluted into a good sol-
vent the clusters swell (D —D,) and hydrodynamic in-
teractions are unscreened. Using the Stokes-Einstein re-
lation D, ~1/R %% and 75 ~m?/Ps7, gives the following
result, which would apply to a fractionated dilute solu-
tion of branched polymers:

G, ()~m /t>’% 7,<t<7p (dilute solution) .  (7b)

The lattice-animal dimension D=2 gives G, (t)~m/
273 for a monodisperse solution of branched polymers in
a good solvent.

V. THE POLYDISPERSE ENSEMBLE

In order to compute macroscopic properties, it is
necessary to sum over the distribution of clusters. The
spectrum of relaxation times is

H(r)=3 N(m)H,, (1),

and by using our expression for N (m) we obtain
H(r)=(1/79%P)F(r/7,) , (8)

where 8 is the single-cluster viscoelastic exponent. F(x)

again plays the role of a cutoff function that truncates the
power-law decay of the distribution of relaxation times at
r=1,~E?/D,(£), the longest relaxation time for a cluster
the size of the correlation length (a physical interpreta-
tion of this time will be given later). Using §=Dv/
(dv+k) (reaction bath) and =D, /d (dilute solution) we
obtain

1

H(r)= mF(T/TZ) (reaction bath) (9a)
—_1 . )
RNz F(r/7,) (dilute solution) (9b)
i

. —dv— . —dwD/D;)
with 7, ~€e~ 9" ¥ for the reaction bath and 7, ~¢ s

in dilute solution. Equation (9a) contains the prediction
A=dv/(dv+k) for the viscoelastic exponent of the reac-
tion bath. Later we will show that this value of the
viscoelastic exponent is consistent with a sum rule of
viscoelasticity.

A Laplace transform of H(7) gives the experimental
predictions

G(I)N?GT}TV:T)’ To<t <7, (reaction bath) (10a)
~"D5./b" 70=t =7, (dilute solution) . (10b)

t

Likewise, a Fourier transform of the shear relaxation
modulus gives the storage and loss parts of the complex
modulus

G'(w)~G"(w)

~ @@ AVTR 1S 0> 771 (reaction bath) ,

(11a)

G'w)~G"(w)

D, /D

~0 ", 15 '>e>7" (dilute solution) .

(11b)

Using the inequality 0=k /v=<(6—d)/2 for the viscos-
ity exponent, we can establish the inequality
2d /(d +6) = A =1 for the viscoelastic exponent of the re-
action bath. Experimentally, this gives 2<AZ<],
whereas in the mean-field limit A=1 (we will show that
the mean-field value must be 1 in order for the viscosity

to diverge logarithmically).

VI. STRETCHED EXPONENTIAL TAIL OF G (1)

If we are somewhat beneath the gel point, the decay of
G (¢) will no longer be a power law for times larger than
7,. At these very large times only the exponentially rare
clusters, with m >>M, will still contribute to the decay.
As we have mentioned, simulations of percolation show
that these exponentially rare clusters are lattice an-
imals,'® with a fractal dimension of 2 (d =3). Since these
clusters are much larger than the correlation length they
should feel the bulk viscosity, and so should have a
diffusion constant proportional to k7' /7, R? 2. Thus the



long-time tail of G (¢) may be described by the relaxation
of the Zimm modes of the exponentially distributed lat-
tice animals.

If we first sum over the discrete internal modes of a
single-lattice animal we obtain a long-time decay for a
single cluster that is proportional to e —’/TR, where
Tr ~m  °. Averaging this over the distribution of clus-
ter sizes and using the method of steepest descents gives

D, /(d +Dy)

G(t)~exp[—(t/T1,) ]. (12a)

Thus for d =3 we predict a stretched exponential tail
with an exponent of D, /(D;+d)=2%. We mention a final
caveat, however. If the cutoff function for the distribu-
tion of relaxation times of a single cluster is slower than
we have assumed from summing over discrete modes,
then the observed exponent for the stretched exponential
may be smaller than 0.4.

