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The Lorentz group, which is the language of special relativity, is a useful theoretical tool in

modern optics. Optics experiments can therefore serve as analog computers for special relativity.
Possible optics experiments involving squeezed states are discussed in connection with the Thomas
precession and the Wigner rotation.

I. INTRODUCTION

While the Lorentz group is the basic language of spe-
cial relativity, ' it is an important mathematical tool in
many other branches of modern physics. The group
Sp(2), which is locally isomorphic to the (2+ 1)-
dimensional Lorentz group, is the basic language for
linear canonical transformations in phase space. It is
a useful language in geometrical optics. The importance
of this group in modern optics has been emphasized in
the current literature. ' One of the advantages of us-
ing this group in modern optics is that direct experimen-
tal tests are possible in optics laboratories. ' '" Indeed,
modern optics can serve as an analog computer for spe-
cial relativity, just as the I.CR circuit is an analog of the
damped harmonic oscillator with external driving force. '

The purpose of the present paper is to elaborate on the
suggestions made in an earlier paper on possible experi-
mental tests of some of the relations in the Lorentz group
having implications in special relativity. We propose a
series of optics experiments concerning the Wigner rota-
tion" and the Thomas precession. '

To many physicists, the Thomas precession is known
as an isolated event of the —,

' factor in the spin-orbit cou-
pling in atomic spectroscopy. The Thomas precession is
caused by the extra rotation the particle in a circular or-
bit feels in its own rest frame. As was pointed out in the
literature. ' ' the Thomas effect is a special case of the
Wigner rotation.

Among many different representations of the Lorentz
group, the Wigner phase space' provides us with a sim-
ple method for studying the Wigner rotation. "' At the
same time, the Wigner phase space is the natural
language for coherent and squeezed states. Indeed, these
optical states can be represented by circles and ellipses,
which are canonical transforms of the circle around the
origin in phase space. ' '

In Sec. II we exploit the loca1 isomorphism between
the (2+1)-dimensional Lorentz group and the group of

homogeneous linear canonical transformations in the
Wigner phase space. This allows us to give a 2 X 2 matrix
formulation of coherent and squeezed states. In Sec. III
we interpret the formalism of Sec. II in terms of the
(2+ 1)-dimensional Lorentz group.

Section IV deals with the Lorentz kinematics of the
Thomas rotation in terms of the 2X2 matrix formalism
for homogeneous linear canonical transformations. In
Sec. V we repeat the procedure of Sec. IV for the Lorentz
kinematics of Ref. 10 inspired by the SU(1, 1) interferome-
ter of Yurke et al. Finally, in Sec. VI we discuss the op-
tical experiments based on the discussions of Secs. IV and
V, which may be performed with the experimental tech-
niques available today or in the near future.

II. 2X2 MATRIX FORMULATION
OF COHERENT AND SQUEEZED STATES

It has been shown that coherent and squeezed states of
light can be formulated in terms of linear canonical trans-
formations of the Wigner phase-space distribution func-
tion. This formalism is based on the fact that the group
of linear canonical transformations is the group ISp(2),
which is a semidirect product of Sp(2) and the group of
translations in the two-dimensional phase space.

The purpose of this section is to simplify the
mathematics given before and show that Sp(2), which is
the group of homogeneous linear transformations in

phase space, is enough to deal with the transformation
properties of coherent and squeezed states. The basic ad-
vantage of the homogeneous Sp(2) is that it has a
correspondence with the (2+ 1)-dimensional Lorentz
group, while the more complicated group of ISp(2) has no
apparent connection with the Lorentz group.

Traditionally, the coherent state or squeezed state is
represented by an infinite series involving the solutions of
the Schrodinger equation for the harmonic oscillator.
The expression for the coherent state is
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~a&=e "g ~n &,&n!
specified by

e ~(q —e" a) +e"(p —e " b) =1 . (8)

for the harmonic oscillator wave function, as a function
of q, the expression for the coherent state becomes

1/4

P (q)=(q~tz) = 1
e

—[Im( a ) ] —( q
—+2a ) /2e (3)

The parameter a is a complex number which can best be
represented in the two-dimensional complex plane.

If we use the Wigner phase space distribution function
defined as

where ~n ) is the nth excited harmonic oscillator state. If
we use the expression

~n ) =[I/(+m2"n!)]' H„(q) exp( —
q /2),

Recently Han et al. indicated that the group of linear
canonical transformations in the Wigner phase is possibly
the natural language for coherent and squeezed states. It
was pointed out further that, since the group Sp(2) of
homogeneous linear canonical transformations is locally
isomorphic to the (2+ 1)-dimensional Lorentz group,
modern optical laboratories can serve as an analog com-
puter for Lorentz transformations. ' Let us summarize
the formalism given in Ref. 5.

