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Solvable model of the Fokker-Planck equation without detailed balance
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A new model of the Fokker-Planck equation (FPE) without detailed balance is suggested. The
potential of the FPE is solved explicitly in the weak-noise limit. A discontinuity of the first deriva-
tive of the potential is revealed. The approach of solving the model may be extended to solving gen-
eral FPE's lacking detailed balance, provided the drift of the FPE can be written in proper form.

I. INTRODUCTION

Fluctuated nonequilibrium systems are often described
by Fokker-Planck equations (FPE). ' ' Recently, much
eftort has been made to define a nonequilibrium potential
based on the asymptotic behavior of the stationary proba-
bility distribution of the FPE, which may lack detailed
balance. " Given a FPE,

[c,(x)P(x, t )]
BX;

n n a2+e g g D,, (x) P(x, t)
a a

P(x,y )=N exp[ —P (oxy)le P, (x,y—)

—A/2(x, y) — ] . (2.1)

=0.

Suppose the origin is a simple stable point of the dissi-
pative dynamics for vanishing noise

Inserting (2. 1) into (1.3), we may expand the stationary
FPE in e. In this paper we only consider FPE's with
weak noise a&&1, which may model a large number of
physical, chemical systems and other practical situations.
Thus, in the weak-noise limit, we may retain only the
leading order in e in Eq. (1.3) and obtain the following
Hamilton-Jacobi equation of the potential:

"aX "ay aX ay

the asymptotic logarithm of the stationary probability
distribution

Po(x) = lim I
—e ln[P(x)] ]

0

dX =c, (x,y), =cz(x,y),
dt dt

namely, the drift vanishes at the origin

(2.3a)

is regarded as the potential of the FPE system. For clari-
ty and simplicity, in the present paper we consider only
the two-dimensional FPE

c, (0,0) =c~(0,0) =0 . (2.3b)

The real parts of the two eigenvalues of the linear drift
matrix

BP(x,y, t) [c,(x,y )P(x,y, t )]at BX

[c2(x,y)P(x, y, t )]
dy

a2 a2+ P(x,y, t)
BX By

(1.3)

C lx C ly

C2x C~y

(denoted by A.
&

and iLz) must be negative

Re(X, , A.2) (0,
where we have

c, =c, (0,0)

(2.4)

in which the diffusion matrix is assumed to be an identity.
The main results in the presentation may be extended to
more general cases. Equation (1.3) does not obey detailed
balance if Bc2/Bx&Bc& /(3y. '' Then there is no simple
way to specify the potential explicitly.

and

chic;

Cix
x=y=0

c.iy
BCi

,i =1,2 .
x=y ——O

II. POTENTIAL ABOUT A STABLE POINT

Let us expand the stationary probability distribution of
the FPE as

The origin must be a basin of the potential Po(x, y)
[remember that Pz(x, y) is a Lyapunov function of Eq.
(2.3a) '' ]. The behavior of the FPE in the vicinity of this
point is extremely important since in the stationary state
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Cl =ClxX Cly

C2 =C2xX +C2yJI + (2.5)

40= 40..x '/2+ 40„y'/2+ ko.,xy+
with

a'y,
Oxx

g& 2
x =y=0

and so on. [In Eq. (2.1), the constants in $0,1))„.. . , are
all substituted into N.] By inserting (2.5) into Eq. (2.2)
and considering only the lowest terms in the power series,
one may easily solve p0„„,p0, and p0 in terms of the
drift as (for the calculation, see Ref. 12)

a major portion of probability may center there.
In Ref. 12 we applied the power-series expansion ap-

proach to calculate the potential $0(x,y). It was shown'
that p0 can be well expanded about a simple stable point
of the corresponding deterministic system. Let us expand
c„cz,and p0 in the power series as

and

P 0„(i)$0yy(i) =P 0',y(i),

III. GLOBAL POTENTIAL OF A NONTRIVIAL EXAMPLE

The approach of power-series expansion is a straight-
forward method for searching the potential about a stable
point of order 1 (cf Re.f 12).. However, in general, it is
di%cult to apply the expansion approach to study the
global behavior of the potential. In particular, it fails if
the actual potential is nonanalytic.