Although it cannot be rigorously justified, a useful
form for fitting data taken for the reaction bath might be

s/t +D,

1 s
G(t)~me)(p[—'(t/7'z 7. (12b)

We emphasize that this is merely a simple way of con-
necting the short- and long-time behaviors of the relaxa-
tion function. Finally, it is noteworthy that the stretched
exponential tail applies to the case of dilute clusters as
well.

VIIL. VISCOSITY AND EQUILIBRIUM MODULUS

The theory of viscoelasticity provides an important
check on our calculation of the dynamic exponent A.
The integral of the shear relaxation modulus, which is the
arithmetic average relaxation time {r), is the zero-
frequency viscosity 7.° Thus we must have (7) ~¢e ¥ in
order for our theory to make sense. A direct calculation

demonstrates that this is indeed the case,
= [“G(t)dt~ [ "t dt~e " . 13
(n=["6wdr~ [ € (13)

This result justifies our initial assumption that the dy-
namics of a single cluster is scaled by the single relaxation
time R2/D,.

At this point we have identified two divergent relaxa-
tion times relevant to the viscoelasticity of branched po-
lymers: the arithmetic average, or bulk viscosity, given
by (7)~€e™ ¥ and the terminal (longest) relaxation time
7,, defined by

B [ "G (nar
= "Gwadr
0

This multiplicity of divergent time scales has already
been noted in quasielastic light-scattering measurements
from gels.” From the theory of rheology we recognize
Eq. (14) as the expression for J2, where J? is the steady-
state creep compliance.® The relations (7)~7 and
7, ~1J0 can then be solved to obtain JO~7, /{7) ~e~ 9,
a result with a striking physical interpretation, as we will

e dvk (14)
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now discuss.

The scaling behavior of the longest relaxation time in
the pregel reaction bath can also be derived by examining
the high- and low-frequency limits of the complex shear
modulus | G*|. The following scaling argument was
developed by Clerc et al.?* in the context of electrical
networks, and applied to gels by Daoud® (who applied
this argument to the spectrum of relaxation times) and
Winter.?® At low frequencies, | G*| by definition is
equal to nw, and at high frequencies, we have shown that
| G* | ~w®. Therefore 1/7, can be defined as the fre-
quency where these two limiting behaviors meet. This
gives 7, ~e K/1=%) and, with A=dv/(dv+k), we again
see that 7, ~e~*? % The scaling behavior of the longest
relaxation time in the postgel reaction bath 7} is found
similarly. Here, though, the low-frequency limit of
| G* | is E, the equilibrium modulus, which results in
¥ ~e~ /2, If we assume that 7, and 7* scale with € in
the same manner, then k /(1 —A)=z/Aor A=z /(z +k).

This scaling result is in the same form as our predic-
tion A=dv/(dv+k), leading to the identification of dv
as the elastic modulus exponent z. Recalling our result
for JO, we recognize that the elastic modulus scales as
1/J2 (note that these quantities are defined on opposite
sides of the gel point). Apparently, this is due to the fact
that each of these quantities involves a storage of energy:
E is the energy stored in the gel, and 1/J? is the energy
stored in the sol in a creep experiment. In any case, we
observe that the equilibrium steady-state creep compli-
ance is the critical point counterpart to the equilibrium
shear modulus.

The exponent dv has a simple physical interpretation.
First, if the modulus is determined solely by entropy,
then the thermodynamic theory of elasticity tells us the
modulus should be proportional to 7, the temperature.
Noting that the modulus is an energy density and noting
that E ~ e~ &9 gives

E~—J%~l;%. (15)

Thus the elastic shear modulus is proportional to the den-
sity of correlation blobs in the gel. The situation is analo-
gous to semidilute linear polymer solutions, where the
osmotic modulus is proportional to the density of concen-
tration blobs.?? Equation (15) may be thought of as a
statement of equipartition of energy: In a unit shear de-
formation an energy kT is stored per correlation volume
at equilibrium.