The group of homogeneous linear canonical transfor-
mations is Sp(2) and can be represented by the 2X2 real
matrices. Indeed, the generators of the group of homo-
geneous linear canonical transformations in the two-
dimensional phase space are

~(q p) = f P.—(q+X)4.(q —X)e '"'dX,=1 (4)

the coherent state can be written as a function of two sca-
lar variables q and p,

8'(q, p) = —exp[ —(q —a) —(p —b)~],1

i/2 0
0 —/2 ' Kz=

0 —i/2
i/2 0

0 i/2
i/2 0

(9)

(q —a) +(p b) =1 . — (6)

If +=0, then both a and b vanish, and the preceding cir-
cle is centered around the origin. This is the vacuum
state. If we multiply a by e', the preceding circle be-
comes rotated around the origin, and the resulting equa-
tion is

(q —a') +(p b') =1,—
where

a'=a cos(g/2) —b sin(0/2),

where a =&2 Re(a) and b =&21m(a). This function is
concentrated within a circular region described by the
equation

These operators satisfy the commutation relations

[K„K~]= iL, [K, ,
—L]= iK~, —[K~,L]=iK, . (10)

K, and K2 generate squeezes along the q direction and
the direction which makes a 45' angle with the q axis, re-
spectively. I. is the generator of rotations around the ori-
gin. The preceding commutation relations are invariant
under the sign change of K; to —K;. For this reason, the
word squeeze can mean the deformation given in Eq. (8)
or its inverse. In this paper, we choose the convention
given in Eq. (9).

The rotation matrix R (P) can be written as

cos(P/2) —sin(P/2)
/2) cos(~/2)

b'=a si (n0 /)2+bcos(8/2) .

The squeezed state means that the preceding circle is
linearly deformed in such a manner that the area is
preserved. The squeeze along the q direction means that
q becomes (e" )q, and p is replaced by (e " )p. The re-
sult is that the circle in Eq. (6) becomes an ellipse

S(O, g)=e
exp(g/2)

0
0

exp( —g/2) (12)

The squeeze along the P/2 direction is

Likewise, K, generates the squeeze along the x direction.
Its matrix form is

cosh(k/2)+ (cosP) sinh(A, /2)
S(P, A, )=R (P)S(A, , O)R (

—P)=
( ~) h(g/2)

(sing) sinh(A. /2)
cosh(k/2) —(cosP) sinh(X/2) (13)

Under the transformation of S (P, A. ), the circle of Eq. (6) becomes

'2 2

e (q —a') cos++(p b') sin+ +e —(q —a') sin+ —(p b') cos—
2 2 2 2

(14)
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with

~ Aa'= cosh —+(cosP) sinh —a+ (sing) sinh —b,
2 2 2

b'= (sing) sinh —a+ cosh ——(cosP) sinh —b .
2 2 2

Then the repeated squeezes result in

S ( P, A. )S (0,g ) =S ( t1, g)R ( II),
where

cosh( = (cosh' ) cosh', + (sinhg)(sinhA, ) cosP,
0 (sing)[tanh(A. /2)][tanh(r1/2)]
2 1+[tanh(k/2)][tanh(g/2)](cosg)

tanO= (sing)[sinhA, +(tanhg)(cosh'. —1) cosP]
(sinhA. ) cosP+ (tanhq)[1+ (cosh'. —1)(cosh/) ]

Equation (15) implies that two successive squeezes do not
make one squeeze but result in a squeeze preceded by a
phase change in 0.'. In this paper, we apply this relation
to some specific circumstances under which optical ex-
periments may be carried out.

III. (2+ I)-DIMENSIONAL LORENTZ GROUP

The commutation relations given in Eq. (10) are identi-
cal to those for the (2+ 1)-dimensional Lorentz group in
the space of (x,y, t). We shall hereafter call this group
O(2, 1). There are many groups which are locally iso-
morphic to this Lorentz group. Table I contains the gen-

erators of some of widely used groups in physics satisfy-
ing the same set of commutation relations as those for the
group O(2, 1).