Let us study an interesting solvable model

Q 0„(i)+P
0yy

(i ) = —k;, i = 1,2 .

Due to the fact that a stable point must be a probability
peak of the stationary distribution, we choose (2.6) as the
unique solution for the potential and neglect (2.7) in Ref.
12, since with (2.7) the stationary distribution has no
peak on the stable points which is physically unreason-
able. Based on (2.6), the terms of higher orders in the
power series can be worked out systematically.

$0»x (Cl»+CZy)[CZ»( ly 2») lx( lx 2y ]

X[(c, +cz ) +(c,y
—cz„) ]

Oyy ( C lx +C2y +$0»x )

$0»y
= Czx+$0»x(Cly C2x)/(Cl» C2y)

c, (x,y)=x(a x y)+—y(b— x+y )—,

cz(x,y)=y(a —x —y ) —x(b x+y ) .—
It is obvious that the function

g(x,y)=a (x +y )/2 —(x +y ) /4

(3.1)

(3.2)

satisfies Eq. (2.2). However, it can serve as the potential
$0(x,y) only in case of a (b (as will be confirmed later).
In the case of

P0 „(i) = —cz„k,;(czy —
A, ; )/d(i ), a )b (3.3)

0(yiy)=
—c, A, , (c, —

A, , )/d(i),

$0„(i)=c, cz A;/d(i), .i =1,2

with

(2.7)

xs =k')/(a +b )/2, ys = +)/(a b )/2—(3.4)

and two saddles

Eq. (3.2) no longer represents the potential. Then, for
vanishing noise, the dissipative system possesses two sim-
ple stable fixed points

d(l)=cl (cl» A, ; )+cz» czy k; )

It is apparent that with solutions (2.6) we have

P0„„+$0 = —(c, +cz )= —(I, , +Az),

while with the other two sets of solutions [Eqs. (2.7)] we
have

xD =++(a +b )/2, yD =++(a b)/2 . —(3.5)

The solution (3.2) gives no probability peaks about the
stable points (3.4), and is physically unacceptable just as
the solutions (2.7). [A direct calculation may confirm
that (3.2) is identical to (2.7) about (3.4).]

To find the correct form of the potential in the case of
(3.3), we rewrite Eq. (1.3) in polar coordinates

BP(r, 8, t) 8 z[r(a r)P(r, 8, t)] e+P(r—, 8, t)
a2

Bt dr Br

a2+ I fb —r c(o2s)]8(Pr, t8)I e+P(r, 8, t)/r +(e/r) P(r, 8, t) .
aL9 ae' Br

(3.6)
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In the weak-noise limit, the last term, which can never be
important, may be neglected. For the stationary so1ution,
Eq. (3.6) can be reduced to

leading terms in e. Gn the basis of the previous argu-
ments, this solution should be neglected. Nevertheless,
Eqs. (3.9) can be reduced to another pair of equations,
namely,

2 2[r(a r—)P(r, 0}]+e P(r, 0)
Br

+ [[bi—r2cos(20) ]P(r, 0) I
BO

dfi(r)
r(a r—)+ =0,

dr

df2(B)
b ac—os(20)+ =0,

dO

(3.11a)

(3.11b)

8+(e/r ) P(r, 0) .
g2

(3.7)

P(r, 8)=X exp[ f i(r )—/e f2(0—)/e j . (3.&)

Hence, Eq. (3.7) can be transformed to two independent
equations:

df, (r) df i(r)
r(a r)+-

dr dr

Considering only the leading terms in the weak-noise lim-
it, the stationary probability distribution is assumed to be
factorized as

leading to an alternative solution

f, =f r(a r)d—r, f2= f [b —a cos(20)]d0 . (3.12)

It is appreciated that (3.12) has probability peaks, indeed,
in the deterministic stable points. Unfortunately, it does
not preserve the periodicity condition in t9, namely,

P(r, 2m+0)&P(. r, 0) .

