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Petermann first predicted in 1979 the existence of an excess-spontaneous-emission factor in gain-
guided semiconductor lasers. We show that an excess spontaneous emission of this type, and also a
correlation between the spontaneous emission into different cavity modes, will in fact be present in

all open-sided laser resonators or optical lens guides. These properties arise from the non-self-

adjoint or non-power-orthogonal nature of the optical resonator modes. The spontaneous-emission
rate is only slightly enhanced in stable-resonator or index-guided structures, but can become very
much larger than normal in gain-guided or geometrically unstable structures. Optical resonators or
lens guides that have an excess noise emission necessarily also exhibit an excess initial-mode excita-
tion factor" for externally injected signals. As a result, the excess spontaneous emission can be bal-
anced out and the usual quantum-noise limit recovered in laser amplifiers and in injection-seeded
laser oscillators, but not in free-running laser oscillators.

I. INTRODUCTION

The conventional second-quantized analysis of spon-
taneous emission in a laser cavity or in any other system
involving interaction between atoms and electromagnetic
radiation leads to a general principle that the rate of
spontaneous emission from a collection of atoms into any
individual resonant-cavity or transmission-line mode will
always be exactly equal to the downward stimulated tran-
sition rate that would be produced in the same atoms by
a signal energy of one extra photon in the same elec-
tromagnetic mode. This principle can be used to derive
fundamental conclusions relating to thermal equilibrium,
blackbody radiation density, Johnson-Nyquist or thermal
noise in lossy linear systems, laser-amplifier noise figure,
and quantum-noise fluctuations in laser oscillators.

Petermann first predicted in 1979 a so-called "excess-
spontaneous-emission factor" or excess-noise factor with
a value greater than one extra photon per mode in gain-
guided semiconductor lasers. This prediction was ini-
tially controversial, since spontaneous emission at a rate
corresponding to more than one extra photon per mode
would seem to violate the accepted principle of
quantum-noise theory mentioned above. Moreover, ap-
plication of the same argument to passive or loss-guided
systems appears to predict an excess thermal noise in
such systems, in apparent violation of elementary ther-
modynamics.

These difticulties were resolved, at least for loss-guided
systems, in an excellent analysis by Haus and
Kawakami, who pointed out that such gain or loss-
guided systems also exhibit correlations between the
noise emission into different propagating modes. This is
in contrast to the familiar situation with power-
orthogonal normal modes, where the spontaneous emis-
sion into each mode is uncorrelated with the emission
into any other mode. Haus and Kawakami showed that
the correlations between emission into different modes in

the loss-guided case are just sufficient to recover the usual
blackbody radiation or Johnson-Nyquist thermal-noise
results in these loss-guided systems. Several other deriva-
tions of Petermann's excess-noise factor have also been
presented by other authors; ' most of these are re-
viewed in Haus and Kawakarni. An earlier discussion of
spontaneous emission in open resonators and its applica-
tion to laser amplifiers and oscillators, in much the same
spirit as the present paper, has also been given by
Henry. '

In this paper we demonstrate that an excess spontane-
ous emission rate per mode and also noise correlations
between the emission into different modes are, in fact, to
be expected in all open-sided laser resonators, optical lens
guides, and similar optical structures, exactly as predict-
ed by Peterrnann and by Haus and Kawakami for the
gain-guided case. These excess-noise properties have
nothing necessarily to do with gain or loss guiding, or
with wave-front curvature. They arise entirely from the
non-Hermitian and hence non-power-orthogonal or
biorthogonal nature of the transverse eigenmodes in such
structures. ' ' These excess-noise emission and mode-
correlation effects remain small (normalized values close
to unity or zero, respectively) in conventional stable opti-
cal resonators or index-guided systems. They become of
significant magnitude, however, in gain-guided or loss-
guided systems, or in unstable-resonator or unstable-
lens-guide systems having significant geometric mag-
nification per pass. In such systems, the excess emission
factor can become as large as hundreds to thousands of
time above the usual value, even at moderate Fresnel
numbers for the unstable systems.

The crucial step in the analysis in this paper comes in
using the real Fox and Li transverse eigenmodes of the
optical system' as the basis set for expanding the fields in
the structure, rather than assuming an idealized set of
power-orthogonal normal modes as is usually (and in-
correctly) done in most laser analyses. The biorthogonal

39 1253 1989 The American Physical Society



A. E. SIEGMAN

rather than power-orthogonal nature of the real cavity
modes then turns out to be responsible for the excess-
noise and correlated-emission properties. The approach
in this paper is very similar to the Haus-Kawakami ap-
proach, but the results now apply to a much broader
class of general, open-sided, non-loss-guided optical
structures and the analogous periodic lens guides.

We also demonstrate that any such systems having
significant excess-noise emission will necessarily also ex-
hibit a corresponding "excess initial mode excitation" in
their response to externally injected signals. By sending
in a properly shaped "adjoint-coupled" external signal,
for example, it is possible to excite such systems with
more initial power or energy in any given transverse
eigenmode of the system than is present in the injected
external signal itself. As a result, in a laser amplifier or
an injection-seeded laser oscillator with optimum signal
injection, one can always recover the minimum
quantum-limited noise performance predicted by conven-
tional theories, i.e., one equivalent input noise photon per
resolution time for the lowest-loss mode, despite the ex-
cess spontaneous emission with the laser amplifier.