On the other hand, we can use the scaling relation®
dv=Dwv+3 (where 3 is the gel fraction exponent G ~¢”)
to obtain E~kTG/M,. This shows a clear analogy to
the original Flory theory?’ of rubber elasticity, where the
modulus was found to be proportional to the density of
elastically effective chains. In this interpretation the gel
fraction may be regarded as the elastically effective por-
tion of the network and the mass of a typical cluster is
the size of an elastically effective unit.

Numerically dv is insensitive to dimension, for exam-
ple, dv=2% (d =2), dv=2.67 (d =3), and dv=3 in the
mean-field limit. This value of z is in good agreement
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with experimental measurements,?® 3! which tend to give

z =3, but is larger than the value of z =1.94 (Ref. 32) ob-
tained by making an analogy between elasticity and the
growth of the conductivity in a random resistor network
(in the mean-field limit both theories give z =3).

Finally, we relate the viscosity beneath the gel point to
the shear elastic modulus above the gel point. From our
result 7, ~€~ 4" ¥ this is

n~7E . (16)

Once again, there is a relation to entangled, semidilute,
monodisperse, linear polymer solutions?? if 7, is taken to
be the terminal relaxation time of a linear polymer chain
and E is the plateau modulus. In the Rouse approxima-
tion the viscosity scales as 7 ~E 79724 which in d =3
is the inverse root of the modulus.

VIII. CONCENTRATION DEPENDENCE
OF THE VISCOSITY

In the case of a dilute solution of polydisperse
branched polymers in a good solvent a few interesting re-
marks can be made. At infinite dilution the intrinsic
viscosity can be computed by integrating the shear relax-
ation modulus

. —D_/D d(p"'-p~1)
[~ [ "¢ > Tde~m

_ —1_p—1
dpUD =D (17)

~

Note that the result depends critically on whether or not
the fractal dimension of a branched polymer changes
upon dilution. If the fractal dimension D, of a cluster in
a good solvent is equal to that in the reaction bath D,
then the intrinsic viscosity diverges only logarithmically,
[7]~In(1/€). However, if the Flory-type theories of
swelling are correct, then using D;=2, D =2.5, and
v=.89 we obtain [n]~M}"10~M>®~e 23, Thus the
divergence of the intrinsic viscosity is a very sensitive test
of the swelling hypothesis. This result for the intrinsic
viscosity has been obtained by Daoud et al.*® directly,
without recourse to the viscoelastic functions.

The concentration dependence of the viscosity can be
obtained from the result for the intrinsic viscosity. In di-
lute solutions the viscosity can be expanded as
n=mno(1+c[n]+ - - ), where 7, is the solvent viscosity.
The intrinsic viscosity is a specific volume, so when the
concentration of chains approaches C* ~1/[7], the solu-
tion is semidilute, i.e., branched polymers just fill the en-
tire volume of the solution. (Note that the semidilute
crossover concentration goes to zero as the gel point is
approached.) If we quench a chemically gelling solution
before it gels and dilute that solution to C* the viscosity
should be independent of the average molecular weight of
the branched polymers. Thus for C>>C* we write the
scaling relation 7~(C/C*)*~(C[n])*. If we use
[7l~e Lt [L=dDv(D;'—DY)], then from the con-
straint n~e % (C=1) we obtain the concentration
dependence

n~(C[pD*E, C>[n]"'. (18)
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Once again we can use the Flory-type arguments for the
fractal dimensions [D =(d +2)/2, D;=2(d +2)/5],
along with the Rouse and Zimm limits for k to obtain the
inequality 0=k /L <2(6—d)/d. In the Rouse limit this
gives the experimental prediction 7~ C2M /%,