Thus, it still remains physically unacceptable. To over-
come such a difticulty, we apply the Gaussian distribu-
tion approximation about r = ~a ~, modify (3.8) to

P(r, 0)=%Pi(r, 0) Pq( 0)

df, (r)
r(a —r )+ =0, (3.9a) =&P, (0)exp [

—(» —
~
a

~
)'/[2eo (0)]I, (3.13)

df 2(0) df 2(0)
' [b —a cos(20)]+

Q

df 2(0)
[b acos(2—0}]+

Solution (3.2} is nothing but the solution of the equations

df, ( )
r(a —r )+ =0,

dr

df2(0)
dg

(3.10)

which, indeed, satisfies Eq. (3.9) if one only considers the
I

82
I [b acos(20) ]—P2 (0) ] + Pz(0) =0 .

a2 Qg2

(3.14b)

The unique solution of (3.14a), which satisfies the periodi-
city condition o.(2~+0)=o(0), reads

o (0)=1/(2a (3.15a)

P, (r, 0) is the very Gaussian approximation of (3.2).
Equation (3.14b) can be solved as

and directly start from Eq. (3.7). We arrive at another
two independent equations

2a'o. (0)+ I[b —a cos(20)]/2I +1=0, (3.14a)
do(0)

dO

P~(0) =Pi(0), , m. + BD )0 & BD, i = 1,2
t

P2(0);=exp[ —a u(0);/e] 1+f J(a /e)exp[a u(0);/e]dB
D.

I

(3.15b)

with

u(0), = f [b —a cos(20)]dB,
OD

where OD are the angles of the saddle points D, and D2.
t

The current J is fixed by requiring P2(2vr+0)
=Pz(0), namely,

exp( mba /e)—.

~+ OD

X 1+J(a /e) f dBexp[a u(0);/e) =1,
HD

(3.16)

leading to

J=[exp(~b a /e) —1]/f
0~

dBexp[(a'/e)u(0), ] .

To end this section the following points should be
made.

(i) The solution (3.13) is correct only in the vicinity of
r = ~a ~. However, the global properties of the stationary
probability distribution can be represented by it quite
mell since in the weak-noise limit the total probability far
from r =~a~ is negligibly small. By global property we



39 SOLVABLE MODEL OF THE FOKKER-PLANCK EQUATION. . . 1289

P(r, 8)=N exp[ —h i(r) le —h2(8)//e],

with

h&(r)=a (r —~a~)

(3.17)

and

mean the relative heights of the probability peaks.
(ii) In the limit a~0, (3.13) can be further reduced by

the saddle-point approximation and the Gaussian ap-
proximation as

IV. POTENTIAL OF GENERAL FPE

Up to now, one knows very few nontrivial solvable ex-
amples of FPE without detailed balance. Equation (3.1)
provides an interesting new model which does not mani-
fest detailed balance while it is solvable, indeed, in the
weak-noise limit. In this section we will find that the
model is very important because the main ideas extracted
may be extended to some rather general systems.

According to Eq. (2.2), we may divide the drift as

a2u(8), in region I
h 8 =

0 in region II, (3.18)

c, (x,y) =G, (x,y)+d, (x,y),
c~(x,y ) =G2(x,y )+d~(x,y),

(4.1)

where region I is defined as

0,') e&oD, i = l, 2
I

with L9,
'

being given by

(3.19)

where G=(Gi, G2) is the gradient of a function g(x,y)

t)G, (x,y ) t}Gz(x,y) t}2ttt(x y)
By Bx ibx By

(4.2)

and d = (d i, dz ) is the circulation orthonormal to the gra-
dient

u(8,'); =0 . (3.20)
G, (x,y )d, (x,y )+G2(x, y}d2(x,y) =0 . (4.3}

Region II is the remainder.
(iii) Now Eq. (3.2) is replaced by the potential (3.17)

plotted in Fig. 1. The first derivative of the potential is
discontinuous at 0,

' and OD. Raising b, the flat part in
I

Fig. l enlarges. As b & a, the fixed points disappear via
saddle-node bifurcation, and a limit cycle arises. Conse-
quently, Eq. (3.17) becomes identical to Eq. (3.2). Thus,
Eq. (3.2) is the potential indeed in the case of a (b as
we declared before.