This group is smaller and simpler than the (3+1)-
dimensional Lorentz group which appears to be the full
space-time symmetry group. However, as we shall see
later in this section, O(2, 1) contains all the essential
features of Wigner's little groups. In addition, as ex-
plained in Sec. II, this group serves as the basic language
for modern optics, in addition to the modern approach to
classical mechanics. Indeed, the group O(2, 1) is a physi-
cally rich group.

With this point in mind, let us interpret the mathemat-
ics of Sec. II in terms of the Lorentz transformations.
The Lorentz boost along the x direction is represented by

cosh' 0 sinhg
S(0 71)= 0 1 0

sinhg 0 cosh'
(16)

cosP —sing 0
R (P) = sing cosP 0

0 0 1

(17)

Here again, R (P) is used for both Eq. (11)and Eq. (17).
The boost along the direction which makes an angle P

with the x axis is

This matrix is mathematically different from S(0,g) of
Eq. (12), and performs a different physical operation.
However, we use the same notation S(0,g) for both Eq.
(12) and Eq. (16).

The rotation around the origin in the x-y plane is given
by

1+(cosh' —1) cos P (cosh' —1)(sing) cosP (sinhg) cosP

S(P,g)= (cosh' —1)(sing)cosg 1+(cosh' —1)sin P (sinhq)sing
(slnh71) cosp (sinhq) sing cosh'

(18)

TABLE I. Table of generators of the groups which are locally isomorphic to the (2+1)-dimensional
Lorentz group. The first row consists of the generators of homogeneous linear canonical transforma-
tions in phase space. The second line consists of those in the Schrodinger representation discussed in
Ref. 5. The third row gives the generators of Sp(2), which is the basic language for the present paper.
The fourth row gives the generators SU(1,1) which was used in Ref. 9.
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The physics of Eq. (13) and the physics of Eq. (18) are
different, but we can use S (P, g) for both.

Since the generators of O(2, 1) and Sp(2) satisfy the
same set of commutation relations, the preceding three
matrices satisfy the algebraic relation given in Eq. (13). If
the Lorentz transformation S(Q, A, )S(0,g)=S(0,$)R (0)
is applied to a particle at rest, R (0) does not aff'ect its
momentum but changes the direction of its spin. This ro-
tation of a particle at rest is called the Wigner rotation.

The group O(2, 1) is a subgroup of O(3, 1), and its sym-
metry is somewhat restricted compared with the full
Lorentz symmetry of O(3, 1). However, the group O(2, 1)
contains most of the essential features of Wigner's little
groups of the Poincare group. ' The little group is the
maximal subgroup of the Lorentz group which leaves the
momentum and energy of a given particle invariant.

In order to grasp the physical picture of this group, let
us note first that the rotation has to be included in the
Lorentz group. Furthermore, it is possible to form a
series of boosts and rotations to form a Lorentz transfor-
rnation which brings the momentum-energy vector back
to its original form. Is this transformation necessarily an
identity transformation? The answer to this question is
definitely no.

Let us consider, for example, a massive particle at rest.
Its momentum is clearly invariant under rotations. The
little group for a massive particle at rest is clearly the ro-
tation group. What is then the little group for a moving
massive particle? Since we can obtain this moving parti-
cle by boosting the particle at rest, the little group in this
case is naturally a Lorentz-boosted rotation group. '

The question then is whether the study of transforma-
tions in the x-y plane can describe the scenario in the
three-dimensional space. The answer is yes. Since the
study of the little groups start with a fixed momentum,
we can define the x axis as the direction of the momen-
tum. As we did in this section, the y axis is perpendicular
to the momentum. On the other hand, there are other
directions perpendicular to the momentum, such as the z
direction which is perpendicular to both x and y. This
means that we have to take into the account rotation
around the x axis. This is a rather simple matter because
the boost along and the rotation around the x direction
commute with each other.

IV. THOMAS CONFIGURATION

The effect of this Wigner rotation is seen in atomic
spectra as the Thomas precession. Undoubtedly, it is also
an important factor in nuclear and hadronic spectra
where the relativistic eff'ects are more prominent. The ex-
act Lorentz kinematics has been discussed in the litera-
ture in terms of the conventional 4X4 matrix formal-
ism. ' '' On the other hand, in view of the correspon-
dence between the mathematics of squeezed states and
that of Lorentz transformations, we can study the Tho-
mas rotation from optics experiments. For this purpose,
we use the mathematics of squeezed states in order to
study the Thomas rotation.

