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Conical emission as a result of pulse breakup into solitary waves
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We report computational results that show that the conical emission observed when a nearly res-
onant laser pulse propagates through an atomic vapor is the result of the breakup of the pulse into
solitary waves. For an incident pulse with a radial as well as a temporal profile, the crests and
troughs of the two-dimensional solitary waves are curved in a time-radius plane. The temporal
modulation associated with pulse breakup appears as Rabi sidebands in the spectrum, while the cur-
vature of the solitary waves in the time-radius plane results in a transverse spatial modulation that
leads to conical emission in the far field. These results were obtained by performing detailed numer-
ical calculations of the time-dependent paraxial propagation of a cylindrically symmetric laser pulse
through a vapor of two-level atoms under the rotating-wave and slowly-varying-envelope approxi-
mations in the limit of no collisional damping or Doppler broadening. Our results can be interpret-
ed readily in terms of optical nutation on the Bloch sphere and in terms of noncollinear phase
matching through the curvature of the solitary waves rather than through additional parametrically
generated waves. We find that self-focusing is not required for the generation of conical emission,
although it would be difficult to separate these effects experimentally.

I. INTRODUCTION

The interaction of intense, nearly resonant laser light
with atomic or molecular systems has commanded the at-
tention of researchers since the early 1960s because of the
profound changes in the energy levels of the target sys-
tems and in their processes of emission and absorption in-
duced by interaction with a strong field. The discovery
and exploitation of effects such as the generation of new
frequencies through interactions of nonresonant laser
fields in matter ultimately led to methods for generating
coherent light from the far infrared to the far ultraviolet,
and played an important role in the development of laser
spectroscopy. One of the signal successes of quantum op-
tics in the 1970s was the quantitative and physical under-
standing of the interaction of an atom with a strong,
nearly resonant laser field, in which the spontaneous
fluorescence spectrum consists of two sidebands separat-
ed from a central peak by the Rabi frequency. ' Stimulat-
ed processes such as gain and absorption are also
modified as the result of interaction with a strong field.
Gain has been observed by several workers at the Rabi
sideband frequencies, ' in agreement with theoretical
predictions. ' However, until fairly recently it has not
been widely recognized that the generation of new fre-
quencies by an atomic or molecular system interacting
with a strong field is also interrelated with the propaga-
tion of this field in the medium. Observations of a
frequency-shifted, coherent conical emission from sys-
tems pumped by an intense optical field that is nearly res-
onant with a one-photon transition ' or a two-photon
transition' have made it clear that propagation effects
can play a major role in determining the spectrum as well
as the spatial characteristics of the light transmitted by a

medium subject to nearly resonant pumping. In this pa-
per we provide answers to the following questions of pri-
mary interest: How are sidebands generated in conical
emission, and how does the sideband frequency depend
on experimentally adjustable parameters? What is the re-
lationship between self-focusing and conical emission?
How is phase matching accomplished in conical emis-
sion? The inadequacy of existing analytical methods in
the face of the combined phenomena of coherent excita-
tion, diffraction, and the initial spatial-temporal profile of
the field has forced us to answer these questions by nu-
merical calculation.

In the first observation of self-focusing due to the
intensity-dependent dispersion of a resonance line,
Grischkowsky' observed diffuse conical emission in po-
tassium vapor. His analysis, which was based on the adi-
abatic approximation, was in agreement with the overall
features of the observed self-focusing. Grischkowsky did
not observe the spectrum of the conical emission, nor did
he attempt an analysis of this phenomenon. Tam' ob-
served sideband amplification and conical emission in a
cw laser beam that was tuned to the blue side of the sodi-
urn D2 line. Skinner and Kleiber made a systematic
study of the conical emission observed when barium va-
por was irradiated with the beam of a nitrogen-laser-
pumped dye laser tuned on the high-frequency side of a
resonance line. The measured dependences of the cone
angle on barium density and laser detuning were in semi-
quantitative agreement with a model in which the conical
emission was the result of a surface-phase-matched four-
wave-mixing process involving two other strong waves,
the laser, and the cone light. However, the other two
waves required for the model were not observed. Subse-
quently Harter et al. and Kleiber, Burnett, and Coop-
er observed sidebands that were syrn metrically dis-
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placed with respect to the laser frequency, thus satisfying
the condition for conversion of two pump photons into
two sideband photons via a four-wave-mixing process.
Harter and co-workers ' described an optical-waveguide
model showing how conical emission may originate in a
four-wave-mixing process combined with refraction at
the boundary of a self-trapped filament. A four-wave-
mixing model, which relaxes the requirement for noncol-
linear phase matching in self-trapped filaments, has been
discussed by Plekhanov et al. ,

' Shevy and Rosenbluh, '

and Shevy, Hochman, and Rosenbluh. ' Other models
for the generation of conical emission which have been
proposed include optical Cerenkov radiation, ' ' spatial
self-phase modulation, ' self-defocusing of the lower side-
band frequencies, ' free-induction-decay emission follow-
ing three-photon scattering, ' a nonadiabatic generation
process coupled with an optical-waveguide model, " and
coupling between the field and the transient nonlinear
response of the atomic system. ' ' LeBerre-Rousseau,
Ressayre, and Tallet clearly recognized a possible link
between conical emission and the proposal of Makarov,
Cantrell, and Louisell that sidebands would be
coherently generated during propagation. However, the
analytical methods of Ref. 22 were not suSciently power-
ful to study the interplay between diffraction, the
coherent response of the medium, and propagation
effects. The observation by Chauchard and Meyer' that
the symmetry rules that have been proposed with respect
to the resonance and laser frequencies are valid only for a
short detuning range and depend on scale parameters of
the experiment supports the need for inclusion of all of
the laser, material, and dimensional parameters into the
theory.

Although a first-principles understanding of conical
emission and sideband generation provides more than
enough justification for a theoretical study, the possible
importance of sideband generation as the result of propa-
gation was first discussed in an applied context. A suc-
cessful attack upon the problems of sideband generation
and beam dispersal through self-focusing and conical
emission may, in fact, be a prerequisite for major applica-
tions such as laser isotope separation or plasma heating,
in which a nearly resonant laser beam must traverse
many optical depths of an atomic vapor. If a laser beam
cannot propagate through long path lengths in the work-
ing medium without beam distortion, then an intended
application that depends on uniform irradiation will not
be feasible. The generation of unwanted new frequencies
as the result of propagation might affect the isotopic or
chemical selectivity of an industrial laser process, espe-
cially if the process relies upon excitation of sharp reso-
nances. An early suggestion by Makarov, Cantrell, and
Louise11 concerning the possible importance for multi-
photon molecular excitation (and therefore molecular
laser isotope separation) of the generation of sidebands in
the course of propagation of a laser beam, rested on an
analysis of the response of an individual two-level atom
to an external field that was suddenly switched fram zero
to a finite value, Eo. Subsequent numerical work by
Eberly, Konopnicki, and Shore showed that the side-
bands do not grow strongly in the course of propagation,

and that the sideband amplitude depends sensitively on
the initial rate of rise of the pulse. Numerical calcula-
tions by Cantrell, Rebentrost, and Louisell showed that
the sideband amplitude in the field radiated by the medi-
um diminishes steadily in importance with respect to the
amplitude at the frequency of the incident wave, as a
function of propagation distance. In the sudden approxi-
mation employed by these two groups, the field Fo at
t —nozlc =0 is the initial condition for the solution of
the differential equations describing the response of the
atomic system to the field. Consequently, the field at the
first retarded-time point can never be altered by the field
emitted by the atoms over any distance of propagation,
while the remainder of the pulse is substantially reshaped
by propagation. Therefore the sudden approximation
specifically forbids pulse delay, formation of solitary
waves, and other self-induced transparency effects. For
the examples of pulses with finite rise times studied by
these authors, the distance of propagation considered was
shorter than the reshaping distance. Finally, the restric-
tion to a uniform plane wave excluded the development
of phase-matched propagation at the sideband frequen-
cies in other directions as required in several models of
conical emission. In view of the expeirmental observa-
tions of sidebands and conical emission, the deficiencies
of previous theoretical work ' ' made it highly desir-
able to reevaluate the problem of sideband generation in
the course of propagation.

