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Regular and chaotic dynamics of optically pumped molecular lasers
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We present a detailed analysis of the dynamical behavior of an optically pumped molecular laser.
This study combines bifurcation and power spectral analysis with numerical investigation of the

global features of attractor topology under control parameter variation. The special role of the

pump laser in generating physically distinct periodic and chaotic dynamics is emphasized through
the complementary use of laser gain and dispersion characteristics. Our main results are the follow-

ing: (i) instabilities associated with the physically distinct mechanisms of relaxation and pump-

induced Rabi sideband oscillations are readily generated; (ii) the topological characteristics of both

periodic and chaotic attractors reAect these physically distinct mechanisms, making it possible to
discriminate between both types of behavior in heterodyne power spectra; and (iii) the ratio of deen-

ergization to dipole-dephasing rates is central to determining the operating characteristics of the

laser.

I. INTRODUCTION

The subject of laser instabilities began with the first ob-
servation of lasing emission itself in the early 1960s.'

Generally, spontaneous pulsations in lasers have been
considered undesirable, and except for special applica-
tions such as mode locking or Q switching, significant
effort has been made to stabilize commercial lasers
against oscillation. The realization in the early 1980s
that many of the observed phenomena may be manifesta-
tions of chaotic behavior led to a renewed theoretical and
experimental effort over a broad front. It is now well es-
tablished that many laser systems exhibit chaotic dynam-
ics over a wide range of operating conditions.

The simplest conceivable laser model is a single-mode
homogeneously broadened laser. In 1975 Haken demon-
strated that the Maxwell-Bloch equations describing such
a laser are isomorphic to the much studied Lorenz equa-
tions modeling turbulent flow in fluids. The Lorenz
equations were known to exhibit a great variety of
dynamical behavior over a wide range of parameter
values. It was quickly realized, however, that the operat-
ing conditions necessary to observe the predicted chaotic
behavior in these lasers, namely, bad cavity conditions
and pumping at more than nine times above threshold, '

were physically unrealistic. Meanwhile, chaotic behavior
has been relatively easy to observe in homogeneously
broadened lasers under single-mode operation with exter-
nal modulation or under multimode operation. Addition-
ally, detailed experimental and computational studies of
inhomogeneously broadened lasers have established that
such systems show chaotic behavior close to the lasing
threshold. Recent developments on laser instabilities are
reviewed in Refs. 4—14.

Optically pumped molecular lasers (OPML's) have
emerged recently as promising candidates for the obser-
vation of chaotic dynamics in a single-mode homogene-
ously broadened laser system. The semiclassical

Maxwell-Bloch equations describing optically pumped
amplifier systems have been studied extensively in the
literature. ' More recently these treatments have been
extended to describe laser oscillators. Efforts have
been made to truncate the set of ten ordinary differential
equations (ODE's) by the adiabatic elimination of fast
variables. Thus, conditions for the reduction of the equa-
tions to the three-equation Lorenz-Haken model have
been identified ' and a four-equation version has been
studied which predicts instabilities as low as 1.6 times
above the lasing threshold. Experimental evidence of
Lorenz-like and still more intricate bifurcation structures
has already been reported.

In this article we study the full OPML model for con-
ditions of resonant pumping with resonant lasing emis-
sion. The cavity loss and laser gain are held constant and
our primary control parameter is the pump laser ampli-
tude. Assuming the deenergization and dipole dephasing
rates to be the same for each of the three levels, we use
their ratio b = I /y as our secondary bifurcation parame-
ter; whether the laser exhibits steady, pulsing, or chaotic
behavior depends critically on this ratio. The bifurcation
analysis isolates branches of periodic solutions which,
through the complementary use of gain and dispersion
curves, can be associated with the physically distinct
mechanisms of sustained relaxation oscillation and
pump-induced Rabi sideband oscillation. These
separate periodic branches strongly influence the attrac-
tor topology within the chaotic parameter window where
the physical mechanisms strongly interact. We show that
heterodyne power spectra can distinguish between
dynamical motions associated with these two physical
mechanisms, whether periodic or chaotic. Lyapunov ex-
ponents are calculated using an algorithm due to Wolf
and Swinney that confirm a low-dimension chaotic be-
havior further supported by attractor pictures. Our lim-
ited bifurcation analysis suggests the existence of higher
codimension bifurcations. This important question
remains to be addressed before a relatively complete pic-
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ture of the dynamical behavior of the OPML can be fully
ascertained.