(iv) Both Eqs. (3.2) and (3.12) satisfy (2.2) in the leading
order in e. However, as a & b both solutions are physi-
cally unreasonable. With (3.2), the distribution preserves
the periodicity in L9 while it has no probability peaks in
the deterministic attractors. With (3.12), the situation is
just the opposite. It is remarkable that with (3.17) we
find (3.2) in region I while (3.12) holds in region II, and
then (3.17) satisfies (2.2) as well as all the physical re-
quirements. As solution (3.17) jumps from region I to re-
gion II, discontinuity of the first derivative of the poten-
tial arises.

Based on (4.2) and (4.3), we can rewrite Eq. (4.1) in the
form

c, (x,y) =Q(x, y )a, (x,y)+ k(x,y)a2(x, y),
c2(x,y) =Q(x,y )a2(x,y ) —k(x, y )a, (x,y),

with

t}(Qa& ) t}(Qa&) g 1(/(x y)
By Bx BxBy

leading to

Q, ai =Q.a~

(4.4)

(4.&)

a i (x,y ) =az(x, y) =0 (4.6)

represent the minima, maxima, or saddle points of the
potential, according to whether the points are the stable,
unstable, or saddle points of the corresponding dissipa-
tive system for vanishing noise, respectively. On the
one-dimensional set

on the curve Q =0. The zero-dimensional set points, if
they exist,

k(x,y) =0 (4.7)

(indicated by I z, if it exists) the circulation alters its
direction. If the set

Q(x,y) =0 (4.8)
I

}

I

I

I

~St 2E+Pg,

FIG. 1. Potential of Eq. (3.6) on the cycle r=~a~. 9D, 8D

and 0~, L9& are the angles of the saddle and stable points of
I 2

(3.1), respectively. 0,' are given by Eq. (3.20).

(denoted by I „whenever it occurs) is not empty and is a
one-dimensional closed line, and, moreover, it does not
intersect with the set I z [the intersection of I, with the
zero-dimensional set (4.6) is exceptional and can be ex-
cluded from our consideration]. I, must be the limit cy-
cle of the deterministic system

Gx dy=c, (x,y), =c~(x,y) .
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According to (2.2), I, must be a one-dimensional extreme
of the potential. In this paper we only consider stable
limit cycles which are the minima of the potential.

Whenever I, and I 2 intersect each other, the closed
line I, is no longer a limit cycle, and f(x,y), given by Eq.
(4.2), is not the potential of the FPE

ap
at [(Qa, +ka2)P] — [(Qa2 —kai)P]B a

r

a2 a2
+g + P

Bx
(4.9)

though it is, indeed, an exact solution of Eq. (2.2). The
situation is exactly the same as that described in Sec. III
fora )b

To study this matter in detail, let us define new curve
coordinates as

a2 a2
+e +, p(n, s) .

n2 Bs2
(4.15)

By applying the Gaussian distribution approximation in
n we assume that the stationary probability distribution
takes the form

P(n, s ) =NP, (n, s)P2(s)

=NPz(s)expI —n /[2eo. (s)] j . (4.16)

on in the weak-noise limit. Finally, in new coordinates
the stationary FPE (4.9) acquires the form

a a0= —n [c,p(n, s )] —n [c2p(n, s)]
Bn ~ an

B a—s„[c,p(n, s)]—s„[c2p (n, s)]
Bs Bs

s =s(x,y),
n =n(x,y),

(4.10)

By inserting (4.16) into (4.15) and keeping only the lead-
ing terms in the weak-noise limit, we may reduce (4.15) to
two independent equations:

with s and n coordinates being orthonormal to each other
at each intersection

1+(n ci+n cz)„o(s)+(s c, +s c~) =0, (4.17)
der(s)

ds

s„(x,y)n, (x,y)+s (x,y)n (x,y)=0 . (4.1 1) [(s,ci+s cz)Pz( s)] +e P2(s)=0 .
Bs Bs

(4.18)

The set

n (x,y) =0
Both equations (4.17) and (4.18) can be solved explicitly.
Equation (4.17) gives rise to

must be identical to the set

Q(x,y)=0 .