The situation is less satisfactory for free-running
unstable-resonator laser oscillators, however. In the
second part of this paper we will show that a laser oscilla-
tor can always be expected to exhibit quantum noise
effects or Schawlow-Townes noise fluctuations which are
larger than the usually stated values by just the excess-
spontaneous-emission ratio or excess-noise factor calcu-
lated in this paper. Fortunately, this excess-noise factor
is close to unity for lasers using ordinary stable laser cavi-
ties, or using pure index guiding. For gain-guided lasers,
however, or for either hard-edged or variable-reAectivity
unstable resonators, the excess-noise enhancement can be
as large as 100 to 1000 times for moderate values of
geometrical magnification and Fresnel number.

II. NOISE ANALYSIS FOR PERIODIC
LENS-GUIDE SYSTEMS

In this paper we will use an extended semiclassical
analysis to derive the excess-noise properties for a laser

amplifier produced by spontaneous emission from invert-
ed laser atoms within the optical structure. It will be
most convenient for this purpose to consider
amplification down a cascaded periodic lens-guide sys-
tem, as in Fig. 1, and to express all signal and noise quan-
tities in the frequency domain. In a subsequent paper we
will modify the analysis to apply to the time buildup of
laser oscillation in a resonant laser cavity.

A. Analytical formulation

We wish to analyze, therefore, the propagation of
waves traveling in the forward direction down a periodic
optical waveguide or lens guide completely filled with an
amplifying (or possibly absorbing) atomic medium, as il-
lustrated in Fig. 1 ~ This could, of course, also represent
amplification through successive passes around an optical
resonator containing the same atomic medium. We have
made the example shown in Fig. 1 a geometrically unsta-
ble lens guide with a sizable magnification per period, to
emphasize the characteristics of such systems. The
analysis is intended to apply, however, to either stable or
unstable systems, with the assumption that all such sys-
tems will have some finite-diameter aperture or mirror,
and hence at least some amount of diffractive energy loss
past the mirror edges or out the sides of the periodic
structure.

We begin as usual with the scalar wave equation

where 6(r, t) gives the real E field of the propagating
wave in the medium as a function of space coordinates r
and time t The cond. uctivity cr (which is negative for an
amplifying medium) represents the net linear stimulated
emission or absorption by the atomic medium with which
the E field interacts, and p and e are the magnetic and
dielectric permeabilities of the medium. All these quanti-
ties are independent of position within the structure, i.e.,
there is no gain or index guiding (though this could easily
be added, at the cost of some complexity in the analysis,
and with no change in the overall results).

The polarization pz(r, t ) on the right-hand side of the
equation is a random-noise polarization (dipole moment
per unit volume) representing the spontaneous emission
from the laser medium. The value of this noise polariza-
tion is derived from a heuristic argument in Appendix A.

For the amplifier case it is most convenient to assume a
traveling-wave expansion in the form

FIG. 1. Example of a periodic lens guide filled with absorb-
ing or amplifying atomic medium, such as analyzed in this pa-
per. The lens guide shown is a geometrically unstable confocal
system to emphasize the characteristics of such systems. The
absorbing apertures separating each period of the structure
represent the diffractive loss out the sides or past the edges of
the structure in each period. As such, they are taken to be per-
fectly absorbing but noise free or effectively at zero tempera-
ture.

8(r, t ) =ReE(r, co)exp[j (cot f3z ) ], —

p~(r, t ) =ReP~(r, co)exp[ j(cot f3z)], —

where /3=co(pe)' We omit writi. ng an explicit Fourier
integration over frequency co since the system is linear,
the noise signals at different frequencies are uncorrelated,
and we will be examining the behavior only in a narrow
bandwidth about any given carrier frequency co. We can
then make a slowly-varying-envelope approximation for
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the phasor amplitude E(r, co), drop the explicit depen-
dence on the frequency co, and simplify the wave equation
to the extended paraxial form

V TE 2—jP uE—= co—~pP~(r }, (3)

16pIAaB
5(r —r'),

CO'gp
(4)

where N, and Nz are lower- and upper-level population
densities, and B is the (Hertzian) bandwidth over which
the noise power is measured. We also introduce the sym-
bol pI as a shorthand for the additional noise-emission
factor N2 l(Xz —X, ) produced by incomplete inversion in
the atomic medium. Equation (4) is essentially the same
equation as has been used by other authors. ' ' Note
that the mean-square amplitude of this spontaneous emis-
sion is directly proportional to the atomic gain coefficient
a, since we assume the inversion N2/N& is fixed and in-
dependent of position. We have written the gain
coefficient and population ratios here as if the atomic
medium were an inverted or amplifying medium. If the
signs of the gain coefficient, population difference, and
Boltzmann temperature are all inverted, however, the
noise polarization magnitude will still remain positive,
and all of the subsequent results will apply equally well to
a lossy or absorbing atomic system.