Before leaving this topic we should point out a formu-
lation of the viscosity problem that illustrates another
connection to scaling in semidilute monodisperse linear
polymer solutions. Percolation is a random model, so
there are no spatial correlations larger than a monomer.
However, when a solvent is added this introduces a spa-
tial correlation length®* £_. In analogy with linear poly-
mer solutions??> we define a concentration blob as a
domain of size £;. On length scales smaller than & clus-
ters are swollen and correlations within a cluster are de-
scribed by the fractal dimension D, and on larger length
scales single-cluster correlations are described by the di-
mension D. Since the spatial correlation length depends
on a power of the concentration we can write a scaling
law of the form mn~e ¥/£%, which applies when

£ << §D/D‘, where & ’Ps is the correlation length at
infinite dilution. The result x =kD,/vD can then be ob-

tained by applying the constraint that at & =§D/ * (i.e.,
C= %‘ *) the viscosity is molecular weight independent, so
~€".

K The viscosity can now be expressed in terms of our two
length scales as 7]~(§D/§f’ )¥/P¥_ This has a simple
physical interpretation: £? is just M,, the mass of a typi-
cal cluster, and £, =g, the mass within a concentration
blob. The ratio M, /g is the number of concentration
blobs within a typical cluster Ny,,. Thus the viscosity
depends on this single parameter through

n~NEDY (19)

Once again we have a striking analogy to entangled linear
polymer solutions, where the viscosity is a power of the
number of concentration blobs.?? This result has the
correct limiting behaviors: at C*, Ny, =1, and the
viscosity is independent of € at C=1, Ny, ~M, so
n~e€ % Finally, if we once again take the Rouse limit
with D =(d +2)/2 we find n~N{$,;¥/'¢*2); this gives
N~Ni{ in d =3 and a logarithmic divergence in the
mean-field limit.

IX. DISCUSSION

We will now summarize some of the experimental and
theoretical work in the literature. We will start with the
elastic modulus, then discuss the viscosity, and finish
with the viscoelastic properties.

de Gennes developed a clever analogy between gelation
and electrical networks. Using a scalar form of the elasti-
city de Gennes was able to show that the elastic modulus
of a gel should scale as the growth of conductivity in a
random resistor-insulator network.??> Computer simula-
tions of resistor networks give’®> z=1.94+0.1, in
disagreement with our prediction z =dv=2.67£0.01. In
the mean-field limit, however, both of these theories give
z =3. The resistor analogy has been criticized since it is
necessary to assume a form of the elasticity that is not ro-
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tationally invariant. By including a bond-bending term
in the network energy Kantor and Webman?® have ob-
tained the estimate z = dv+1=3.67+0.01.

There are several experimental studies of the elasticity
of gels. In 1979 Gordon et al.?® studied triacetic acid de-
camethylene glycol-benzene polycondensates and found
mean-field behavior (z=3). Early studies by Adam
et al.?3® gave z =2.1+0.3 for radical copolymerization
and 3.24+0.6 for polycondensation. More refined mea-
surements by Adam et al.’! gave 3.240.5 for polycon-
densation. These studies have led Adam to question the
universality of the mechanical properties, although some
of the difficulties may be due to defining the width of the
critical regime.

Finally, Adam et al.”’ noticed an interesting feature of
gels: When polycondensate gels were prepared by end
linking high-molecular-weight polymers, no clear scaling
of the modulus was observed near p.. Perhaps when long
chains are gelled one suppresses the critical behavior to a
small, experimentally inaccessible regime near the critical
point.

de Gennes has also proposed an analogy between the
divergence of the viscosity and the divergence in the con-
ductivity in a random superconductor-resistor network.>
Simulations of superconductivity show that this analogy
gives the prediction®” k =0.75+0.04. We recall that our
limits on k are 0 < k <1.35. Experimental measurements
by Adam et al.?*° on both polycondensates and on radi-
cal copolymerization gave kK =0.78+0.05. Later work by
Adam et al.3! on polycondensates gave k =0.8%0.1.
However, measurements by Colby et al.*® on silica gels
gave k=1.310.2 and Martin et al.” obtained
k=1.5x0.2 from an indirect interpretation of quasielas-
tic light-scattering data. Finally, Martin et al.*° found
k =1.4+0.2 for epoxy resins. Although the situation is
uncertain, several of these results are close to the upper
limit of k, suggesting a Rouse melt.