Let us consider a system of three Lorentz boosts, as is

Pp S, Pb

oe""

FIG. 1. Lorentz kinematics for the Thomas precession. S&

bring a particle at rest to that with momentum-energy vector
Pb. S, brings Pb to P, . S, brings the particle at rest directly to
P, . If we start from P&, the transformation S, (S, ) 'S2 will
leave this momentum-energy vector invariant, and will be the
Lorentz-boost rotation: S I R ( a )(S

& ) '. In the Wigner phase
space, which is the basic language of coherent and squeezed
states, the ellipse of Eq. (37) is transformed into Eq. (40) with a
replaced by —a.

Pb =S,P, =m (sinhg, O, cosh'), (20)

where S, is the 3 X 3 matrix S (0,g) of Eq. (16). For alge-
braic convenience, we can also use the 2 X 2 matrix of Eq.
(12). Since we are interested in both the squeezed states
and Lorentz transformations, we shall use the 2 X 2 ma-
trix representation throughout this section.

The second boost transforms Pb into P„whose
momentum has the same magnitude as that of PI, but
makes an angle 0 with the direction of Pb,

P, =S2Pb =m((sinhrI) cos8, (sinhg) sin8, cosh'),
where S2=S(Q, A, ), with

P=(~+0)/2,
A, =2 tanh '

I [sin(0/2)] tanhgI

(21)

(22)

The 2 X 2 matrix corresponding to the Lorentz transfor-
mation S2 is

described in Fig. 1. We start with a massive particle at
rest whose momentum-energy vector is

P, =(0,0, m)

in the space-time vector convention: x"=(x,y, t), where
we omit the z component which is not aft'ected by the
transformations discussed in this paper. S, boosts the
preceding momentum-energy vector along the x axis with
the boost parameter g,
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cosh(X/2)+ [sin(8/2) ] sinh(A, /2)
—[cos(8/2) ] sinh(A, /2)

—[cos(8/2) ] sinh(A, /2)
cosh(X/2) —[sin(8/2) sinh(A, /2) ]

(23)

The momentum of P, is the x-y plane. We can also obtain P, by rotating Pb around the z axis by 0, as is illustrated in
Fig. 1. The third boost S3 brings P, directly to P„

P, =S3P, ,

where

(24)

cosh(g/2)+(cos8) sinh(g/2)
S =S 8,3 & 9 (sin8) sinh(g/2)

(sin 8) sinh(g/2)
cosh(g/2) —(cos8) sinh(g/2) (25)

Even if the successive transformations S2S, bring the
particle at rest to the same momentum state as S3 does,
they are not identical transformations. Indeed,

sive particle whose momentum-energy vector is

I' =m ( sinhg, 0, cosh' ) . (30)

S(g, k)S(O, g)=S(8, g)R (a),
where

cos(a/2) —sin(a/2)Ra= sin(a/2) cos(a/2)

with

(26)

cos(8/4) —sin(8/4)
R 8/2= sin(8/4) cos(8/4) (31)

We can get this momentum by boosting the particle at
rest by applying the boost operator of Eq. (16), whose
2 X 2 counterpart is given in Eq. (12). We then rotate the
system by 8/2. In the present 2X2 representation, the
rotation matrix is

[tan( 8/2 ) ](cosh' —1 )tan a/2 =
cosh'+ [tan( 8/2 ) ]

(27) Next, we boost the system along the negative y direction

The Thomas effect comes from the successive transfor-
mations S(8,g)[S(O,g)] ' applied to PI, . Since Eq. (26)
can be written as

S(8,g)=S(Q, A, )S(O, q)R ( —a),
S( 8q)[ S( Oq)] ' takes the form

S(8,g)S(0, —g) =S(Q, A, )T(8,g),
where T(8,g) is the Thomas factor, where'

T(8,g)=S(O, g)R (
—a)S(0, —g) .

(28)

(29)

R(Gran)

R(e/Z)

This is a Lorentz-boosted rotation, and leaves the
momentum Pb invariant. However, it is not an identity
matrix. This causes a rotation of the spin in the Lorentz
frame in which the particle is at rest. This is exactly the
Thomas rotation, which is a special case of the Wigner
rotation.

V. CONFIGURATION OF YURKE, McCALL,
AND KLAUDER

I~ae"~ q

As another illustrative example of the Wigner rotation,
Han and Kim' studied the Lorentz kinematics inspired
by the work of Yurke et al. They considered a series of
boosts and rotations whose net effect is to leave the
momentum and energy of a given massive particle invari-
ant, and this kinematics is described in Fig. 2. We shall
hereafter call this Lorentz kinematics the Yurke
configuration.