8. Expansion in propagation eigenmodes

We then expand the total field in the optical system in
terms of the "cold" propagating modes or transverse
eigenmodes u~(s, z) of the propagating structure' in the
form

E(r)= gc„(z)u„(r)=gc„(z)u„(s,z},
n n

where from here on we will use the notation r:—(s,z) in
order to distinguish the transverse coordinates s=(x,y)
or s=(r, 8) in the lens guide from the axial coordinate z.
The functions u„(r)=u„(s,z) are intended to be the usual
transverse eigenmodes, or "Fox and Li modes, " of the
optical resonator or lens guide without the amplifying
medium. (For the case of two transverse dimensions the
index n should really be a double set, i.e., u„(s,z), but we
write only a single index for simplicity. )

These transverse eigenrnodes u„are solutions of the
homogeneous wave equation, i.e., of Eq. (3) with the gain
and noise polarization terms omitted, but subject to all
the boundary conditions of the optical structure itself. In

where VT indicates the Laplacian operator with respect
to the transverse coordinates x,y and a = —i)00 /2 is the
gain coefficient in the atomic medium, with i)0=(p, je)'~
being the characteristic impedance for the medium.

As shown in Appendix A, the phasor amplitude Pz(r)
for the noise polarization will have a 5-function correla-
tion in space with an amplitude given by

(P (r)P *(r')) = 16AaB 5(r —r')
cogp Nq —N,

practice, these transverse eigenmodes are usually ob-
tained not by solving the differential Eq. (3), but as eigen-
solutions of an integral equation'

u„(s,z+p) = I K(s, so, z )u„(so,z)d sp 'P „u(s, z ), (6)

where K(s, so) is a propagation kernel, generally similar
to Huygen s integral, but including any finite mirrors,
apertures, and intracavity optics in the optical structure.
This integral then describes propagation through one
period of the empty optical system, starting at any arbi-
trary reference plane z and propagating to the corre-
sponding reference plane at z +p one period p (or one
cavity round trip) later. The differential dso—=dxodyo is
integrated over the full cross section A of the resonator
or lens guide at the selected reference plane z.

The eigenvalue y„gives the complex amplitude reduc-
tion and phase shift for the nth order eigenmode after
propagation through one period in an optical lens guide
or one round trip in an optical resonator. The fractional
power loss for the nth mode in one period due to
diffraction losses is 1 —~y„~,while the phase angle of y„
gives the added phase variation over and above the basic
exp( —jpp) propagation factor for the same mode.

The integral Eq. (6) directly provides the transverse
eigenmodes u„(s,z) only at the one arbitrarily chosen
reference plane z. These modes of course exist at all oth-
er planes z and their (generally slow) variation with z can
be determined either by shifting the kernel to a different
reference plane z or, more easily, by forward propagation
of the modes from the initial reference plane z. The ei-
genvalues y„and all the results to be obtained below are
entirely independent of the choice of z.

C. Biorthogonality properties

The crucial factor in this analysis is that the propaga-
tion integral (6) is in general not a Hermitian operator for
any of the usual open-sided structures used as optical
resonators or lens guides. One might think that this in-
tegral operator should be Hermitian, since it is used to
find a solution to the fully Hermitian wave equation. The
boundary conditions on the wave equation for open-sided
resonators are not Hermitian, however, and this shows
up in the integral equation as a non-Hermitian form for
the integral operator.

Because the operator is not Hermitian, neither the
completeness nor even the existence of a set of eigensolu-
tions u„ to the integral Eq. (6) can be rigorously
guaranteed. We must take the existence of such eigen-
modes and their usefulness as a basis set, therefore, as
matters of empirical (or numerical) observation rather
than matters of rigorous mathematical proof. Because of
the non-Hermitian character of the integral operator, the
transverse modes in these open-sided optical systems are
also in general not "normal modes, " i.e., they are not
power orthogonal or self-adjoint to each other, with the
result that

u„(s,z)u ' (s,z)ds&5„
A

Within one period between hard-edged apertures of finite
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mirrors, however, we can at least scale the amplitude of
each individual mode so that they are individually power
normalized, in the sense that

3„„—:f u„(s,z)u „*(s,z)ds=1 .

Of course, as any such mode passes through the finite
aperture between successive periods of the structure (or
bounces off' the output mirror in the cavity case), it loses
energy to diffraction losses, so that the power in the mode
is reduced by ~y„~ in the next period.

Rather than being orthogonal to each other, the eigen-
modes u„(s,z) are instead biorthogonal to a set of trans-
posed or adjoint eigenfunctions P„(s,z) in the fashion

f u„(s,z)P (s,z)ds=5„ (9)

where the adjoint eigenmodes p„(s,z ) are solutions of the
transposed eigenequation

P„(s,z) = f E(s, so, z')P„(so,z)d so= y „P„(s,z) . (10)

Here the integral kernel K (s, so, z) is the transpose (in s
and so) of the kernel in Eq. (6). The adjoint eigenfunc-
tions P„(s,z ) are thus physically different —distinctly
difterent in some cases —from the original eigenfunctions
u„(s,z), although the eigenvalues y„areidentical for cor-
responding modes in the two sets.