This now brings us to the more complex discussion of
the viscoelastic exponent A. If the de Gennes values of
the exponents z and k, obtained from simulations, are
substituted into D =z /(z + k), we obtain A=0.72+0.02.
This number is within the limits we have obtained,
0.66 <A =<1. The first experimental work to illustrate the
scaling of the viscoelastic properties near the gel point
was published by Chambon and Winter.! These studies
demonstrated that in end-linked polydimethylsiloxane
gels the viscoelastic exponent is 0.5. These gels were
called stoichiometric, since they had sufficient cross link-
er to end link every chain in the solution. This means
these gels had much more cross linker than that neces-
sary to form a gel. When the amount of cross linker was
reduced, a larger value of A=0.58 was observed.? These
studies were somewhat complicated by the fact that these
gels were made of long polydisperse interlinking chains,
of weight-average molecular weight 22 000. Long chains
have the effect of reducing the critical regime and of in-
troducing relaxation times for the interlinking chains
themselves. These interlinking chain modes taken alone
give a power decay in G (¢) with an exponent of 0.5.

Chambon and Winter? also studied polyurethanes with
much shorter interlinking chains (M, =454, 965, and
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2018). With excess cross linker (at the gel point) it was
again found that A=0.5. However, it was found that
when the cross-linker density was reduced to just that
necessary to form a gel, the value A=.66 was obtained.*
Durand et al.’ also studied polyurethanes with low
amounts of cross linker and found A=0.70%+0.02. On
the other hand, Martin et al.*® studied epoxy resins (di-
glycidyl ether of bisphenol A, cross linker diethanolam-
ine) and found A=0.70+£0.05, but in this case there was
an excess of cross linker at the gel point.

Thus in some systems with excess cross linker at the
gel point a low value of A=0.5 is found, but with low
amounts of cross linker the dynamical exponent appears
to be approximately 2. One point should be clarified: In
the experimental literature gels are called stoichiometric
if there is sufficient cross linker that in the fully cured
rubber all cross linker is exhausted. This gives an excess
of unreacted cross linker at the gel point. This should be
distinguished from the case where only sufficient cross
linker is introduced to form a gel. In this case the cross
linker is fully reacted at the gel point, so we will refer to
this as stoichiometric at the gel point. In the following it
is useful to think of the cross linkers as occupying sites on
a lattice, with the interlinking chains forming the bonds.
Thus if the system is stoichiometric at the gel point, the
cross linkers (with their range of interaction given by the
radius of the interlinking chains) barely site percolate.

In the presence of excess cross linker at the gel point,
certain complications can occur. For example, it is
known that making end-linked polyurethanes with iso-
cyanates causes the rapid formation of difunctional
bonds, giving a bath of long linear polymers, that then
slowly cross link to form a gel. This occurs because of a
large activation energy to form a third bond at the iso-
cyanate. Thus in the presence of an excess of cross linker
it is possible to form very long linear chains before the
isocyanates bridge a third time to form a gel. These long
interlinking linear chains would contribute Rouse modes
to the relaxation and at nonvanishing frequency would
tend to reduce A to 0.5. Additionally, in some po-
lyurethanes there is a significant incompatibility between
the cross linker and the chains. In the presence of large
amounts of cross linker this can cause microphase separa-
tion into isocyanate-rich domains, which then form physi-
cal cross links. Thus it would seem that it is best to mini-
mize the amount of cross linker in order to make com-
parisons to the percolation theory.