Moreover, we require that the transformation from (x,y)
to (n, s) is unitary on the cycle I i. (This condition is not
necessary. We impose the unitarity condition on the
transformation on I, only for the sake of simplicity of
the result. )

o'(s) =exp —f '
f2(s')ds'

1

X B+f ds'f i(s')exp f '
f2(s" )ds"

where

f, (s)= —1/(s c, +s c2)

(4.19)

n 2+n 2=l

s — n s =n

(4.12a) and

(4.12b) f2(s) (n ci+nyc2)n (s. ci+syc2)
By n and n, . . . , we mean

Bnn=n oIIr n~=
a on I

1

The constant B can be fixed by requiring o(T+s)=o(s)
where T is the period of s. The solution of (4.18) can be
worked out as

Pz(s) =exp[ —v(s)/e]
and so on.

In the new coordinates B/Bx, a/By and B /Bx, a /ay
can be transformed to

1+f d (sJ/e)exp[v( )s/]e
$D

1

(4.20)

and

Bx

By

an Bs

a a
~an ~as '

a2 a2

Bx By

a B

Bn Bs

(4. 13)

(4.14)

where the constant J is fixed by the periodicity condition
P2(s) =P2(s+ T). The function U (s) is given by

v(s) = f (s c, +s cz )ds ,
sD

1

(4.21)

where SD, i =1,2, . . . , are the saddle points of (2.3a),
I

and D& is chosen such that in all stable points on circle
I &, the potential takes minimal values.

Expressing the drift in the form of (4.4), we may direct-
ly write down (4.19) as

In (4.14) we neglect all the terms of first-order derivative
like n„„(B /nc)), s (8/c)s), n (c)/Bn ), s~~(BIOS), and so o(s)=Q„(n„a, +n~a~)=Q„V a i+a &, (4.22)



39 SOLVABLE MODEL OF THE FOKKER-PLANCK EQUATION. . . 1291

which is nothing but P„„with g(x,y) being given by (4.2).
Thus, the exponent n /[2eo(s)] is the very f(x,y) [see
(4.2)] in the Gaussian distribution approximation. In
deriving (4.22) we make use of (4.11), (4.12), and the fol-
lowing identities:

(Qai )» =(Qa&)„,
a, (x,y ) =a&(x,y) =0

and the second from the intersections of

(4.24)

It is just what should happen when a limit cycle arises.
Representing the drift in the new form (4.4), we have

made an interesting discovery. There are two kinds of
saddle points: The first comes from

a
& n~ =ann„. Q(x, y) =k(x,y ) =0 . (4.25)

Inserting (4.22) into (4.17) one may be convinced of its
validity.

The structure of Eq. (4.16) is the same as Eq. (3.13)
with polar coordinates (r, 8) replaced by curve coordi-
nates (n, s). The figure of the potential (4.20) must be
somewhat like Fig. 1 as long as I, and I 2 intersect each
other. About stable points of deterministic dynamics one
finds a basin of the potential while in the saddle points
the first derivative of the potential must undergo discon-
tinuity. By utilizing the saddle-point approximation ap-
proach, we reduce (4.20) to

Pz(s) =exp[ —h 2(s) /e],

These two kinds of saddle points cannot be distinguished
from each other in the point of view of deterministic
path. However, they are essentially different in the point
of view of the potential. For the former, the potential has
real local saddle points as concluded by Graham et al.
For the latter the discontinuity of the first derivative of
the potential arises. We expect that the dynamic behav-
ior about the two kinds of saddle points might be consid-
erably different since the potentials of the two kinds of
points have substantially distinctive forms. We have
brieAy investigated this matter by simulating two forced
dynamic systems

u(s);, s; )s &sD
I

h s =
0 otherwise,

where

u(s);=u(s) —u(sD )

(4.23)

and

dx =(ax —x )+D(ay —y ),3

dt

dy =(ay —y ) D(ax —x—)+vcos(2mcut)
dt

(4.26)

I

I

S' S,

/
/

/
/

/
/

V
I

I

I

I I

I I

I I I

I

I

sS, S'T

I

I

I

I

I

I

I

I

I

I

I

~ ~Df

and s is defined by

u(s, '), =0 .