In this article we report the results of a numerical
study of the interrelated processes of coherent sideband
generation and conical emission that occur as a pulse that
is initially smooth and nearly adiabatic propag ates
through a vapor of statioary atoms with two effective en-
ergy levels. Our calculations show that a laser pulse the
initial center frequency of which lies to the blue of the
atomic resonance line undergoes radical changes in the
course of propagation. ' During the initial stage of
propagation, the amplitude of the pulse envelope remains
apparently little changed, while the initially plane phase
front begins to carry a nonlinearly generated image of the
intensity profile of the pulse as a result of the adiabatic
response (self-phase modulation). ' After an initial
period of phase encoding, the radial variation in the
field-induced refractive index becomes large enough for
self-focusing' ' to become prominent. Self-steepen-
ing ' ' of the pulse becomes evident on a length scale,
independent of the self-focusing length, that is deter-
mined by the temporal variation of the field strength and
phase. Eventually the pulse breaks up into a train of
two-dimensional solitary waves, the leading edge of the
pulse becoming steep and the pulse developing a strong
temporal and transverse spatial modulation. A
temporal-spatial spectrum shows the modulation associ-
ated with the train of two-dimensional solitary waves to
be equivalent to Rabi sidebands and conical emission.

In our numerical model, the method for including
transverse propagation effects such as diffraction and
self-lensing as well as pulse reshaping in the time domain
is to solve the paraxial wave equation for a unique helici-
ty of the field with a driving term proportional to the po-
larization (exception value of the dipole moment per unit
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volume), the latter quantity being calculated directly by
solving the appropriate dynamical equation. Atomic
motion and collisions have been deliberately excluded in
order to study, in as pure a form as possible, the phase-
sensitive nonlinear processes arising from the interaction
of two-level systems with a propagating laser field. One
of the consequences of excluding collisions is that the
time-dependent Schrodinger equation must be used to
calculate the response of the atoms to the driving field,
and its approximate solutions in the adiabatic and sudden
regimes must be used to interpret the results. In the par-
axial approximation, the wave equation is linear in the
spatial and temporal derivatives of the optical field.
When the laser frequency is nearly resonant with the
transition frequency, the nonlinearity of the atomic polar-
ization induced by the field couples the different frequen-
cies present in the field, while new frequencies arise in the
polarization because the coherent response of an atom to
an external field depends on the atomic eigenfrequencies
as well as on the frequency of the field. The approach of
obtaining self-consistent solutions of the wave equation
and the time-dependent Schrodinger equation (or the
density-matrix equation of motion) was pioneered for
plane waves and two-level systems by Hopf and Scully
and Icsevgi and Lamb and extended to include trans-
verse propagation effects by Newstein and co-
workers. ' Since this method does not make use of per-
turbative techniques such as the usual expansion of the
dielectric susceptibility in powers of the optical field, it is
valid under conditions of saturation and for resonant and
nearly resonant excitation. The purpose of numerical
calculation in this case is to reveal the essential physics,
not to provide a simulation of experiment.

The generation of Rabi sidebands by an initially
smooth pulse is a nonadiabatic, non-steady-state
phenomenon. A laser pulse which evolves adiabatically,
that is, sufficiently slowly that the atomic system remains
in the dressed state correlated with the initial state, will
not induce transitions to other dressed states. Then the
dipole expectation value will contain no oscillations at
the generalized Rabi frequency. If the dipole expecta-
tion value induced by the propagating field contains no
Rabi oscillations, then no Rabi sidebands will appear as
the field propagates. In the steady-state approximation
employed by Harter and Boyd and LeBerre et al. to
calculate the atomic response to the field, the atom is as-
sumed to be in dynamic equilibrium between collisions
and coherent driving by the field. The index of refraction
is intensity-dependent, but cannot generate Rabi oscilla-
tions since it follows the field envelope in time develop-
ment. The presence of gain at the Rabi sideband frequen-
cies permits the development of Rabi sidebands through
the amplification of initial noise in cases where the
steady-state approximation is valid, such as cw laser
beams.

At the entrance to the medium, the transient response
of the two-level system is primarily adiabatic. ' '

However, the atomic response also contains temporal os-
cillations, with an asymptotically small amplitude, at the
instantaneous generalized Rabi frequency. The retard-
ed time of onset, the temporal frequency, and the number

of temporal oscillations depend on the field strength, and
therefore (for an incident beam of finite diameter) the ra-
dius, resulting in a curvature of the crests and troughs of
the temparal oscillations in the time-radius plane. When
the laser is detuned to the blue side of resonance, the fre-
quency spectrum of the atomic response is asym-
metric, ' ' the lower sideband having a larger am-
plitude than the upper sideband. The degree of asym-
metry increases with the radius. The temporal oscilla-
tions in the atomic response are impressed on the field
during propagation because the source term in the parax-
ial wave equation is proportional to the atomic polariza-
tion. If changes in the field did not affect the atomic
response (thin-sample approximation), then the effect of
the atomic response on the propagating field would be cu-
mulative with subsequent layers of the medium. How-
ever, the amplitude of oscillations in the transient
response increases during propagation because self-
actions (including oscillations that have been encoded on
the field over the distance through which it has already
propagated) make the pulse less adiabatic. Therefore the
process of encoding oscillations on the pulse is amplified
as the pulse propagates. This process is a self-action of
the electric field which we call "self-oscillation encod-
ing". Self-steepening and self-oscillation encoding even-
tually result in the breakup of the pulse into a train of
solitary waves. With the inclusion of a radial dimension,
the solitary waves become two-dimensional, with crests
and troughs that are curved in the time-radius plane.
The temporal oscillation associated with pulse breakup
generates Rabi sidebands while the transverse depen-
dence of pulse breakup results in a transverse spatial os-
cillation. We demonstrate that these interrelated oscilla-
tions are equivalent to Rabi sidebands and conical emis-
sion by calculating the temporal Fourier transform of the
Hankel-transformed field. Since the Hankel field is the
transverse spatial Fourier transform of the physical field,
it is porportional to the physical field observed at a
sufFiciently large distance from the exit plane that the
Fraunhofer approximation is valid.

After calculating the solution of the paraxial wave
equation, we visualize the curvature of the solitary waves
by arranging the uniform-plane-wave solutions for pulses
with different initial field strengths along a radial coordi-
nate in accordance with the initial field strength of an ini-
tially Gaussian transverse beam profile. The temporal-
spatial spectrum demonstrates that Rabi sidebands and
conical emission are generated, even though self-focusing
and diffraction have been excluded in this approximation.

The remainder of this paper is divided as follows: In
Sec. II we outline the derivation from first principles of
the fundamental equations used in this work. The prod-
ucts of the significant effort expended to develop stable
numerical methods that give reliable results for this prob-
lem are described in Sec. III. In Sec. IV we use the Bloch
vector to give a physical interpretation of the dependence
of the induced polarization on the laser-pulse profile and
detuning. Section V summarizes and interprets in detail
the results of a major numerical calculation of laser-pulse
propagation. Our results are compared qualitatively with
existing experimental results in Sec. VI.
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II. EQUATIONS OF MOTION

We consider the propagation of a quasimonochromatic
laser beam, initially in a TEM00 mode, through a medium
with a background index of refraction n0. Embedded in
the medium are atoms or molecules with two energy lev-
els connected by an electric dipole transition, the frequen-
cy ~, of which is nearly equal to the laser frequency. To
cast the problem in terms of propagating waves, one be-
gins with Maxwell's equations; makes the paraxial ap-
proximation V(V.E)=0, which amounts to assuming
that all wave vectors make no more than a small angle
with the original axis of propagation; assumes a unique
helicity (0 or +1) for the propgating field and the induced
polarization; introduces slowly varying envelopes for the
field and the polarization; and derives equations of
motion for the envelope functions. ' The resulting
equation of motion for the field envelope F is, in Gauss-
ian cgs units,

2~k(
E(g,z+5z, t')=E(g, z, t')+6z, P(E(g, z, t')) .

n0

(2.4)

Using this approximation, the field at z+6z is obtained
by multiplying the polarization by a small constant and
adding it to the field at z.