On the other hand, if the amount of cross linker is re-
duced to be stoichiometric at the gel point, linear chain
formation is suppressed, and the system closely resembles
percolation. This is simply because no difunction cross
links remain in the fully reacted system. Thus the possi-
bility of interfering Rouse modes is suppressed, and the
experimental results are closer to the percolation model
given here.

X. CONCLUSIONS

From the initial assumption that the relaxation times
in a single-branched polymer can be scaled by the longest
time, R2/D,, we have been able to derive a theory for the
viscoelasticity and mechanical properties of a gel near the
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sol-gel transition. The viscoelastic functions are found to
be the power laws G(t)~t 2, G'(0)~G"(w)~w®, and
H(1)~7"%, where A=dv/(dv+k). Two divergent re-
laxation times are found near the gel point. The average
relaxation time (7) scales as the viscosity, and the long-
est relaxation time 7, scales as the viscosity times the
steady-state creep compliance Jf. We set the bounds
1>A>2d/(d +6) on the viscoelasticity exponent. Ex-
periments often give numbers close to the lower bound of
this estimate.

It is predicted that below the gel point the long-time
tail of G (¢) should be described by a stretched exponen-
tial with an exponent of D, /(D +d). Using the swollen
percolation dimension of 2 (d =3) we obtain the predic-
tion InG (2)~ —(t /7,)%* for t >>1,.

The exponent dv describes the growth of the elastic
shear modulus, so E is just the density of correlation
blobs kT /&% Numerically this is E ~€*7, which is in
good agreement with experimental data, that typically
give an exponent near 3. We observe that the inverse
equilibrium steady-state creep compliance is the critical
point counterpart of E, and so diverges with the same ex-
ponent on the opposite side of the critical point. It is
found that the viscosity and modulus are related through
n~7,E although these divergences occur on opposite
sides of the critical point.

We set limits on the viscosity divergence: The ex-
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ponent k has the bounds 0<k /v<(6—d)/2. In three di-
mensions this is 0=k <1.35 and in the mean-field limit
(d =6) k =0. Thus the viscosity does not diverge in the
mean-field theory. The latter conclusion is also found in
the superconducting network analogy of de Gennes.
Again, experimental data support these limits, with some
of the data being near the upper limit. This would imply
that a branched polymer melt is a Rouse fluid.

Finally, it is predicted that the viscosity varies as
1~C2M}’*, where C is the concentration of a semidilute
branched-polymer solution. We note that this viscosity
can be expressed as a power of the number of concentra-
tion blobs in a typical cluster, in analogy with semidilute
linear polymer solutions. We expect to see quite a bit of
experimental work emerging in this area in the future, so
the value and limitations of this scaling approach should
become apparent.

Note added in proof. By an alternate method Cates*®
has established the limits 0.62 <A <1.

ACKNOWLEDGMENTS

We appreciate stimulating discussions with H. Winter
and M. Delsanti on the experimental measurements and
the helpful remarks on the theory by T. Witten and G.
Grest. This work was performed at Sandia National La-
boratories, Albuquerque, NM and supported by the U.S.
Department of Energy under Contract No. DE-AC-04-
76DP00789.

IF. Chambon and H. H. Winter, Polym. Bull. 13, 499 (1985).

2F. Chambon and H. H. Winter, J. Rheology 31, 683 (1987).

3F. Chambon, Z. S. Petrovic, W. J. MacKnight, and H. H.
Winter, Macromolecules 19, 2146 (1986).

4“H. H. Winter, P. Morganelli, and R. Chambon, Macro-
molecules 21, 532 (1988).

5D. Durand, M. Delsanti, M. Adam, and J. M. Luck, Europhys.
Lett. 3, 297 (1987).

). D. Ferry, Viscoelastic Properties of Polymers (Wiley, New
York, 1980).

7J. E. Martin and J. P. Wilcoxon, Phys. Rev. Lett. 61, 373
(1988).