In physical terms, it can be shown that if E represents
the propagation kernel for forward propagation through
one period or segment of an optical waveguide, from one
arbitrary reference plane to the same plane one period
later, then the transposed kernel E corresponds to
propagation in the opposite or reverse direction along the
same lens guide, between the same two reference planes.
Figure 2 illustrates this difference for a strongly unstable
lens guide. The solid lines in this figure indicate the ap-

P„(s,z)=u „*(s,z)+du „*(s,z) (12)

and also the complex conjugate of this, so that b, u„(s,z)
is the difference between a given eigenmode u„(s,z) and
the corresponding P „'(s,z) having the same eigenmode

y„.The biorthogonality of u„and P„and the power nor-
malization of u„and u „*then lead to

u„Au „'ds= u „*Au„ds=O, (13)

and so the power normalization of the adjoint eigen-
modes becomes

P„g„*ds=1+f bu„bu „*ds~1 .
A

(14)

This integral is necessarily greater than unity unless the
diff'erence b.u„(s,z)—:P „*(s,z )

—u„(s,z ) between the regu-
lar and adjoint eigenmodes is identically zero.

D. Formal solution

If we substitute the mode expansion of Eq. (5) into the
reduced wave Eq. (3), multiply both sides by any one ad-
joint mode function p„(s,z) and integrate over the trans-
verse cross section A, the wave equation separates into
individual equations for the complex amplitude of each
transverse mode in the form

proximate outer boundaries for the forward set of propa-
gation eigenmodes u„(s,z), and the dashed lines the ap-
proximate outer boundaries for the reverse set of propa-
gation eigenmodes P„(s,z).

We should note that the adjoint modes p„are equally
non-normal, i.e.,

P„(s,z)P * (s,z)is~5„
A

More importantly, these modes cannot be individually
power normalized to unity in the same fashion as the u„
modes, for suppose we write

P„(s,z)
dc„(z)=ac„(z)—jp„(z),

dz
(15)

where the Langevin noise term p„(z)that drives each nth
mode coefficient c„(z)is given by

CO+p
p„(z)= P~(s, z)P„(s,z)ds .

2 A
(16)

FICs. 2. In an unstable optical lens guide with a large
magnification, such as the confocal example shown here, the
forward eigenmodes u„(s,z) will be confined more or less within
the volume bounded by the solid lines, while the adjoint eigen-
modes P„(s,z) in this example will lie generally within the
volume bounded by the dashed lines. Both sets of eigenmodes
will, however, have complicated beam profiles with complex
Fresnel ripples and some spillover outside the regions indicated.
Note that the ordinary and adjoint eigenmodes will both have
the same geometric magnification and the same complex eigen-
values y„perperiod.

The formal solution to (15), given an input coefficient
c„(0)at z =0, is

c„(z)=exp(az)c„(0)—jf exp[a(z —z')]p„(z')dz' .

(17)
The crucial point here, as will become more evident later,
is that the gain factor a for the nth mode coefficient c„
involves an overlap integral of u„and P„,which evalu-

ates to unity, while the Langevin noise term involves P„
and P „*,whose overlap integral (14) is always greater
than or equal to unity. This alters the fundamental rela-
tionship between gain and noise emission per unit length
for strongly non-Hermitian structures where the trans-
posed eigenfunctions P„(s,z) are distinctly diff'erent from
the original eigenfunctions u „*(s,z).
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E. Noise correlations and excess noise factors

The total power I(z) fiowing down the lens guide in
the +z direction at any plane z can then be written as

(p„(z')p* (z" ) ) = COY]0

2

2

X ds . ds IN r +N r

I(z)= f E(s,z)E *(s,z)ds
2'gp1, 1g c„(z)c„*(z)+ g A„c„(z)c* (z) .

90 2
n, m

n&m

The first sum in the second line is the usual sum over the
"powers per individual mode, " assuming the u„(s,z)
functions to be normalized to unity. The second sum
(taken over all values of n and m except n =m) expresses
the "cross powers" between modes. The constants A„
represent the overlap integrals between different trans-
verse eigenmodes as given by

A„=f u„(s,z)u * (s,z)ds . (19)

I (z) = g (c„(z)c„'(z))1

2/0

These cross-mode integrals can be shown to be indepen-
dent of axial position z within one period of the lens
guide, and the diagonal elements have values 3„„—:1 for
the normalization we have selected.

From Eq. (15), the modes are driven by the Langevin
noise polarizations p„(z)as well as, possibly, by coherent
input signals. The coefficients c„(z)are thus in the gen-
eral case random variables, so that average powers must
be obtained by calculating expectation values of the form
(c„c„") or (c„c* ). We thus write for the total power at
plane z

Xp„(s',z')p* (s",z") .

(22)

But, since the original noise polarization Pz(r) is 5-
function correlated in all spatial coordinates, as given in
Eq. (4), we can do the transverse integrations immediate-
ly and reduce this to

(p„(z')p* (z") ) =4pificorioaBB„6(z'—z"), (23)

K„=B„„=f P„(s,z)P„*(s,z)ds (25)

and refer to K, henceforth as the Petermann excess-noise
factor for the nth mode. We have already shown that
K„~1in all cases. The value of K„approaches unity
only for near-ideal systems with nearly power-orthogonal
modes and near-zero diffraction losses.