In order to be consistent with the purpose of this pa-
per, we discuss here the Yurke configuration using the
mathematics of squeezed states. Let us start with a mas-

FIG. 2. Lorentz kinematics based on the mathematics of the
SU(1,1) interferometer of Yurke et al. The starting point is a
massive particle moving along the x direction with its
momentum-energy vector given by Eq. (20). This momentum is
rotated around the z axis, boosted along the y axis, and then ro-
tated around the z axis, as shown in this figure. The net effect is
a transformation which does not change the initial momentum.
This is not an identity transformation, but a Lorentz-boosted
rotation. In the Wigner phase space, which is the language of
coherent and squeezed states, the ellipse of Eq. (37) is
transformed into that of Eq. (41).
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as is shown in Fig. 2, using the matrix equivalent to

cosh(k/2) —sinh(A, /2)
—sinh(A, /2) cosh(A, /2) (32)

The boost parameter A, can be calculated from 0 and g,
and the result is

A, =tanh '[(tanhq) sin(8/2)] . (33)

R (8/2)S( —vr/2, A, )R (8/2) =S(O, g)R (co)S(0, —g),
(34)

Finally, we rotate the system by 0/2 to return to the ini-
tial momentum of Eq. (30). The net eff'ect of these trans-
formations is R (0/2)S( ~/2, X)R (8/2). As was point-
ed out by Yurke et al. , this expression is the same as a
Lorentz-boosted rotation,

not S3, but is S3 preceded by a rotation. However, the
spinless particle at rest is invariant under rotations.
Therefore, in this particular case, S2S, should give the
same effect as that of S3. In optics, the particle without
spin appears as a vacuum which is represented by a circle
centered around the origin in the Wigner phase space.
This circle is invariant under rotations around the origin.
Thus if we apply Eq. (26) to the vacuum, R(a) does not
give any effect. This means that we squeeze the vacuum
twice, the result is simply a squeezed vacuum.

This is not true if the particle has a spin which is
affected by rotations. We have to take into account the
Thomas rotation which precedes S(8,q) in Eq. (26). The
particle at rest with its intrinsic spin corresponds to a
coherent state, which in the Wigner phase space can be
described by the equation

where
(q —a) +p =1 . (36)

tan(co/2) = [tan(0/2)]/cosh' . (3&)

In their recent paper, ' Han and Kim studied the kine-
matics in detail using the 4 X 4 Lorentz transformation
matrices. They concluded that this rotation is also a
Wigner rotation in the sense that the rotation takes place
in the Lorentz frame where the particle is at rest. By
studying this kinematics using the 2X2 matrix formal-
ism, we are able to suggest a corresponding experiment
with squeezed states.

In spite of its name, what we are applying Eq. (34) to a
state different from that the state discussed in the original
paper of Yurke et al. Our starting point to which Eq.
(34) is applicable is a squeezed state, while Yurke et al.
applies Eq. (34) to a coherent state. While Yurke et al.
use the complex 2X2 representation SU(1,1), our treat-
ment is based on the real 2X2 representation of Sp(2).
The basic advantage of the real representation is that it
allows us to draw two-dimensional figures.

VI. POSSIBLE EXPERIMENTS

We are now ready to propose a series of specific experi-
ments based on the Lorentz kinematics discussed in the
preceding sections. The rotation by 0 around the origin
of the x-y plane is equivalent to the rotation in the q-p
plane by 0/2. The Lorentz boost along the x direction is
equivalent to the squeeze along the q axis. We are estab-
lishing this connection because it is possible to study the
Lorentz group by performing optics experiments.

On the other hand, the optics experiment has its limi-
tations. It is by now a routine process to produce
coherent states. It is also easy to change the phase of the
a parameter. However, it is a relatively new technology
to produce squeezed states from a coherent state. It may
be possible to squeeze a squeezed state in the near future.
Since there is a loss of intensity during the squeezing pro-
cess, it is not practical to have more than two successive
squeezes. '

Let us start with the Thomas transformation on a spin-
less particle at rest. The two repeated boosts S2S, are

If the particle moves along the x direction with the veloc-
ity parameter g, then it corresponds to the squeezed state
represented by the ellipse

e "(q —ae "~
) +e "p =1 . (37)

In order to avoid more than two successive squeezes, we
write Eq. (26) as

S(O, g)R (
—a)S(0, —g)=S(P, —

A, )S(8,g)S(0, —r)) .