The solution (4.23) is plotted schematically in Fig. 2.
Equation (4.23) together with (4.22) give the potential
about the cycle I,. About I, the global behavior of the
potential, i.e., the relative depths of the potential basins
can be revealed by (4.23). As the intersection of I, and
I 2 disappears, the second term in (4.18) is negligibly
small in comparison with the first term and can be ruled
out and the solution of (4.18) is, simply,

P2(s)=const=l .

Thus the potential of the FPE (4.9) is provided by (4.2).

dx=
dt

=x(a —x y)+Dy—(b x+y )—,
(4.27)

=y(a —x y) Dx(b— x—+y ) +—vc so(2mctu) . .
dt

In the case of a ) b and a )0, the former unforced
equations have saddle points of the first kind while the
latter have saddle points of the second kind. The numeri-
cal results of Eqs. (4.26) and (4.27) are essentially
different. By testing the forced equations (4.26), and
varying the control parameters a, v, D, and co in a wide
range, we find complicated bifurcations as well as chaotic
motions. However, we have never found quasiperiodic
motion and the Farey bifurcation sequence. On the con-
trary, with (4.27), we can readily find quasiperiodic
motion as well as the Farey sequences. The road to chaos
via quasiperiodicity can be found easily. These features
are typical for periodically forced limit cycle systems.
However, in the absence of the external force (v=O), the
free system (4.27) has no limit cycle at all. The only simi-
larity between the unforced (4.27) and limit cycle systems
is that they have a somewhat similar potential. It mani-
fests that the difference between the potentials of the two
kinds of saddle points may be meaningful. Nevertheless,
this point should be further investigated.

V. CONCLUSION

FIG. 2. Schematical figure of the potential (4.23). SD and ss
t l

are the s coordinates of the saddle and stable points of the deter-
ministic equations x =c &, y =c2, on the cycle I l. s is given by
v(s ), =0 with v(s); being given by (4.21) and (4.23).

Provided the drift can be expressed in the form of (4.4),
we are able to completely solve the stationary solution of
the FPE without detailed balance in the weak-noise limit.
The solution is (4.2) if the set of the intersection of Q =0
and k =0 is empty (the set Q=0 must be closed cycles
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or, in certain critical cases, points whenever the system is
bounded) or (4.22) and (4.23) if it is not.

In general, it is difficult to specify the drift in the form
of (4.4). Nevertheless, the condition can be considerably
loosened. For instance, using (4.19) and (4.20), one can
specify the potential in the vicinity of I, when I

&
is given

while (4.4) is not. In particular, if a limit cycle exists and
the cycle is provided by studying the deterministic equa-
tions, then a set of curve coordinates can be defined ac-
cordingly, and (4.19) leads to the steady solution of the
FPE about the cycle. It is emphasized that a cycle Q =0
may exist in the absence of any limit cycle. In this case,
the potential about I, may be solved [cf. (4.19) and

(4.20)] without knowing (4.4). The cycle Q=0 must be
composed of an even number of segments connecting sad-
dles and the neighbor stable point attractors successively.
This kind of cycles can be easily detected numerically or
analytically, taking various approximations. However, to
identify closed cycles to I, , one should justify the
relevant saddle points to be of the second class in ad-
vance. Thus it is an interesting open problem to distin-
guish the two kinds of saddle points of the deterministic
equations without solving them. The rough numerical re-
sults on (4.26) and (4.27) may stimulate the research in
this direction.
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