F. Noise generation within one period

where we define the B„to be the (non-z-varying) overlap
integrals

B„—= f P„(s,z)P' (s,z)ds . (24)

So long as the adjoint eigenfunctions P„(s,z), like the
original eigenfunctions u„(s,z), are not power orthogo-
nal, the off-diagonal elements B„ for n&m will have
finite values, and there will be correlation between the
Langevin noise terms p„(z)and p (z) driving different
transverse eigenmodes in the lens guide.

For the on-diagonal elements, in addition we will adopt
the notation

+ g (c„(z)c* (z) ) A„1

2 flap

n~m

(20) Putting the Langevin noise sources into Eq. (21) and
completing the integration then leads to

(c„(z)c* (z) ) =e' '(c„(0)c* (0) )
But from Eq. (17) the expectation values with the
Langevin noise terms included will be given in general by

+(e ' —1)2goB„pihcoB . (26)

(c„(z)c* (z) ) =e '(c„(0)c* (0) )
zaz J''d f 'd ~~ —a(z'+z")

0 0

Putting this into Eq. (20) gives for the power growth over
distance p within one period of the lens guide

I(p)=G y (c„(0)c„"(0))1

2 770

(21)

including the case with n =m. In writing this we make
the (very reasonable) physical assumption that in a one-
way amplifier the spontaneous emission p„(z) at any
plane z) 0 will be entirely uncorrelated with the input
signal, or noise, contained in the input wave c„(0)at
z =0, i.e., that (c„(0)p* (z) ) —=0 for z ~ 0.

The noise term inside the integral in Eq. (21) can then
be written, using Eq. (16), in the form

+ g (c„(0)c* (0) ) A„1

nm
num

+(G —1)pikcuB g K„+g A„B„
n n, m

n~m

(27)

where G=:exp(2ap) is the net power gain due to the
atoms within one period from plane z to plane z +p. The
first two terms obviously give simply the input power
I(z =0) multiplied by the power gain G =exp(2ap ). The
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second pair of terms gives the spontaneous emission or
noise power generated in and amplified by the laser medi-
um within one period.

Most of the essential results of this analysis are con-
tained in this expression. In particular, the usual
equivalent input noise power term pthcoB [interpreted as
one photon per resolution time, per mode, times the in-
complete inversion factor pt =N~—/(N2 N~—)] appears in
the second term of Eq. (27) as usual, but here it is multi-
plied by the excess-noise factors K„for each mode, as
well as the dimensionless noise correlation factors B„
We will introduce one further analytical result before dis-
cussing this further.

G. Eft'ects of apertures

The results given thus far apply within one period of
the periodic lens guide, in the "free-space" region be-
tween two finite apertures or mirrors. At any such aper-
tures the fields are truncated or absorbed and thus su@'er
diffraction losses. It is simplest, and costs little in gen-
erality, to think of the lens guide as having just one such
aperture or coupling point per period, with the coordi-
nate system chosen so that z =0+ comes just after one
such aperture, and z=p —comes just before the next
succeeding aperture.

When the wave passes through any such aperture, each
I

c„(p+) =y„c„(p—) . (28)

Note that by definition of the eigenmodes there is no
mode conversion at the aperture; the amplitude of each
expansion coefficient is merely reduced by its eigenvalue
y„.The signal and noise power at the output from one
complete period is then written as

of its eigenmodes is reduced in amplitude by the corre-
sponding eigenvalue amplitude ~y„~. We can think of
these diffraction losses at the apertures either as reducing
the normalized amplitudes u„ofthe eigenmodes by the
complex eigenvalue y„,and hence the overlap integrals

by the amount y„y*at each successive aperture; or
alternatively as reducing the expansion coefficients c„by
the same amount at each successive aperture. We choose
the latter approach, so that the normalizations of un
given earlier will be preserved everywhere. (Note that if
we elected to change the normalization of the u„'sby the
ratio y„ongoing through each aperture moving in the
+z direction, we would correspondingly have to change
the ratios of the P„'sby the inverse ratio 1/y„.)

When the aperture transmission is taken into account,
the net gain and net noise generation in one period, going
from an input plane at z =0 just after one aperture to an
output plane at z =p+ just after the succeeding aperture,
must be computed by extending Eq. (17) with the factor

I(p+)=G g iy„~ (c„(0)c„*(0))+g y„y' (c„(0)c* (0)) A„
1 1

n~m

+(6 —l)ptfici)B g ~y„~K„+g y„y* A„B„ (29)

in analogy to Eq. (27).

H. Initial wave excitation factor

Suppose we now think of launching an initial wave or
mixture of transverse eigenmodes with a transverse field
distribution 6;„(s,t)=ReE;„(s)ei ' at an input plane
z =0 at the input end of the periodic lens guide, so that

E;„(s)= g c„(0)u„(s,O) . (30)

Lacking a completeness proof for the eigenmodes u„we
cannot claim that any arbitrary distribution E;„(s)can be
expanded in this fashion; but we assume that any useful
input wave will be given by such an expansion.