In the rotating-wave approximation for a system with a
ground state and one excited level interacting via an elec-
tric dipole transition with an external, classical, time-
varying field

~E (rT, z, t') ~cos[ —toI t'+ P(rr, z, t')]

(where the complex field envelope

E (rz. ,z, t') =
~
E (r T,z, t') ~exp[i/(rr, z, t')]

is supposed to vary slowly on the time scale of the period
2m/co, ), the time-dependent Schrodinger equation takes

orm26, 38,46

2~k——VT E(rr, z, t')= P(E(rr, z, t')), (2.1) ~&0 pE*(rT z
(2.&)

c}

az
1 E(g,z, t')=

2k(r,

2~k(
P(E(g, z, t')) .

n0

where the polarization envelope P is a functional of the
electric field. ' Propagation occurs in the +z direc-
tion; k(=co(n0/c =2~n0/k, where co( is the laser fre-
quency and k is the vacuum wavelength; rr is the trans-
verse coordinate; t' is the retarded time, t'=t —n0z/c;
and VT is the transverse Laplacian. Assuming cylindrical
symmetry, we define a dimensionless radius g = r /r„
where r, is an arbitrary characteristic radius. In terms of
the dimensionless radial coordinate g, Eq. (2.1) becomes

Bc, pE (rT, z, t')
C0+16C )3t' 2A

(2.6)

where 6 is the detuning of the laser frequency from reso-
nance, A=~( —co„, p is the matrix element of the dipole
operator; and c0 and ci are the probability amplitudes of
the ground state and excited state, respectively. The
complex polarization is P =2iNpc oc, . Equations (2.5)
and (2.6) are equivalent to the undamped optical Bloch
equations. The complex polarization is related to the
Bloch vector components u and v by the equation
P =iNp(u iv)—

(2.2) III. NUMERICAL METHOD

The Fresnel number is given by F =~n0r /kL, where
A, /no is the wavelength in the medium, L is the propaga-
tion distance, r =ao(21n2)' is the radius half-
maximum, and a0 is the half-width 1/e point of the inten-
sity. If the Fresnel number is much greater than one then
the nonlinear interaction dominates the transverse
effects. ' ' In this case, the transverse Laplacian, which
is responsible for diffraction and self-lensing, can be
neglected and the equation of motion for the field en-
velope in cylindrical symmetry becomes

2~k(
E(g, z, t')=, P(E(g, z, t')) .

az n0
(2.3)

This equation describes nonlinear propagation under the
assumption that the propagation can be represented by a
plane wave over small annular shells, where the initial
field strength for each shell depends on the radius.

If the interval 6z is small enough that the polarization
may be treated as constant, then the annular-plane-wave
equation (2.3) can be linearized, (3.2)

A pseudospectral '" method is used to propagate the
field. In this method, a Hankel transformation of Eq.
(2.2) converts the transverse Laplacian in cylindrical sym-
metry to an algebraic quantity, resulting in a first-order
linear difterential equation in z which is propagated using
a midpoint-trapezoidal predictor-corrector. The source
term is the Hankel transform of the polarization, which is
most conveniently calculated by solving the time-
dependent Schrodinger equation using the physical (not
the transformed) field. A convolution of the source term
is not practical in this case because the polarization is re-
lated to the solution of a set of coupled differential equa-
tions. Therefore, at each stage in the propagation, the
propagated Hankel field is transformed into physical
space, the polarization is calculated, and the resulting po-
larization is Hankel-transformed to act as the source
term in the transformed propagation equation.

A Hankel-transform pair of order zero is defined as

f(A, ,z, t')= f J,(AQ)f(g, z, t')/de, (3.1)
0

f(g, z, t')= f J,(kg)f(k, z, t')Ader,
0
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where a circumflex has been used to denote the
transformed function and the independent variables z and
t' are shown explicitly. Applying the Hankel transforma-
tion to Eq. (2.2), one obtains

k2
+ E(k, , z, t') =R(E(g, z, t')), (3.3)

2k(r,

where R =2~kIP/no is used to condense the notation.
Making the transformation

M

f(Qy, ,z, t') = g f (Qx, , z, t')exp[ —(y, —x, )/2]

M —1

X g (
—1) L (y;)L (x )w(x, ),

(3.12)

which can be evaluated as the real-matrix —complex-
vector product

E(k, z, t')=S(k, z, t')exp( —i Az/2. k)r, )

reduces Eq. (3.3) to

(3.4)
M

f(Qy, , z, t')= g Bjf(Q xz, t'),
j=1

(3.13)

S(k, , z, t')=R(E(g, z, t))exp(il, z/2krr, ) .
az

(3.5)

Denoting the z-step size of the finite-difference algorithm
by h and defining I =exp( —ik h/2klr, ), we obtain the
finite-difference equations for propagation by the
midpoint-trapezoidal method,

predictor: E„+,=E„,I + 2hR (E„)I (3.6)

E '„,= I"[E„+ohR(E„o)], (3.8)

(3.9)

are used to provide the starting values required for (3.6)
and (3.7). The midpoint-trapezoidal method was chosen
because it combines acceptable accuracy with currently
attainable storage requirements.

The Hankel transformation is performed using a nu-
merical formulation based on Gauss-Laguerre quadrature
which was derived by Coffey, Lax, and Elliott. The
Bessel function in Eqs. (3.1) and (3.2) can be expanded in
terms of the generating function

M —
1

Jo(kg)=2exp[ —(g +A. )/2] g ( —1) L (A, )L (g~) .
m=0

(3.10)

Equation (3.10) would be exact except that the infinite
summation limit has been replaced by M —1 for numeri-
cal evaluation. The Guass-Laguerre quadrature formula
is given by

x e dx xj w xj
j=1

(3.1 1)

where the tx I are the abscissas of the Laguerre polyno-
mial of order M and the I w(x )] are the weights. This
integration formula is exact for all polynomials of order
~ 2M + 1. The substitutions x =g and y = A, convert
the Hankel transformation given by Eq. (3.1) to

corrector: E„+,=E„I + —[R (E„+
&
)+R (E„)1],

2
(3.7)

where a bar has been used to denote a predicted function.
The Euler predictor and iterated trapezoidal corrector,
respectively,

E (Qx, , O, t') =Eoexp
2x, r,

2ao2
exp

t 2

272
(3.14)

where we have assumed a focused beam which is purely
real at the entrance to the media and where ao is the
half-width l/e point of the intensity. The analytic Hank-
el transform of Eq. (3.14) is

2ao
E(+y, , O, t') =ED exp

2y;ao
exp

2r

2

272

(3.15)

From Eqs. (3.14) and (3.15) it is apparent that the physi-
ca1 and Hankel fields are identical if r, =ao. Since the
numerical grid is fixed by the square root of the abscissae
of a Leguerre polynomial, the ratio r, /ao determines the
grid resolution of the field in transform space versus
physical space. During nearly resonant propagation, the
Hankel field spreads out while the physical field self-
focuses (if 6)0) and develops radial oscillations. It is
therefore appropriate to make r, somewhat smaller than

where f may represent either the field or polarization en-
velope. Because of the symmetry of Eqs. (3.1) and (3.2),
Eq. (3.13) may be used for both the Hankel transforma-
tion and its inverse. The constant matrix B is calculated
once accurately and stored for later use. '

This method of calculating the Hankel transform im-
poses a limit on the z-step size of 6z ~ 2k&r, /y, , „ in order
to minimize leakage into higher modes. In practice, ex-
cept for the most weakly nonlinear systems, the magni-
tude of the source term determines the z-step size by the
requirement that the field not change appreciably in one z
step. Although the magnitude of the source term is not
expressible analytically and changes during propagation,
the approximate magnitude can be obtained by evaluat-
ing the adiabatic approximation. ' ' ' ' ' The standard
technique of reducing step size until the results converge
was used to verify consistency with this dynamic cri-
terion for z-step size.

Performing a numerica1 spectral transformation intro-
duces several types of errors, namely, roundoff; aliasing,
and Gibbs's phenomenon. For any spectral method, an
analytic transform of the field should be used to start the
propagation. This avoids introducing the aforemen-
tioned errors into the initial field, since they would other-
wise propagate and be amplified. The initial field, Gauss-
ian in time and radius, is
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ao in order to give adequate grid resolution in physical
space.