II. THEORY AND BIFURCATION ANALYSIS

P= —(o13+igpz3),

p» = —(1 —i5~ )p»+ ~ aD„~Pp3]'—
pz3

= —(1 —i5, )pz3+i PDz3 —iap3, ,

p3&
——[1+i(5 +5, )]p3) —tP pz, +iapz3

Dz, = b(1+Dz, )
—4 Im—(a*pz, )

—21m(P*pz3),

Dz3 = bDz3 —2 Im(a*p—z, )
—41m(P*pz3) .

(2.1)

Here P refers to the lasing emission magnitude and is
complex, in general, p," are the off-diagonal density-
matrix elements for levels i and j, D; the population in-
version (p, ; —p,. ) between respective levels, and 5 (5, )

refer to the detuning of the pump (signal) from resonance.
The laser control parameters are o., the cavity damping
constant; g, the unsaturated gain; a, the pump laser am-
plitude; and b =I /y, the ratio of deenergization to di-
pole dephasing rates. All parameters and the time t are

A schematic diagram of the three-level OPML is
shown in Fig. 1. An external pump of amplitude a selec-
tively excites level 2 which acts as the upper level for the
lasing transition 2~3. The coherent pumping of level 2
is particularly important as it can significantly alter the
gain and dispersion characteristics seen by the lasing
emission field P. Specifically, the conventional homo-
geneously broadened gain curve can be Rabi split by the
saturating pump, leading to an inverted gain distribution
at line center. Consequently, the dispersion characteris-
tic seen by the lasing emission can be strongly distorted.
The result is a potentially unstable single-mode laser in
the vicinity of its natural relaxation oscillation frequency,
manifested as sustained relaxation oscillations or chaotic
emission dependent on the pump strength. Additionally,
under stronger pumping conditions more than one fre-
quency can be resonant with the single-mode cavity mak-
ing possible Rabi oscillation with a frequency proportion-
al to the effective Rabi frequency of the pumping transi-
tion. For the laser parameter values chosen here the
physical processes arising from both relaxation oscilla-
tions and Rabi splitting can occur and overlap within a
pump control parameter window. In other circumstances
either process may appear in isolation. Furthermore,
period-doubling cascades to chaotic attractors may occur
on either physical branch of periodic solutions when the
cavity loss is close to the good cavity boundary o. =1+b.
Our numerical studies indicate that the bad cavity condi-
tion o. ) 1+b does not need to be satisfied for chaotic dy-
namics, and moreover, that the restrictive condition of
pumping at more than nine times above threshold, neces-
sary for the Lorenz-Haken system, does not apply to this
OPML model.

The OPML equations are a straightforward generaliza-
tion of the usual semiclassical system of Lamb ' to a
three-level model. These are

FIG. 1. Schematic of a coherently pumped three-level
OPML.

scaled to the dipole dephasing width y.
Upon specializing to resonant pumping (5 =0) and

resonant lasing emission (5, =0) the above set of ten cou-
pled ODE's reduces to the following set of six equations:

X] — Ox) +gX3

X2 = X2 X )X4+CXX5

X3 X3 +X,X6 —aX4

X4 = X4+X ]X2+(XX3

x, = b( 1+x ~ )
——2x, x 3

—4ax z,
x6 bx6 4X1x3 2ax2

(2.2)

where the real variables x; correspond to the physical
variables as follows: x, :—ReP, xz—:Impz, , x3—:Impz3,
x4 —=Rep3&, x5 ——D2&, and x6 ——D23. This set of six ODE's
is the focus of the following bifurcation and numerical
analysis. The laser gain and dispersion curves are gen-
erated from the known steady-state solutions to Eqs.
(2.1). The steady-state solutions to the set (2.2) are
straightforward to derive. Here we require only the
steady-state solution for the nonlasing branch,

x'=0, x'=—,x'=x'=0,ab
1 ~ 2 b+4 2' 3 4

x', =— b 2a
X

b+4a b+4a
which is used to start the path-following procedure of the
bifurcation package.

By setting o. =10 and g =SO, we use the pump laser
amplitude e as our primary control parameter. Figure 2
captures the laser-operating characteristics under pump
variation for a range of values of b. Solid and dashed
curves in each diagram refer to branches of stable and
unstable steady-state solutions, respectively. Branches of
stable and unstable periodic solutions are represented by
closed and open circles, respectively.