Suppose the input field distribution E;„(s)carries unity
power, and we wish to achieve the maximum possible ini-
tial amplitude c (0) for one particular transverse eigen-
mode with n =q. To accomplish this in this particular
case, we should not "spatially mode match" the injected
signal E;„(s)into the desired mode u (s, O) as is often
done in more conventional situations, i.e., we do not
want the usual condition that E;„(s)=const X u~(s, 0).
Rather, we should match the input field into the complex
conjugate of the adjoi n t mode corresponding to the

I

desired eigenmode, i.e., the condition for maximum exci-
tation of mode u is

E;„(s)=(2i)0/B )' P (s, O), (31)

where B =K is the overlap integral for the P function
defined in Eqs. (24) and (25).

The initial mode-expansion coefficients c„(0)will then
be, from Eqs. (24) and (25) and the biorthogonality rela-
tion,

c„(0)=J E;„(s)P„(s,O)ds
A

(2i)o/B )' B„,n &q

(2i)OB )' =—(2iloK )', n =q .

(32)

Since K & 1 in general, there will be more initial power
per mode put into the selected eigenmode than there is in

The total power I(0+ ) in the system just after the input
plane, as calculated using Eq. (18), will necessarily still by
unity. The total power in the selected mode n =q by it-
self will, however, be given by

I(0)~„„.„= ~c, (0)~'=K, .1

2x/p
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the injected signal to start with. This enhanced excita-
tion of the coefficient c will necessarily be accompanied
by finite excitation of other coe@cients c„,n&q, and
hence there will be still further excess power excitation
into all the other eigenmodes.

Conservation of energy is maintained in this situation
by the cross-power terms that appear in the second sum-
mation in Eq. (18). At least some of these terms will
necessarily be negative, so that the total power remains at
unity. The excess initial wave excitation of the selected
mode n =q is nonetheless real and meaningful, and exact-
ly equal (in power) to the excess noise factor K for the
same mode.

III. DISCUSSION AND CONCLUSIONS

A. Laser amplifier noise figure

(G —1)1yol'
=G~KOI;„+(G~—1) KopIAcoB, (34)

Gly. l' —1

where Gz=(G yol ) is the overall power gain for the
n =0 eigenmode through N complete periods in cascade.
The second line of this formula is evidently a generaliza-
tion, valid for N periodic sections in cascade, of the usual
noise figure expression for a single-mode laser amplifier of
total gain Gz-, namely,

I „,=GzI;„+(Gr—1)plficoB . (35)

This result displays, however, some significant generaliza-
tions.

Let us first show that, despite the excess spontaneous
emission factor, one can still recover the usual quantum-
limited noise figure characteristic of any laser amplifier
or, in fact, any other kind of linear phase-preserving sig-
nal amplifier. In any given optical resonator or lens-
guide structure one particular transverse eigenmode, con-
ventionally designated the n =0 mode, will have smaller
diffraction losses and hence a larger eigenvalue yo than
all other eigenmodes. Suppose we arrange to inject rnax-
irnum intensity into this lowest-loss mode at z =0 using
an input wave with total (external) power I;„,as de-
scribed just above, and allow the resulting mode mixture
to propagate through multiple sections. We assume the
system has net power gain, i.e., G ly„l

) 1 at least for the
lowest-order mode and possibly also for higher-order
modes.

Then, because the lowest-order mode has higher net
gain per period than any other eigenmode, after a
sufficiently large number of periods N all the higher-order
eigenmodes will have small amplitudes relative to the
n =0 eigenmode, and the field in the lens guide will be-
come predominantly the n =0 eigenmode. The output
power in this case, after N periods, will be given by the
cascaded expression

I(N )=(Glyol ) KOI;„
A' —

1

+ g (G lyol')"(G —1)lyol'KoplficoB

First, the ratio (G —1)lyol /(Glyol —1) in the noise
term on the second line simply gives the slightly more
complicated (but still standard) noise form that results if
the total gain Gz =Gz —=(6lyol ) of an amplifier results
from N noisy amplifier sections of gain G cascaded with
noiseless attenuators of transmission lyol between sec-
tions. Second, and more important, the effective input
noise power KoplhcoB appearing with the Gz —1 gain
term is the usual p~ photons per mode multiplied by the
(potentially large) excess-noise factor Ko for the n =0
mode. But, finally, the input signal power I;„from an
external signal source is (if properly adjoint coupled) also
multiplied by the same factor Ko, as a result of the "ex-
cess initial mode excitation factor. " Exactly the usual
laser-amplifier noise figure is thus recovered, despite the
excess spontaneous emission per mode.

As a practical matter, it is not clear that anyone would
want to build a cascaded laser amplifier using an unstable
lens-guide structure having large magnification and hence
large diffraction losses per period. The above analysis ap-
plies equally well, however, to the signal buildup with
time in injection-seeded laser oscillators or regenerative
amplifiers, and these devices do in practice employ unsta-
ble resonator structures. This analysis demonstrates that
for an injection-seeded, pulsed oscillator one should first
try to make the single-pass gain G reasonably large com-
pared to the mode eigenvalue lyI, l

in order to optimize
noise performance.

But even if this is done, there will be a (large) excess-
noise factor Ko in the effective input noise or initial noise
in such structures. In effect, there will be Ko initial noise
photons per mode, rather than just one effective photon,
in an unstable injection-seeded laser oscillator. This
excess-noise factor per mode can, however, be exactly
balanced by the excess initial mode excitation factor Ko,
if adjoint coupling is employed. With adjoint coupling
one really can inject more initial energy into one selected
cavity eigenrnode at t =0 than is available in the external
signal one uses as the injection signal.