During propagation, we are primarily concerned with
roundoff error in the Hankel transformation because the
Gaussian radial profile of both the field and the polariza-
tion makes aliasing and Gibbs's phenomenon negligible.
Roundoff error is a problem for large values of the radial
coordinate, where the field should fall off exponentially.
At large radii, the unsmoothed physical field is composed
entirely of roundoff error from the Hankel transforma-
tion. Since this error has random sign over the variable
t', the error is amplified by the finite-difference solution
for the polarization. Physically, over the range of param-
eters we use, the field should remain Gaussian in the
transverse dimension at large radii. This condition is en-
forced by choosing a radial coordinate where the field
still has appreciable magnitude and using the parameters
of the original field along with the complex amplitude at
the chosen coordinate to extrapolate the field:

2r,E(+x, , z, t')=E(+x;, ,z, t')exp (x, ,
—x, )

2a0

(3.16)

The transformation from the physical polarization to
the Hankel polarization also suffers from roundoff error.
In this case, the effect is not drastic since the polarization
changes the propagating field only slightly in one z step.
However, this error does accumulate after several propa-
gation steps. To filter the error, we multiply the Hankel
field every five z steps by a function that is approximately
unity out to a chosen radial coordinate and then rapidly
and smoothly decays to zero. Such a function is

1

1+exp[d(Qx, —Qxo) j

where d is the decay constant and Qxo is the coordinate
where the function has fallen to one-half.

In order to define the role of the transverse coupling
which is responsible for diffraction and self-lensing, a
second propagation program was written for the
annular-plane-wave approximation, in which transverse
coupling is excluded, Eq. (2.3). The field was propagated
by the midpoint-trapezoidal predictor-corrector method
in physical space rather than in transform space.

The numerical method used to calculate the polariza-
tion was presented in Ref. 40. This method is based on a
multistep finite-difference method developed by Chu and
Cantrell for accurately solving differential equations
with imaginary eigenvalues. Many well-known methods
for solving systems of ordinary differential equations are
actually unstable for equations with purely imaginary ei-
genvalues, such as the time-dependent Schrodinger equa-
tion, Eqs. (2.5) and (2.6). ' Reference 40 also details
techniques used to handle the improper initial conditions
and the requirement of adiabaticity. A requirement for
adiabaticity is ~E/E

~
&& ~b, ~, which was met in Ref. 40 by

adding a small constant field, called a pedestal, to the
time-varying field. In this work we gave the pedestal a
Gaussian transverse profile and increased the number of

IV. BLOCH-VECTOR BEHAVIOR

In the nearly adiabatic regime, the Bloch vector
precesses in a narrow cone about the slowly evolving
torque vector in Bloch space. The half-opening angle a
of the cone of precession is an asymptotically decreasing
function of ~b, (,r, corresponding to an asymptotic ap-
proach ' to the adiabatic limit in which the transition
amplitude between the dressed states is zero and no new
frequencies can be generated. In the adiabatic limit, ' '-
the half-opening angle is zero; the adiabatic polarization
is due solely to the time evolution of the torque vector.
Finite orders of correction to the adiabatic approxima-
tion, which improve the accuracy of the approximation,
can be derived. ' '" ' ' A second-order approxima-
tion to the polarization is given by

+P u'(2) iE 1 dE 2i pE
~~ 2 dt' g2~t 2

(4.1)

time points because the maximum generalized Rabi fre-
quency increases during propagation as the result of self-
focusing and self-steepening. To verify the accuracy of
the solution, we checked the condition 0.9999
& ~co~ + ~c

& ~

& 1.0001 at the end of each z step.
In as complex a calculation as this, questions inevitably

arise about the correctness of a computer program that is
intended to solve a given set of equations. We have
checked the correctness of our program by comparing
numerically computed free-space propagation with the
analytical result; by comparing results obtained with our
subroutine for the solution of the time-dependent
Schrodinger equation with known analytical results; by
hand calculation of selected points in the first step of
propagation, and by a detailed examination of the com-
puted field after propagation as described in Sec. V. The
polarization subroutine used to obtain the results of this
paper also produces the same results in time-dependent
test cases in a completely independent propagation pro-
gram based on Drummond's algorithm.

The computational effort required by our Hankel-
transform propagation program depends on the parame-
ters of the system under study. If M is the number of ra-
dial grid points and N is the number of time points, then
M can range from 20 to 500 while N can range from
—100 (for free-space propagation) to several tens of
thousands for a highly nonlinear system. Five NXM
complex arrays are required to perform the Hankel trans-
formation and to propagate the field. The number of
floating-point operations required for a single Hankel
transformation is proportional to M N. Finally, the
number of z planes may range from —10 to —10 ~ For a
highly nonlinear system such as an atomic vapor driven
near resonance, the number of floating-point operations
required to model the propagation of a large-area pulse
through a physically interesting propagation distance
could exceed 10' . It is clear that a vectorizing super-
computer is required for all but the most weakly non-
linear systems. The single calculation described in Sec. V
required -6X10' floating point operations taking ap-
proximately 140 CPU hours on a Cray X/MP-24.
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where

W(2) =+ p'b, dE dE* 4P
g2gt 6

—1/2

(4.2)

is the second-order approximation to the inversion,
w =Ic,

I

—IcoI (where the negative sign corresponds to
an attenuator);

0'(t')=[6 +p IE(t')I'/fi ]' (4.3)

is the instantaneous generalized Rabi frequency, which
we take to be positive regardless of the sign of 6; and

p(, )
ip dE*, dE
4/2

(4.4)

is a purely real variable used to condense the notation.
Unfortunately, the adiabatic approximation and its
finite-order correction terms cannot adequately express
the precession of the Bloch vector about the torque vec-
tor. The precession is significant because it induces oscil-
lations in the polarization at the instantaneous genera1-
ized Rabi frequency.

The trajectory of the Bloch vector is confined to the
surface of the Bloch sphere. When the torque vector
changes direction very slowly compared with the rate of
precession, the tip of the Bloch vector rotates in a plane
defined by the intersection of the cone of precession with

the surface of the Bloch sphere. Further, the plane of ro-
tation must slowly change its orientation in order to fol-
low the torque vector. The projections of the trajectory
of the Bloch vector on the u and v axes give the in-phase
and quadrature components of osci11ation, respectively.
For nonresonant pulses, the oscillations in the polariza-
tion must have both in-phase and quadrature components
of amplitude because the plane of rotation is not parallel
to the v-w plane in Bloch space.

The radius of the circle defined by the intersection of
the cone of precession with the surface of the Bloch
sphere is sine. The projection of the circle onto the u-v

plane results in an ellipse whose major semiaxis is sina
and whose minor semiaxis is (IAIsina)/O'. ' The ampli-
tudes of the in-phase and quadrature components of the
real polarization are obtained by projecting the ellipse
onto the u and v axes. When viewed from the origin, the
Bloch vector rotates clockwise about the torque vector.
Incorporating the rotation and the amplitudes, the oscil-
lating portions of the Bloch vector components can be
written as

' 1/2
(b, /fl') +tanu„,= —sine cos(Q't'+g)
(6/0') +tan P

(4.&)

and

(6/0') +cot Pv„, =sina sin 0,'t'+ ) (6/0') +cot P

1/2

(4.6)

where g(t') is a slowly varying phase. The complex po-
larization, P =iN p( u —i v ), becomes

imp sinu
0

1/2 1/2
( 6 /0' ) +cot P ( 6 /0' ) + tail e'
(b, /0') +cot P (6/0') +tan P

(b. /0') +cot P
(b, /Sl') +cot P

1/2 (6/0') +tan'P
(b, /0') + tan2$

' 1/2
—i (0't'+jje (4.7)

where P0 is the contribution of the nonoscillating com-
ponents arising from the evolution of the torque vector.
For a purely real field, Eq. (4.7) reduces to

imp sine
0

e
—i (0't'+ p) (4.8)

As a function of the retarded time, the half-opening angle
for a nearly adiabatic pulse with sufficiently large pulse
area has three distinct regimes of behavior, but is rela-
tively constant within each regime. Note that the oscil-
lating components have constant amplitude only when
the field strength and phase are constant, as in the center
portion of an adiabatic square pulse.

While derived in the context of near adiabaticity, Eqs.