The operating characteristic of the OPML is simplest
for b =1.0 [Fig. 2(a)]. When a is small, the nonlasing
branch (13=0) of stationary solutions is stable and there
is no lasing emission. At BP1, which marks the first laser
threshold, a pitchfork bifurcation occurs to a steady las-
ing state (/3&0). As the pump amplitude is then in-
creased, the lasing emission strength grows, reaches a
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FIG. 2. Bifurcation diagrams for b = 1.0,0.8,0.7,0.6,
0.2[(a)—(e)]. Plots show laser emission amplitude p vs pump
amplitude cx. Solid lines denote branches of stationary solu-
tions, dashed lines denote unstable stationary solutions. Closed
and open circles mark the maximum amplitudes of branches of
stable and unstable periodic solutions, respectively. Open
squares represent pitchfork bifurcation points, whereas closed
squares represent Hopf bifurcation points (labeled BP and HB).

0.2
—4

FIG. 3. Variation of the laser emission amplitude p (a) and
cavity dispersion (b) with laser signal detuning for b =1.0. For
a=0.4 and 1.0, the laser is above the lasing threshold and the
corresponding dispersion relation has a single intersection with
the cavity line at the line center. At &x=1.55 the center of the
emission line drops below lasing threshold and lasing ceases.

maximum value, and then decreases. Lasing ceases at the
second pitchfork bifurcation point BP2, beyond which no
further lasing action occurs. This behavior can be under-
stood physically by examining the gain and dispersion
characteristics seen by the lasing emission (Fig. 3). The
leveling oft' and subsequent reduction in lasing strength is
a consequence of the pump laser n inducing a Rabi split-
ting of the levels 1 and 2. As the degree of Rabi splitting
grows, the center-line emission decreases in magnitude
and lasing ceases when center-line gain drops below
threshold. Figure 2 shows the start and end points of the
steady-state lasing branches to be relatively insensitive to
parameter b. The variation in strength of the lasing emis-
sion with parameter b can be understood from the follow-
ing simple physical argument. The rate of removal of
population from the lower lasing level 3 is strongly
dependent on the deenergization rate I, whereas the
upper lasing level population is relatively insensitive to I

because of the saturating pump. Consequently, as b ~1,
population is removed more rapidly from the lower lasing
level and the net inversion increases resulting in a
stronger emission field.

A new feature appears for b =0.8 [Fig. 2(b)] where a
branch of stable periodic solutions appears on the nonlas-
ing branch between the Hopf bifurcation points, HB1 and
HB2. This corresponds to the spontaneous appearance of
regular pulsations from an initially nonlasing state.
These periodic solutions can be identified with pump-
induced Rabi sideband oscillations by referring to the
gain and dispersion characteristics shown in Fig. 4. The
initial Hopf bifurcation at HB1 coincides precisely with
the point at which new intersections appear between the
strongly distorted dispersion curve and the straight cavi-
ty line which determines the laser oscillation condi-
tion. ' Thus sideband oscillation is supported even
though there is no steady (or cw) lasing at the line center
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hibits a pair of such points, between which steady-state
lasing branches exist. In the OPML system, as in the
Lorenz-Haken system, Hopf bifurcations can occur on
the lasing branches, but they are supercritical rather than
subcritical, leading to sustained relaxation oscillations
rather than chaotic lasing. The significant new dynami-
cal feature to emerge is the separate branch of pump-
induced Rabi sideband oscillations emanating from Hopf
bifurcations on the nonlasing stationary solution branch.

III. GLOBAL DYNAMICS BEHAVIOR

In this section we discuss the global dynamical aspects
of the OPML prompted by the local information of the
preceding bifurcation analysis. A clear distinction can be
drawn between the lasing emission characteristics associ-
ated with the two physical mechanisms of sustained re-
laxation oscillation and pump-induced Rabi sideband os-
cillation (hereafter referred to as Rabi oscillation). We
confine our study to the bifurcation diagram for b =0.2
and to the vicinity of the anticipated chaotic window
(0.905 & (I & 1.145 ).

Figure 6 shows the sustained relaxation oscillation and
Rabi oscillation frequencies for pump laser magnitudes
spanning the window. The sustained relaxation oscilla-
tion frequency which is a maximum at the Hopf bifurca-
tion point HB1, decreases along the periodic branch to a
value of 0.08 at the limit point (a=0.905). Beyond this
point the limit cycle is unstable and its frequency de-
creases rapidly (the period increases). The frequency of
the Rabi oscillation, which is unstable for e & 1.145, de-
creases gradually across this parameter window and then
falls rapidly to zero. The reader should note that the
Rabi frequency in this range of a does not correlate with
the mode-splitting picture; in fact, there are no new side-
band intersections with the cavity line until a=1.25.
However, for larger values of e beyond the range in this
figure, the computed and predicted sideband frequencies
converge quickly.