B. Thermal noise in lossy systems

We consider next the opposite limit of lossy or absorb-
ing systems, and discuss how the excess spontaneous
emission should not lead to any violation of usual
thermal-equilibrium considerations.

All the results in this paper will apply equally well to a
periodic lens guide filled with lossy or absorbing atoms,
rather than amplifying atoms, if one simply reverses the
signs of o., a, and the population inversion N2 —

N& in all
the formulas. It may be more convenient in the absorb-
ing case to rephrase the noise power per transverse mode
pikes in all the expressions as a thermal noise power
given by

N2
price — %co —„k —kT,

l 2 e ' —1

(36)

where T, is an equivalent temperature which be-
comes identical to the Boltzmann temperature
T, —= k 'ln(Ni /N2) in the limit Ac@ ((kT, . We can then
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use kT,„asa shorthand for the more general quantum re-
sult for thermal excitation of a single mode.

In an absorbing periodic lens guide in thermal equilib-
rium, not only the lowest-loss eigenmode but in general
some substantial number of higher-order, higher-loss
eigenmodes will be thermally excited to significant ampli-
tudes by spontaneous emission from the absorbing atoms.
To calculate the total steady-state noise power in the los-

sy case, therefore, all modes and mode cross correlations
must be retained. The mode coefficient c„atthe output
of, say, the (k+1)-the period of the lens guide, just after
the end aperture, can be written, using a combination of
Eqs. (15) and (23), as

c„(p+;k + 1)=g y „c„(p+;k) jg y „—Aj„"', (37)

where g =—e p is the amplitude attenuation due to the
atoms in one period. The quantity A '„'given by

(k+1)pg(k) e 'p„(z)dz
kp

(38)

is a Langevin equivalent noise source at the input to the
kth period of the lens guide produced by the spontaneous
emission within that period. Since the spontaneous emis-
sion within different periods of the lens guide will be un-

correlated we can find, using earlier formulas, that

(A'"'A *'")=(e"~—1)2q~ kT„Bfi„,. (39)

and from Eqs. (26) and (39) we can obtain, after N
periods,

( c„(p+;N)c * (p +;N) )

=(Gy„y*
)"(c„(p+;0)c*(p+;0) )

~ (1 —G)y„y*
+f1 (Gy y ) ] 2qoB kTqB

(41)

The factor G =—g =e due to the atomic absorption in

one period is of course less than unity. After a large
enough number of periods so that (Gy„y*

) =0, there-

fore, Eq. (41) will approach the stationary thermal-
equilibrium limit

(1—G)y„y*
( „(p+)* (p+)) = 2rIOB„kT,B .

1 —Gy„y'
(42)

One can then substitute this into (20) to obtain the
thermal or blackbody noise power propagating along the
lossy line in the steady state.

The periodic structures we are considering consist of
periodic segments of atomic medium having power

The mode coefficient c„afterN periods will thus be given

by
N

c„(p+;N)=(gy„)c„(p+;0)jg (gy„—)"A'„
k=l

(40)

transmission G and noise temperature T,q, separated by
apertures with power transmission ~y„~ but zero noise
temperature. That is, in our model the apertures between
periods account for the diffraction losses out the sides of
the finite diameter lens guide, and we assume the energy
lost in this fashion is simply radiated out into a "cold
infinity" with no thermal noise coming back. Hence the
apertures themselves emit no thermal noise. There may
also in general be lenses, curved mirrors, and other loss-
less optical elements imbedded in the lossy atomic medi-
um, but these are assumed to be transparent or lossless
and hence also contribute no additional noise.

The bracketed ratio (1 —G)y„y' /(1 —Gy„y'
) ap-

pearing in Eq. (42) can then be identified as a generaliza-
tion of the usual reduction in effective noisiness or ap-
parent noise temperature for a system which contains
two loss mechanisms, only one of which has a finite tem-
perature T, associated with it (cf. Appendix B). Let us
assume for simplicity that the atomic loss per section is
large enough so that 2ap »1 or G &(1. The stationary
thermal noise power emerging through any output aper-
ture after many segments of such a lens guide can then be
written as

1(p+)=kT„B y ~y„~'l~„+g y„y.*A„B„.
n n, m

n&m

(43)

This evidently expresses a sum over transverse modes in
which individual modes may carry more than the normal
thermal-equilibrium power k T, 8 per mode, since

~y„~ K„may be greater than 1 for strongly unstable sys-
tems. There are, however, also cross-power terms of
magnitude y„y* A„B„for n&m, many of which one
presumes must have negative values.

It is of interest to consider the relationship between
these results and the usual ideas of thermal equilibrium
and blackbody radiation in absorbing systems. Consider,
for example, a semi-infinite length of a periodic unstable
lens guide extending back to z = —~ and terminating at
a final output aperture at z =0 in a zero-temperature half
plane, as shown in Fig. 3(a). One can view the final out-
put aperture of this structure as an finite aperture
through which one can look back into a more or less
black semi-infinite holhraum filled with absorbing atoms
at temperature T, .