(3&)

The operator S(0, —g) unsqueezes the ellipse of Eq. (37)
to the circle of Eq. (36). Then the net result is

S(O, g)R (
—a) =S(P, —

A, )S(8,g), (39)

applicable to the coherent state represented by the circle
centered around (q,p)=(a, O). This circle is not invariant
under the rotation R (

—a) around the origin, and the
operation of the left-hand side of the preceding equation
should give a new squeezed state represented by the el-
lipse

e "[q —a(cosa)e" ] +e"[p+a(sina)e " ] =1 .

(40)

The Lorentz group tells us that the operation of the
right-hand side should also give the same result. We can
test this by performing two successive squeeze operations.
It is remarkable that the ellipse of Eq. (40) has the same
eccentricity as the starting ellipse of Eq. (37), and its ma-
jor axis is parallel to that of the starting ellipse. Indeed,
the net result is only a translation of the ellipse of Eq. (37)
to that of Eq. (40). This is another advantage of using
Eq. (39) instead of Eq. (26).

The Lorentz kinematics of the Yurke configuration has
been discussed in Ref. 10. Unlike the case discussed in
the original paper of Yurke et al. , the starting point to
which Eq. (34) is applicable is a squeezed state which is
unsqueezed by S(0, —g). Therefore the right-hand side
of Eq. (34) is the rotation R (co) applicable to a coherent
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state followed by the squeeze S(0,g). The left-hand side
starts with the rotation R (0/2) of the squeezed state of
Eq. (37), followed by a squeeze and another rotation. If
we start with the squeezed state given in Eq. (37), the end
result should be

e "[q —a(cosco)e" ] +e "[p —a (sinto)e "~ ] =1 .

(41)

I.O

0.8

0.6

0.4

0.2

0.4

0.6

by performing the calculation of the addition formula

tan(a/2)+ tan(co/2)
1 —[tan(a/2)] tan(co/2)

Equation (41) can be written as

(43)

CO+ 1
0 0

(44)

Figure 3 describes the Thomas relation of Eq. (27), the
Yurke relation of Eq. (35), and the preceding sum rule.
The best aspect of this figure is that the curves given
there can be checked in optics laboratories.

Throughout this paper, we have used the words "vacu-
um" and "squeezed vacuum" somewhat uncritically.
The vacuum in the present case means a state with no
photons. The squeezed vacuum is clearly not a vacuum
state, because it is a linear combination of a vacuum state
as well as many multiphoton states.

Indeed, the vacuum has many different implications in
physics. We are concerned here with a possible con-
fusion with the vacuum in quantum electrodynamics and

This can also be checked in optics laboratories.
So far, we have been discussing the question of whether

the experiment performed according to one side of the
equation gives the same result as what the other side
gives. If this is confirmed experimentally, we can next
check the measured values to see if they are consistent
with those predicted by the Lorentz group.

In the Thomas configuration, we are measuring the an-
gle a for given 0 and g, and check the measured value
with the value predicted by the Lorentz group. For the
Yurke configuration, we measure co and compare it with
the value calculated from Eq. (35). If these comparisons
work out, we can venture into a more ambitious program
of combining both the Thomas and Yurke configurations.
It is indeed interesting to note that the angles a and co

satisfy the sum rule

(42)

0.2 0.8

0.2 04 06
8/~

0.8

FIG. 3. Wigner rotation angles a and cu vs the lab-frame an-

gle 0 for fixed values of the velocity parameter c, =tanhg. This
graph represents also the sum rule (a+co)/0= 1.
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the vacuum considered in the study of the Casimir effect.
In general, the vacuum state is defined to be the lowest
energy state. However, it is not a zero-energy state due
to the uncertainty principle, as in the case of the harmon-
ic oscillator.

In QED with its renormalization program based on the
Hilbert space consisting of square-integrable functions,
there is a well-established procedure for dealing with the
vacuum. The QED vacuum contains vacuum fluctua-
tions. If photons are confined to a finite space, the vacu-
um state depend on boundary conditions. The physical
consequence of this boundary condition is discussed in
textbooks on quantum field theory, ' and was observed
experimentally. This is known as the Casimir effect.

While we constantly mention the word "vacuum"
when studying squeezed states, it may be worthwhile to
study its possible connection with the above-mentioned
aspects of the vacuum. In particular, it may be possible
to study the Casimir effect using coherent and squeezed
states.
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