The relative disposition of the two branches in Fig. 6

FIG. 6. Plot of the frequency of the two branches of periodic
solutions (relaxation type from HB1 and Rabi type from HB2)
for b =0.2 in the vicinity of the chaotic region. Stable and un-

stable limit cycles are marked by closed and open circles, re-

spectively.

and their stability properties suggests possible unstable
dynamical behavior of the laser, where both physical
mechanisms may contribute with different relative
weightings. The dynamic characteristics associated with
the two physical processes are quite different as shown in
Fig. 7, where the amplitude p(t ), and intensity p (t ), time
series are displayed in composite plots. Stable sustained
relaxation oscillation manifests itself in amplitude and in-
tensity as a finite amplitude modulation of a nonzero lev-
el. For o.=0.902, the positive amplitude oscillation is
shown (dashed line) together with the intensity (solid
line). The Rabi oscillation is quite different occurring as
a symmetric oscillation about p=0, as shown for
+=1.18. The intensity oscillates at twice the frequency
of the amplitude. Time series from both extremities of
the chaotic window are shown for +=0.908 and 1.14.
While both signals are chaotic, the predominance of each
type of oscillation is evident within each time series. Un-
stable relaxation-type oscillations occur frequently in the
time series for a=0.908, reflecting the nearby unstable
limit cycles within each half of the p plane (p&0 and
p) 0). Random flips between individual p lobes are rela-
tively infrequent (similar to the Lorenz case). In contrast,
the time series for cx= l. 14 shows a predominance of un-
stable Rabi-type oscillations associated with the topologi-
cally different unstable limit cycle. Amplitude excursions
within individual p lobes are much less frequent. The
chaotic motions on the attractor for +=0.908 therefore
exhibit infrequent phase switches while those on the at-
tractor for a = 1. 14 switch phase much more frequently.

The computed Lyapunov exponents for a range of o.
spanning the chaotic window are shown in Table I. They
suggest a weakly chaotic motion on a near-flat attractor
with strong contraction in four of the six dimensions.
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The single positive Lyapunov exponent decreases in mag-
nitude as a is increased across the chaotic window, indi-
cating a greater regularity to the dynamic motion on the
at tractor.

IV. POWER SPECTRAL ANALYSIS

Our purpose here is to demonstrate the importance of
amplitude rather than intensity detection to the study of

complex dynamical signals from laser experiments. The
chaotic field amplitude time series of Sec. III for
+=0.908, shows the dynamical motion to be comprised
of reasonable regular amplitude excursions interspersed
with random phase switches of the field. The correspond-
ing intensity time series supresses this important phase
information introducing an artificial semblance of order
to the dynamics. Heterodyne detection methods, though
experimentally more elaborate, retain this vital phase in-
formation. These techniques have been discussed recent-
ly in the context of distinguishing between symmetric and
asymmetric periodic behavior of the Lorenz-Haken mod-
el. Elsewhere, heterodyne spectral analysis has been
adopted as a standard experimental and theoretical
tool. ' We show here that heterodyne spectra can
discriminate between dynamical signals associated with
the two distinct physical oscillations of the OPML,
whether these signals are periodic or chaotic.

Figure 8 displays amplitude and intensity power spec-
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TABLE I. Lyapunov spectra for various values of a spanning the chaotic window for b =0.2. The
Lyapunov exponents are computed by integration of the OPML equations of motion and the linearized
equations over approximately 1000 orbits.

0.85
0.89
0.902
0.905
0.92
0.945
0.98
1.00
1.05
1.1
1.12
1.14
1.16
1.2

0.0
0.0
0.02
0.06
0.055
0.04
0.03
0.03
0.03
0.04
0.035
0.025
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

—0.02
—0.11

—0.85
—0.85
—0.85
—0.84
—0.84
—0.85
—0.85
—0.85
—0.78
—0.78
—0.64
—0.59
—0.53
—0.35

—0.85
—0.85
—0.85
—0.84
—0.84
—0.85
—0.85
—0.85
—0.85
—0.69
—0.86
—0.86
—0.86
—0.86

—1 ~ 12
—1.12
—1.08
—1.01
—0.95
—0.95
—0.89
—0.86
—0.85
—0.86
—0.86
—0.86
—0.86
—0.86

—16.49
—16.49
—16.54
—16.67
—16.67
—16.71
—16.75
—16.78
—16.85
—16.94
—16.98
—17.02
—17.04
—17.12

(x=0.902
0.5

(x =0.902
tra of time series for a range of pump parameter values a.
A number of distinctive features are immediately evident
on comparing amplitude and intensity power spectra at
fixed values of a. At a=0.902, corresponding to sus-
tained relaxation oscillations (periodic modulation of a
nonzero level), both power spectra yield the same infor-
mation. The fundamental frequency corresponds to the
point at a=0.902 on the relaxation oscillation curve in
Fig. 6 and higher harmonics indicate the strong distor-
tion of the relaxation oscillation form from a simple
sin usoid.