(4.5) through (4.8) apply to any system governed by Eqs.
(2.5) and (2.6) over any portion of the time axis for which
the torque vector changes direction slowly on the time
scale of the generalized Rabi period. For example, in the
sudden approximation Po = —ApEo/A'0' 2, (=n, sina
=pEo/A'0', and /=0 given the initial conditions
w0 = —1 and u 0

= v 0
=0 for an unchirped pulse.

Since the emitted field is proportional to the complex
polarization, the power spectrum of the emitted field in
the thin-sample approximation as a function of the detun-
ing Ace from the laser frequency can be approximated by

4~ k,'(5z) „,z
I(btv) = I P(t')e'~"" dt'

n4
0 OC

(4.9)

which yields spectral sidebands corresponding to the ex-
ponentials e -'" ' in Eqs. (4.7) and (4.8). From the
coefficients multiplying the exponentials, it is apparent
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that the sideband on the resonance side of the center fre-
quency is larger than the opposite sideband. Courtens
and Szoke rigorously derived the asymmetric spectrum of
the emitted field using a similar model in the adiabatic-
square-pulse approximation. ' However, it should be em-
phasized that the sideband asymmetry in the transient
spectrum is a result of the nonzero value of 6/0' and is
not a result of adiabaticity. Sideband asymmetry has
been predicted in the sudden approximation ' ' as well
as in the nearly adiabatic regime. ' Limiting cases of
Eqs. (4.7) and (4.8) include the high-Rabi-fre-
quency —small-detuning limit, where the sidebands are to-
tally symmetric, and the low-Rabi-frequency —large-
detuning limit, where a single resonant sideband ap-
pears. Equations (4.7) and (4.8) apply only to tran-
sient excitation; however, sideband asymmetry has been
predicted in the steady-state spectrum for partially
coherent excitation where transiency is continually reini-
tiated by phase fluctuations. ' ' The sidebands generated
by precession of the Bloch vector correspond to temporal
oscillations and should not be confused with sidebands
caused by simple reshaping of the pulse.

A system starting in the ground state in the infinite
past and returning to the ground state in the infinite fu-
ture defines an eigenvalue problem for the pulse area
governed by the time-dependent Schrodinger equation (or
the undamped optical Bloch equations). For a non-
resonant Gaussian pulse, the pulse-area eigenvalues of
the time-dependent Schrodinger equation depend on
~b, ~~, but are less than the 2nn. bound-state eigenval-
ues ' of the cubic or nonlinear Schrodinger equation.
The preeminent position of the hyperbolic-secant pulse
shape in laser pulse propagation theory is partially due to
the fact that the pulse-area eigenvalues are equal to 2n~
for all values of detuning and time constant.

A typical trajectory of the Bloch vector for a temporal-
ly Gaussian pulse was calculated using the numerical
method presented in Ref. 40. The parameters for this
calculation were: detuning from resonance hv= 15 GHz;
time full width at half maximum (FWHM), 0.125 ns
(r=0.0531 ns); peak field strength Eo=47. 1 statvolts/
cm; pedestal, 9.42 X 10 statvolts/cm; dipole transition
moment p=8.49X10 ' statcoulombcm; and total pulse
area 0=50.4 (8.02X2m. ) rad. The detuning was made
small enough that the nonadiabatic effects would be visi-
ble in graphs. A perpendicular polar projection of the
numerical calculation of the trajectory is shown as a solid
line in Fig. 1. The dashed line is the projection of the tra-
jectory of the second-order approximation to the polar-
ization (4.1) divided by Np, so that it also is confined to
the surface of the Bloch sphere. At t ' = —~, the Bloch
vector is antiparallel to the polar (ui) axis. As the field
strength increases, the trajectory of the Bloch vector
nearly coincides with the second-order approximation.
Significant departure from the latter approximation
occurs as the instantaneous pulse area,

(4.10)

increases to the point where it is a significant fraction of
the first pulse-area eigenvalue of the time-dependent
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FIG. 1. Perpendicular polar projection of the trajectory of
the Bloch vector. The solid line corresponds to the numerical
solution of the time-dependent Schrodinger equation. The
dashed line is the second-order approximation. The starting
point for the trajectory is the polar (w) axis located at (0,0) in
the figure. The arrowheads define the direction of the trajecto-
ry.

Schrodinger equation (undamped optical Bloch equa-
tions). As the field strength continues to increase, the
pulse area increases at a faster rate and the Bloch vector
begins to precess rapidly about the torque vector. The
precession induces oscillations in the polarization, which
we call "central oscillations, " as shown at the bottom of
Fig. 1. The number of central oscillations is one less than
the number of pulse-ares eigenvalues that are less than
the total pulse area. Since the central oscillations have
components of amplitude a1ong both the u and U axes, the
sidebands resulting from these oscillations are asym-
metric. The oscillations that occur in the tail of the
pulse, which are also due to precession of the Bloch
vector, behave very differently than the centra1 oscilla-
tions. The amplitude of the tail oscillations exhibits zeros
when the total pulse area 8 is a pulse-area eigenvalue.
If the total pulse area is not a pulse-area eigenvalue, then
the tail oscillations are responsible for an irreversible
transfer of energy to the medium as "radiation. "
After the pulse has passed, the Bloch vector precesses
indefinitely about the inversion axis so that the tail oscil-
lations continue indefinitely as a constant-amplitude rota-
tion about the pole, yielding a single resonant sideband
since the in-phase and quadrature components of the os-
cillation have equal amplitudes. Exact solutions have
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been derived for the behavior of the tail oscillations in the
low-Rabi-frequency limit [w (t') = —I]. In this limit,
the imaginary part of the polarization is equivalent to the
response of a simple harmonic oscillator to a Gaussian
forcing function. In fact, any single-peaked time-
dependent forcing function that begins at t' = —~
should cause a simple harmonic oscillator to begin oscil-
lating at the temporal peak of the forcing function.

An additional type of oscillatory behavior occurs when
a pulse is started at a finite time. Crisp-' has derived an
exact solution in the low-Rabi-frequency (simple harmon-
ic oscillator) limit for the y-distribution pulse E ( t )

=Eot' exp( —t'/r)!r with t' ~ 0. These "initialization
oscillations" have been deliberately excluded from our
calculations by using the adiabatic approximation as the
initial condition.

It is worthwhile to consider the results of this section
in the context of the ubiquitous sudden approximation.
We assume P(t')=0 and the initial conditions wo= —1

and uo = vo =0. In the low-Rabi-frequency limit, initiali-
zation oscillations begin at t =0 and continue indefinitely
at the detuning frequency with constant amplitude. For
nonzero Rabi frequencies, there are no initialization os-
cillations; central oscillations at the generalized Rabi fre-
quency begin at t'=0 and continue until the pulse is
switched ofF'. For the square pulse, the central oscilla-
tions are known as Rabi oscillations, resonance Auores-
cence, or optical nutation, depending on the context. If
any population remains in the excited state when the
pulse is switched oA, then tail oscillations at the detuning
frequency continue indefinitely. If there is no population
in the excited state, then the amplitude of the tail oscilla-
tions is zero and the total pulse area is a pulse-area eigen-
value. Pulse-area eigenvalues for the sudden approxima-
tion are 2n~pEO/A'0' since the system is returned to the
ground state at 0't'=2n~. For square-pulse excitation,
the tail oscillations correspond to the free-induction sig-
nal. This is not true for a general pulse shape, because
the tail oscillations can begin at any local maxima of the
field strength and are associated with the inertia of the
system (to this point, we have considered only single-
peaked functions for the field strength). The field
strength can have significant magnitude, and therefore
the oscillation s cannot be considered to be "free."
Square-pulse excitation is not considered further because,
as argued in the introduction, it is not physical for the
propagation of a laser pulse.

The diverse types of Bloch vector behavior are
significant generalizations of Rabi oscillations and optical
nutation. A11 of the oscillatory types of behavior are cap-
able of causing population pulsations, the amplitude of
which depends on the cone opening angle and the angle
between the torque vector and the inversion axis. Popu-
lation pulsations are most significant where the field
strength is largest and therefore will be dominated by the
central oscillations when the pulse area is large enough
for this type of behavior to occur.

It should be noted that only the temporal behavior of
the Bloch vector has been considered in this section.
Physically important phenomena also depend on the
transverse and longitudinal position in the medium.