8D. Stauffer, Introduction to Percolation Theory (Taylor &
Francis, London, 1985).

9D. Stauffer, A. Coniglio, and M. Adam, Adv. Polymer Sci. 44,
103 (1982).

103, W. Essam, Rep. Prog. Phys. 43, 843 (1980).

HP_ J. Flory, J. Am. Chem. Soc. 63, 3083 (1941).

12pP_J. Flory, J. Phys. Chem. 46, 132 (1942).

13W. H. Stockmayer, J. Chem. Phys. 11, 45 (1943).

143, Isaacson and T. C. Lubensky, J. Phys. (Paris) 41, L469
(1980).

15P.-G. de Gennes, C. R. Acad. Sci. 291, 17 (1980).

I6H. E. Stanley, P. J. Reynolds, S. Redner, and F. Family, in
Real Space Renormalization, edited by T. W. Burkhardt and
J. M. J. van Leeuwen (Springer-Verlag, Heidelberg, 1982).

17J. G. Kirkwood and J. Riseman, J. Chem. Phys. 16, 565
(1948).

18P E. Rouse, J. Chem. Phys. 21, 1272 (1953).

19B. H. Zimm, J. Chem. Phys. 24, 269 (1956).

200. B. Ptitsyn and Yu. E. Eisner, Zh. Fiz. Khim. 32, 2464
(1958).

210. B. Ptitsyn and Yu. E. Eisner, Zh. Tekh. Fiz. 29, 1117
(1959).

22P.-G. de Gennes, Scaling Concepts in Polymer Physics (Cornell
University Press, Ithaca, New York, 1979).

23p.-G. de Gennes, J. Phys. (Paris) 40, L197 (1979).

24C. P. Clerc, A. M. S. Tremblay, G. Albinet, and C. D. Mites-
cu, J. Phys. Lett. 45, 1913 (1984); C. P. Clerc, G. Gireau, J.
M. Laugier, and J. M. Luck, J. Phys. A 18, 2565 (1985).

25M. Daoud (unpublished).

26H. H. Winter, Prog. Colloid Polymer Sci. 75, 104 (1987).

27P. J. Flory, Principles of Polymer Chemistry (Cornell, London,
1953).

28M. Gordon and K. R. Roberts, Polymer 20, 681 (1979).

29M. Adam, M. Delsanti, D. Durand, G. Hild, and J. P. Munch,
Pure Appl. Chem. 53, 1489 (1981).

30M. Adam, M. Delsanti, R. Okasha, and G. Hild, J. Phys. Lett.
40, 1539 (1979).

3IM. Adam, M. Delsanti, and D. Durand, Macromolecules 18,
2285 (1985).

32B. Derrida, D. Stauffer, H. J. Herrmann, and J. Vannimenus,
J. Phys. (Paris) Lett. 45, 1.913 (1984).

33M. Daoud, F. Family, and G. Jannink, J. Phys. Lett. 45, 199
(1984).

34M. Daoud and L. Leibler, Macromolecules 21, 1497 (1988).

35Y. Kantor and I. Webman, Phys. Rev. Lett. 52, 1891 (1984).

36P..G. de Gennes, C. R. Acad. Sci. Ser. B: 286, 131 (1978).

37H. J. Herrman, B. Derrida, and J. Vannimenus, Phys. Rev. B
30, 4080 (1984).

38R. H. Colby, B. K. Coltrain, J. M. Salva, and S. M. Melpold-
er, in Fractal Aspects of Materials: Disordered Systems, edited
by A. J. Hurd, D. A. Weitz and B. B. Mandelbrot (Materials
Research Society, Pittsburgh, 1987).

39). E. Martin, D. Adolf, and J. P. Wilcoxon, Phys. Rev. Lett.
61, 2620 (1988).

40M. E. Cates, J. Phys. 46, 1059 (1985).