The broad-band chaotic power spectra for a=0.908
are significantly different. The amplitude spectrum is
essentially broad band whereas the intensity power spec-
trum exhibits strong spectral features; similar differences
in field amplitude and intensity spectra have been noted
for the Lorenz-Haken model. As mentioned above the
random switches in phase are an important feature of the
dynamics in this case. This information is suppressed in
the intensity time series and the sharp spectral features of
the intensity power spectrum reflect the artificial regular-
ity imposed on the dynamics. The chaotic power spectra
in the middle of the chaotic window at +=1.0 again
show distinctive characteristics. The amplitude power
spectrum now shows spectral features but the intensity
spectrum indicates much more regular oscillations.
Nearing the end of the chaotic window the power spectra
acquire stronger spectral peaks indicating a significant
degree of regularity in the laser oscillations. Both ampli-
tude and intensity power spectra for o.=1.14 confirm the
predominance of unstable Rabi oscillation seen in the
corresponding time series of Fig. 7.

A marked distinction is observed between the ampli-
tude and intensity power spectra of the stable Rabi oscil-
lation shown for a=1.18. The lowest spectral peak in
the intensity power spectrum appears at twice the funda-
mental frequency of the amplitude spectrum. This is to
be expected from the corresponding time series in Fig. 7.
Confusion can arise, however, when attempting to inter-
pret the physical origin of the laser oscillation. The in-
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FIG. 9. Heterodyne power spectra and 2D (two-dimensional)
phase portraits (Dz3 vs P) for a=0.902, 0.908, 1.0, 1.14, and
1.18. The frequency offset between the local oscillator and the
lasing field is 10/m. (approximately 3.18) normalized frequency
units. The stars on the phase portraits mark projections of the
unstable stationary solutions onto the (13,Dz3) plane.
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tensity power spectra at a=0.902 and 1.18 look essen-
tially the same, and taken together, this pair could sug-
gest the same dynamic phenomenon with perhaps a small
frequency shift due to parameter variation. This near
coincidence of the intensity power spectral peaks occurs
because the Rabi oscillation frequency is approximately
one-half the relaxation oscillation frequency (see Fig. 6).
It is possible to envisage how examination of such intensi-
ty power spectra could lead to incorrect physical inter-
pretation of experimental data.

Figure 9 shows the heterodyne power spectra of the
laser field amplitude with accompanying (/3, D23) phase
portraits of the corresponding attractors. The hetero-
dyne spectrum for a=0.902 has a central peak at the
reference frequency of 3.18 indicating that the underlying
limit cycle is asymmetric in f3 Asing. le sustained relaxa-
tion oscillation limit cycle is shown in the phase portrait
alongside; the mirror-image (in P) limit cycle coexistent
with it is not shown here, but may be accessed from a
different set of initial conditions. In contrast, the hetero-
dyne power spectrum shown for e = 1. 18 shows no spec-
tral peaks at the reference frequency; a signature of the
symmetric stable Rabi oscillations shown in the corre-
sponding phase portrait. The chaotic attractor for
o.=0.908 is characterized by predominant unstable relax-
ation oscillations with relatively infrequent switches be-
tween the positive and negative P lobes. Across the
chaotic window at 0, = 1.0 and 1.14, the attractors feature
increasing spiraling away from unstable Rabi oscillations
with less frequent cycles within individual P lobes. As ex-

pected, the chaotic heterodyne power spectra show the
same signatures as the corresponding amplitude power
spectra discussed previously. Thus, the broad-band and
featureless power spectrum for a =0.908 acquires in-
creasingly pronounced spectral peaks indicating a regu-
larization of the chaotic motion as n is increased.

V. CONCLUSION

To summarize, results of a theoretical analysis of a
single-mode optically pumped molecular laser have been
presented for the specific case of resonant pumping and
resonant emission. The operating characteristics of the
laser are critically dependent on the ratio of the deenergi-
zation rate to the dipole dephasing rate. The dynamical
behavior of the system is significantly different from that
of the equivalent two-level Lorenz-Haken system, due to
the coherent interaction of the pump and lasing emission
fields. This is manifest through the existence of two dis-
tinct forms of limit cycle behavior identified as arising
from normal relaxation oscillations and pump-induced
Rabi splitting. Finally, we have demonstrated that
heterodyne techniques should prove useful in discrim-
inating between laser signals associated with these two
physical mechanisms, whether they be periodic or chaot-
1c.
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