V. LASER-PULSE PROPAGATION

In this section we present the results of numerical
propagation of a laser pulse that is initially Gaussian in
time and radius. We used the following parameters: res-
onance frequency v=509 THz (wavelength A, =589 nm);
detuning from resonance bv=60 GHz (3k=0.0694 nm);
spot size a o =0.0186 cm; radial scaling constant
r, =ao/5; time FWHM, 0.125 ns (r=0.0531 ns); peak
field strength Eo =47. 1 statvolts/cm (intensity = 265
kW/cm ); on-axis pedestal, 9.42X10 statvolts/cm; di-
pole transition moment p =8.49 X 10 ' statcoulomb cm;
on-axis total pulse area 8= 50.4 (8.02 X 2') rad; number
density N =4X10' cm; background index of refrac-
tion n o

= 1; longitudinal step size, 9.375 X 10 cm;
time-step size, 25.4 fs; number of Gauss-Laguerre basis
functions, 375. The resonance frequency and dipole mo-
ment are approximately those for the (3 S~~q —3 J 3q2)
Dz transition of Na. The focused Gaussian field incident
on the attenuating medium is shown in Fig. 2.

The Fresnel number is large for appropriately small
propagation distances, regardless of the magnitude of any
other parameters. Therefore, in the initial stage of propa-
gation, each annulus evolves in accordance with the
uniform-plane-wave approximation. "' '" In order to un-
derstand the basic phenomena occurring during propaga-
tion, it is useful to consider the linearized annular-plane-
wave equation (2.4), which is equivalent to solving the
annular-plane-wave equation (2.3) with an Euler-
predictor numerical method. In this method, the com-
plex polarization is calculated from the known field at the
current layer of the medium, multiplied by a small con-
stant proportional to the longitudinal step size, and add-
ed to the known field to obtain the field at the succeeding
layer of the medium. Considered as a numerical method,
the Euler predictor is weakly unstable and is not particu-
larly accurate. However, it is useful for a qualitative un-
derstanding of the mechanisms by which many nonlinear
processes modify the propagating field.

At the entrance to the medium, the field is purely real.
The second-order approximation to the polarization
given by Eq. (4. 1) reduces to a symmetric, purely imagi-
nary portion and a smaller, antisymmetric, purely real
portion for the Gaussian temporal profile. Applying the
Euler predictor by adding the symmetric, purely imagi-
nary portion of the polarization, multiplied by a small
constant, to the field induces a temporally and radially
dependent phase that is approximately a scaled image of
the intensity of the field. The scaled image is concave
downward for positive detuning but would be concave
upward if the detuning were negative. The real part of
the polarization is proportional to the derivative of the
field and is positive before the peak and negative after the
peak. The Euler predictor also permits us to see that
self-steepening ' ' occurs because the field strength is
increased before the peak and decreased after the peak.

As self-phase modulation causes the field to become
complex, the polarization acquires additional phase-
modulation and reshaping terms that are treated in more
detail in Appendix A, where we use the second-order ap-
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tarded times, leading to group-velocity dispersion and
thereby enhancing the self-steepening process that began
at the entrance to the medium. ' ' Self-steepening is
further amplified by the change in the temporal variation
of the field strength as the pulse propagates. Self-
steepening shifts the temporal peak forward of the cen-
troid of the pulse area, the shift being less pronounced as
the radius increases because the nonlinear response di-
minishes as the field strength decreases.

Initially the amplitude of the oscillations in the polar-
ization is an asymptotically small function of
Therefore self-oscillation encoding begins slowly, even
more slowly than self-steepening and self-focusing, ap-
parently having little e6'ect on the shape of the pulse.
However, like the processes that amplify self-steepening
and self-focusing, the processes that amplify self-
oscillation encoding become more important throughout
the initial stages of propagation. Eventually the corn-
bination of self-steepening, self-oscillation encoding, and
self-phase modulation make the pulse sufficiently nonadi-
abatic for self-oscillation encoding to begin to play a
significant role in pulse reshaping. At the leading edge of
the pulse, the solitary-wave precursors add coherently in
z. Because pulse reshaping and self-focusing alter the in-
stantaneous generalized Rabi frequency along the pulse,
the degree of coherence decreases along the temporal
length of the pulse. As a result, pulse breakup begins as a
small ripple in the magnitude at the leading edge of the
field and in the near-axis region where the field strength is
largest. The magnitude of the field at z =2.81 mm (300 z
steps) is shown in Fig. 5.

As pulse breakup continues, the region in which the
ripple in the magnitude of the field is perceptible spreads
to larger radii and later retarded times while the depth of

modulation increases in the forward, nearly axial region
where pulse breakup began. The magnitude of the field
at z =3.75 mm (400 z steps) is shown in Fig. 6 while Fig.
7 shows the truncated temporal-spatial spectrum (time-
Fourier transform of the Hankel field) at the same propa-
gation distance. Note that the lower sideband frequen-
cies are shown on the right side of the temporal-spatial
spectrum to expose detail ~ Pulse breakup is a temporal
oscillation which appears as Rabi sidebands in the tem-
poral spectrum. There are no appreciable radial oscilla-
tions in Fig. 6 so that the spatial spectrum is concentrat-
ed at small transverse wavenumbers.

Because the field strength decreases in the radial di-
mension, as the radius increases it takes more retarded
time for the integrated pulse area to reach that needed to
form a solitary wave. Therefore temporal retardation of
the leading edge of the pulse increases with radius, result-
ing in a curved pulse front in the time-radius plane. Simi-
larly, the spacing between solitary waves increases with
radius. This is the analog of Fig. 3 for the propagation
problem. The curvature is further enhanced during prop-
agation because the field is more intense near the axis and
therefore propag ates faster and because more self-
steepening occurs near the axis. Since pulse breakup has
extended to large radii, at which the sidebands are quite
asymmetric, the lower sideband grows more than the
upper sideband and at significantly large transverse spa-
tial wavenumbers because of the curvature of the solitary
waves in the time-radius plane. The magnitudes of the
field and the temporal-spatial spectrum at this stage of
propagation, z =5. 16 mm (550 z steps), are shown in
Figs. 8 and 9, respectively. The temporal-spatial oscilla-
tions in the complex field result in a frequency-shifted,
angularly displaced peak in the temporal-spatial spec-
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reasonably interpreted in terms of self-induced tran-
sparency, generalized for nonresonant excitation, and for
a variation of the initial field strength in the transverse
dimension.

Finally, we consider the geometrical interpretation of
noncollinear phase matching in the retarded-time —radius
plane. Phase matching is required for constructive in-
terference. In the case of resonant, degenerate four-wave
mixing, the magnitude of the field oscillates in the radial
dimension, but not in time. In the nonresonant nonde-
generate case, the magnitude of the field appears like a
waNe superimposed on the basic pulse shape as a result
of collinear, as well as noncollinear, phase matching. Our
results can be interpreted as coherent sideband genera-
tion and amplification (collinear wave mixing) with a
transverse variation in the generated frequencies and in-
dex of refraction. In this model, noncollinear phase
matching is a result of geometry. We conclude that a
fourth parametric wave at the upper sideband frequency,
which has never been observed in the conically emitted
radiation (for a one-photon transition), ' is not required
for noncollinear phase matching.

VI. COMPARISON WITH EXPERIMENT

In this section we compare our physical model of coni-
cal emission with known experimental results. Previously
performed experiments cannot be directly simulated be-
cause computer resources dictate the magnitudes of the
parameters that can be considered. In addition, the laser
pulses employed in the experiments performed so far
were multimode and had an undesirably large temporal
noise modulation. In Appendix B it is shown by scaling
the equations of motion that the pulse area and b ~ are in-
variants. The total number of time points required to fol-
low the temporal oscillations in the field is proportional
to the maximum generalized Rabi frequency multiplied
by the pulse length. In a loose sense, this can be related
to the pulse area. The amplitude of the Rabi oscillations
in the polarization relative to the total polarization varies
inversely with the product ~b, ~r. As ~h~r increases, more
computational z steps and a higher density of radial
points are required because of the longer propagation dis-
tance and the larger amount of self-focusing that occurs
before pulse breakup. To deal with these computational
difficulties, Mattar and Newstein have developed spatial
and temporal rezoning techniques for finite-difference
methods which create a higher density of computational
grid points in the region where the field is strongest. We
have not implemented these techniques because they are
not directly applicable to our Hankel algorithm.

A result of the practical restriction to a short pulse
length is that very little of the pulse is near the maximum
generalized Rabi frequency in our calculations. As a re-
sult, the temporal frequency at which sidebands first ap-
pear is near the detuning frequency rather than the max-
imum genralized Rabi frequency. Parametric studies of
uniform plane-wave propagation of a Gaussian pulse with
the same parameters that were used in the previous sec-
tion except for a larger time FWHM show that for longer

pulses sideband generation begins near the peak general-
ized Rabi frequency. In addition, the temporal frequency
of conical emission should be larger if more self-focusing
were to occur prior to beam breakup. Conical emission
at a frequency significantly less than the peak generalized
Rabi frequency was observed by Burdge and Lee."

The paraxial approximation and the assumption of cy-
lindrical symmetry also hinder a direct comparison be-
tween computer simulation and experiment. Cylindrical
symmetry restricts the pulse to a single symmetric axial
mode, whereas experimental pulses are multimode and
exhibit spatial breakup into multiple filaments. The in-
sensitivity of the cone angle to field strength ' is most
likely a result of spatial breakup into several focusing re-
gions.

Doppler broadening and damping have deliberately
been excluded from our calculations in order to define the
smallest set of physical phenomena that can produce con-
ical emission. While Harter, Boyd, and co-workers '

based their analysis on an index of refraction calculated
in the collisional steady state, Harter ' noted that the
conical emission was qualitatively the same at low atomic
densities where the vapor was not collisionally broadened
and where the adiabatic model should therefore be more
appropriate. In our mode] a moderate amount of damp-
ing causes the oscillations in the polarization to decay
with time. Pulse breakup and conical emission proceed
as described in Sec. V. Moderate damping has somewhat
the same effect as the partial coherence of successive Rabi
oscillations in the undamped case. Even near the steady-
state limit, some transient efFects will occur which accu-
mulate and are amplified during propagation, just as we
observe nonadiabatic effects near the adiabatic limit
which accumulate and are amplified during propaga-
tion. '

Harter, Boyd, and co-workers ' noted that there is a
vapor-density threshold below which one observes side-
band generation but not conical emission. The nonlinear
interaction is directly proportional to the vapor density
so that diffraction dominates the nonlinear interaction in
a vapor of sufficiently low density. In this case diffraction
acts to prevent conical emission by stripping away the
edges of the beam. Temporal pulse breakup is allowed to
progress, resulting in Rabi sidebands. Kleiber, Burnett,
and Cooper demonstrated that background laser
fluorescence is effective in promoting sideband generation
in weakly nonlinear systems. In the presence of noise, the
amplitude of the oscillations in the polarization increases
because the approach to the adiabatic condition is no
longer an asymptotic function of ~b, ~r 'Fluoresc. ence
can provide the initial source of noise which is amplified
at the sideband frequency.

In an important series of experiments, Harter and
Boyd studied the effect of varying the vapor density and
detuning on the characteristics of the conical emission.
The parameter that was studied was the minimum fila-
ment diameter d;„, which scales as (b, /N)'~ in terms
of the vapor density and detuning. ' The larger the fila-
ment diameter, the weaker the nonlinear term and the
greater the propagation distance required for effective
self-oscillation encoding, and, therefore, the greater the
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beam-breakup distance. For large-diameter filaments,
Harter and Boyd observed conical emission in a long va-
por cell but not in a short cell. For moderate-diameter
filaments, conical emission was produced along the entire
length of the cell. For the smallest-diameter filament,
which according to our theory should have had the shor-
test beam-breakup length, conical emission was generated
only in the initial portion of the cell. After the cessation
of conical emission, no further off-axis emission was ob-
served and, at the end of the cell, only radiation at ihe
laser frequency was present in the filament. Harter ' not-
ed that "This self-trapped filament has qualitaties similar
to the solitons observed by Mollenauer in optical fibers. "
We propose that conical emission proceeds according to
the description in Sec. V until quenched by diffraction
near the self-focus. The solitary waves have diff'erent ve-
locities and spread out, so that the sideband frequency
becomes too low to be differentiated from the laser fre-
quency. Further, the diffractive stripping of the edges of
the beam leaves only the central portion of the transmit-
ted pulse consisting of nearly straight, well-separated soli-
tary waves so that the solitary-wave nature is readily ob-

servablee.

In the general case the experimental identification of
the solitary waves is difficult because of their curvature.
Experimental observation of the solitary waves will re-
quire temporal resolution adequate to resolve the solitary
waves ( —10 ps under the conditions of our calculation)
and near-field spatial resolution adequate to avoid averag-
ing over the entire diameter of the beam exiting from the
atomic vapor as in some previous time-resolved measure-
ments. The streak-camera measurements of Kupecek
et al. ' fulfill these conditions.

In our physical model, the angle of conical emission re-
sults from (1) the variation of the input field strength in
the radial dimension; (2) whole-beam self-focusing prior
to beam breakup, which increases the variation of the
field strength in the radial dimension; (3) whole-beam
self-focusing after beam breakup has begun, which
compresses the solitary waves towards the axis; (4) local
self-focusing and diff'raction among the solitary waves; (5)
radial variation in pulse velocity and self-steepening prior
to beam breakup; and (6) radial variation in pulse velocity
after beam breakup has begun. This categorization is
somewhat arbitrary as all the processes are interrelated.
However, it provides a basis for comparison with the
Harter-Boyd theory by separating whole-beam self-
focusing, which can be modeled with an intensity-
dependent index of refraction, ' "' from other process-
es.

In the Harter-Boyd model, the cone angle is given by
the expression

(6.1)

where k is an adjustable constant of proportionality. The
same dependence on the nonlinear index of refraction was
derived by LeBerre-Rousseau, Ressayre, and Tallet us-

ing a different physical model. In whole-beam self-

focusing the diameter of the beam at a specific propaga-
tion distance is proportional to (5n) ' (Ref. 70). In our
model of conical emission, the cone angle varies inversely
with the beam diameter so that the portion of the cone
angle attributable to whole-beam self-focusing has the
same dependence on 5n as Eq. (6.1). On this basis, the
cone opening angle is expected to decrease as the detun-
ing increases and to increase as the vapor density
increases. Both of these effects are mell

6 10, 13, 14, 16, 19

Once the field amplitude develops temporal-spatial os-
cillations, the intensity-dependent index of refraction in-
duces temporal-spatia1 oscillations in the phase with a
smaller depth of modulation. This causes local self-
focusing and diffraction among the solitary waves be-
cause the transverse energy flow due to the transverse
derivative of the phase redistributes energy in a manner
analogous to coherent resonant self-focusing.

Transverse energy flow is not the only contributor to
the cone angle. There is a significant cone angle even
without transverse coupling as demonstrated by Fig. 15.
The latter contribution to the cone angle depends on both
the initial variation of the field strength at the entrance to
the medium and the variation of the intensity-dependent
pulse velocity in the radial dimension.

The observed shift of the transmitted laser frequency to
the blue and the spatial broadening ' of the central
spot have been previously attributed to self-phase modu-
lation. '' This is borne out by Figs. 7, 9, and 11, which
show that the temporal frequency is pulled to the blue
and the spatial frequency spectrum is broadened under
propagation.

The unusually broad spectral width of the conical
emission noted by most experimentalists" ' '' is a result
of the variation of the generalized Rabi frequency in time
and radius. Contributions from a number of focusing re-
gions with diff'erent field strengths would result in still
further broadening. The observed asymmetry of the side-
band has been attributed to incoherent reabsorption by
the vapor, ' which was not included in our model. Fi-
nally, since the spatial and temporal frequency of conical
emission vary with propagation distance, we would ex-
pect contributions from a range of frequencies even given
only a single focusing region. The latter effect has been
observed as an angular distribution of frequencies within
the cone. ' ' '

The sideband asymmetry produced by self-oscillation
encoding changes sign with the detuning. We would
therefore expect to see conical emission at the upper side-
band frequency for a self-defocusing pulse. However, for
a pulse undergoing self-defocusing as mell as diffraction
the decay in field strength delays, and may even prevent,
pulse breakup. If pulse breakup occurs after significant
lateral spreading, the spatial frequency may be too low to
permit conical emission to be distinguished from beam
broadening. However, for a two-photon transition in a
three-level system, where self-defocusing due to a red de-
tuning of one transition is off'set by self-focusing due to a
blue detuning of a second transition, we would expect to
see conical emission at both upper and lower sidebands,
an eff'ect which has been observed experimentally. '
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APPENDIX A

In this appendix we show in detail how the transient
nonlinear interaction and diffraction determine the phase
surface and reshape the field. Both self-focusing and
self-steepening can be analyzed semiquantitatively by ex-
amining the modulated phase front produced by optical
nonlinearity and diffraction, in the limit in which the in-
cident pulse is sufficiently adiabatic for Eq. (4.1) to be val-
id.

The complex field can be expressed as a positive magni-
tude multiplied by a phasor

E(r, z, t')=B(r, z, t')e'~'"" ', (A 1)

where c~(r, z, t') = ~E(r, z, t')
~

and t' is the retarded time.
The propagating field can then be written as

E(r, z, t) = 6(r, z, t')e'&'"'", (A2)

where

g(r, z, t) =ktz —
co&t +P(r, z, t') . (A3)

In the calculation of the phase, ki and a~t are fixed; only P
varies. It is useful to consider the contributions of optical
nonlinearity and diffraction separately, replacing the vari-
ation of P(r, z, t') as calculated numerically by a variation
due to the approximate nonlinear response and to the
process of diffraction. In this model, the phase of the
propagating field is

where

i(r(z) = tan
Z

k(ao2
(A5)

The index of refraction can be written as

n =(I+4try)'~'= I+2try (A6)

provided that 4~g && 1. The latter inequality can be
satisfied only when no=1. For no= 1 the phase of the
complex field as a function of retarded time,

CO( Z
g(r, z, t) = n (r, z, t)z catt+ ~ z

——g(z),
c 2k&aosec [1((z)]

(A4)

CO(

P(r, z, t') = 2n. y(r, z, t')z
C

2kiaosec [g(z)]
(A7)

can be deduced from Eqs. (A3), (A4), and (A6).
The susceptibility is to be calculated from the expres-

sion for the second-order approximation to the polariza-
tion, Eq. (4.1). For almost any pulse of interest, the in-
verse square root in Eq. (4.2) can be approximated by the
first two terms of the binomial expansion. In this approx-
imation and for an attenuating medium, the second-order
susceptibility y(2) =P(z) /iE becomes

Np le
+(2)

p 6' dP dP i do'
dt' dt' c" dt'

2+2

2A 0'
d6
dt'

2

dP
dt'

2

2@2 dy 2+2irt2tt4it'4+it6+6 dP
d' 2+/A'

2

(A8)

Xp
(2)

1 p'c' i 6' 3i p'DP~

2g3g2 g2 P 2 g4g2

(A9)

The first term in Eq. (A9) is constant and will not be
considered further. The second term is an intensity-
dependent index of refraction and produces a non-
linearly-generated image of the intensity profile of the
pulse in the phase surface. The image is concave down-
ward for positive detuning and concave upward for
negative detuning. For a Gaussian pulse, 6/c~ is —t'/~ .
Therefore the third term in Eq. (A9) is responsible for
gain when t ' is less than zero and absorption when t ' is
greater than zero. For the approximate susceptibility
given by Eq. (A9), Eq. (A7) predicts a phase surface (as a
function of r and t', for a given z) that is simply the sum
of a positive (or negative) image of the intensity and the
parabolic phase front expected for propagation in free
space. Higher-order terms in the polarization make addi-
tional contributions to the phase surface.

in terms of the magnitude and phase defined by Eq. (A 1).
The susceptibility g(2), which is calculated using the adia-
batic approximation with a correction term, is not related
to g' ' in the expansion of the susceptibility in powers of
the electric field. Our approximate g(2 l

contains all

powers of the electric field.
Most of the interesting properties of the phase appear

at the entrance to the medium, where dgldt'=0 and Eq.
(A8) has a simpler form. Further, we assume

p Pa /5 A « 1 whjch js true for the ent jre time-radjus
plane, except possibly near the peak. This allows the first
two terms of the binomial expansion to be used in ex-
panding the generalized Rabi frequency. Neglecting
terms higher than first order in d c~ /dt', we obtain the ap-
proximate susceptibility
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~iNp 65n=
AA

(A 10)

The transverse dependence of the intensity-dependent
index of refraction 6n is responsible for whole-beam self-
focusing (or self-defocusing). ' ' ' From Eq. (A9), we
obtain the intensity-dependent index of refraction

edge will steepen when the detuning is negative. Later
calculations substantially altered this view when the
dispersion caused by self-phase modulation was intro-
duced into the analysis. Grischkowsky made a fully
coherent calculation of the group velocity using the adia-
batic approximation. The group velocity is calculated us-
ing the relationships

to first order. In early work, such a Kerr-type intensity-
dependent index of refraction was used to predict pulse
reshaping by an intensity-dependent pulse velocity.
This analysis predicts that the trailing edge of the pulse
will steepen when the detuning is positive and the leading

I

dk 1 d11+2'++ 27Th)
d cc) c dc'

(Al 1)

We use the second-order approximation for the suscepti-
bility to obtain

Vg

&p I
~

I p & '
2

2p'&'
g~i 3 2g2~i 6 P2

9@0 4g +29& 2P2y 2 12 2@2

2g2gr 6 P2

+O'6' 9~2+ 2P'
g4 g2

(A12)

For a nearly adiabatic pulse, only the unit term in the
braces is significant. In this approximation the more in-
tense parts of the pulse travel faster, so that the pulse un-
dergoes self-steepening. The higher-order terms amplify
self-steepening until an optical shock ' develops. The
higher-order terms then begin to act as limiters. Since
dgldt' is an odd function of b„self-steepe ni ng occurs in
the same manner on both sides of the resonance line to at
least second order.

The intensity-dependent pulse velocity does not pro-
vide an additional self-steepening mechanism in addition
to the gain and absorption described by Eqs. (A8) and
(A9). Rather, Eqs. (A8) and (A9) show how self-
steepening and pulse delay are manifested in the course of
numerical propagation. While an intensity-dependent
group velocity can be calculated based on the adiabatic
approximation, using the adiabatic polarization as the
source term in the wave equation results in a pulse that
travels at c/no. The higher-order terms in the polariza-
tion are necessary to effect self-steepening and pulse de-
lay.

BcCi
=161&C&+I ECO

a~
(B2)

2 2 2 Tp4aNw p u, r
C —lC OCi (B3)

2 1/2
PEp

Equations (Bl), (B2), and (B3) show that when the prob-
lem is stated in terms of the dimensionless independent
variables ~, g, and p and the dimensionless dependent
variable c, the answer is completely determined by the di-
mensionless constants (i) pEor /2', (ii) hr, and (iii)
Ac /4~@ cot~ Nr for the same form of pulse envelope.
Condition (i) requires a constant pulse area. Condition
(ii) requires that the angular velocity of the Bloch vector
about the torque vector in a coordinate system rotating
with the torque vector also remain constant. Conditions
(i) and (ii) can be combined to obtain the dimensionless
constants (iv) @F0/hei and (v) as follows:

APPENDIX B

Our graphical results can be applied to related prob-
lems and one's physical understanding can be enhanced
by scaling Schrodinger's equation and the paraxial wave
equation. Define a dimensionless time v.=t'/~, a dimen-
sionless field c=pE ~ /2A, a dimensionless radius
p=r/r, and a dimensionless length g=2~coINp ~ z/
ceno, where w is a characteristic pulse time and
r =ao(21n2)'~ is the radius half-maximum. Equations
(2.5, 2.6, and 2.1) become

Conditions (iv) and (v) require that the Rabi frequency
and the ratio of the generalized Rabi frequency to the de-
tuning frequency remain constant. Thus all frequencies
maintain a constant relationship to one another. Condi-
tion (iii) can be combined with the dimensionless length i)
to show that the Fresnel number (vi)

~rF=
(k/no)L

CO
=1K C)1 (B1)

where {A, /n p ) is the wavelength in the medium and
r =ao(21n2)' is the radius half-maximum, does not
change under rescaling.
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