Equation (43) then tells how much total thermal noise
power should be emerging from this aperture, summed
over all the transverse modes of the lens-guide structure
(assuming for simplicity that the atomic loss per period is
large compared to the diffraction loss). For a convention-
al power-orthogonal waveguide, such as a loss-filled rec-
tangular waveguide with dimensions large compared to a
wavelength, it is simple to confirm that Eq. (43) will give
exactly the usual thermal or blackbody radiation to be ex-
pected from an aperture 2 looking into a hohlraum at
temperature T„orfrom a blackbody surface of the same
area with unit emissivity. That is, for an ordinary
power-orthogonal waveguide the K„'sand y„'swill have
magnitude unity; the 3„'sand B„'swill all be zero for
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2irA kT B 2vrA hfB
exp(h f /kT, )

—1
(44)

which is the usual blackbody result.
One may then ask whether this will also be true for the

nonorthogonal example shown in Fig. 3(a), if the summa-
tions of Eq. (43) can be evaluated. Haus and Kawakami
were in fact able to verify this for the analogous gain-
guided system shown in Fig. 3(b), which is also a

Periodic
lensguide

ll

z=0

(a)

Gauss~an
gain-guided
waveguide

n&m; and there will be just 2n. d/1, modes (counting
polarizations) in the first summation. Hence the total
noise power emerging from the aperture in bandwidth B
will be

nonorthogonal or biorthogonal waveguiding system, by
appealing to the completeness properties of the infinite
set of eigenmodes which one can verify will exist in such
a gain-guided structure.

Unfortunately, for the case of more complex hard-
edged unstable lens guides such as the one shown in Fig.
3(a), no rigorous proof of the completeness or even the
existence of the lens-guide eigenmodes is available; and
therefore one is unable at present to confirm that ordi-
nary blackbody emission will be recovered from Eq. (43)
for such a structure. From numerical studies one finds
empirically that such an unstable lens-guide structure,
rather than supporting =2m A /A. transverse modes,
seems to posses only a small finite number (say 5 —10) of
transverse eigenmodes u„with moderate power losses.
Moreover, the excess noise factors K„ for these
moderate-loss modes are found to be large compared to
unity, and to increase very rapidly with increasing mode
number n. Beyond this it is not clear whether still
higher-order modes exist or not. If they do, they have ex-
tremely small eigenvalues, with

~ y„~& 0.001, which
makes them very difficult to calculate numerically; and
they presumably also have very large excess-noise factors.
The numerical difficulty in calculating these higher-order
terms makes even the purely numerical exploration of
Eq. (43) very difficult.

One can be sure from the results of Haus and
Kawakami that the cross-mode correlation terms in Eqs.
(41) and (43) will be important and that they will remove
the apparent violation of thermodynamics produced by
the excess noise factors K„atleast for simple gain-guided
lens guides. Whether one will recover exactly the usual
blackbody results using Eq. (43) for hard-edged unstable
lens guides, however, is not clear. Further investigation
of the unresolved questions concerning mode properties
and noise properties in this situation would be very in-
teresting.

C. Relationship to amplified spontaneous emission

FIG. 3. (a) A semi-infinite length of hard-edged unstable
periodic lens guide terminating at an aperture in an infinite
plane. The periodic lens guide is filled with absorbing and
hence spontaneously emitting atoms at a finite temperature T,
but the lenses and dividing walls between sections are at zero
temperature. (b) The analogous situation for a semi-infinite

length of gain-guided or loss-guided waveguide. The radially
varying lossy medium extends out to infinity and also has a uni-

form finite temperature T.

Finally, there is an intriguing question as to what rela-
tionship if any there may be between the Petermann
excess-noise factor for unstable systems as derived here
and a recent discussion of amplified spontaneous emission
(ASE) in Cassegrainian amplifiers given by Eimerl. ' Us-
ing purely ray-optic arguments Eimerl notes that in these
systems there can by rays of amplified spontaneous emis-
sion which make approximately twice as many bounces
within the amplifier as do those rays associated with the
usual signal beam traveling through the system. Hence
there are ASE components which experience the square
of the power gain which the usual signal experiences.
This excess gain for some of the ASE components can
perhaps be interpreted as saying that the net spontaneous
emission from the amplifier will be significantly enhanced
over its value in conventional geometrically stable or
single-pass laser amplifiers, in a fashion which seems very
comparable to the Petermann enhancement described in
this paper.
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APPENDIX A: NOISE POLARIZATION TERM

We give here a brief heuristic derivation of the 6-
function-correlated noise polarization term introduced in
Eq. (4). The approach followed here is very analogous to
that used earlier by Haus' and others.

The physical situation envisioned is a collection of
two-level atoms with upper- and lower-level population
densities Nz and N, . Since the spontaneous emission
from each individual atom should be randomly phased
and uncorrelated with nearby atoms, we assume this
spontaneous emission can be represented by a noise po-
larization (i.e., a noiselike electric dipole moment per unit
volume) whose phasor amplitude, call it Pv(r), will be 5
correlated in space in the form

4mc Ay„dN2
C, (full linewidth) =

'@pe
(A5)

We are more inserted, however, in the noise emission
only into a narrow frequency band at the center of the
transition. If the transition is Lorentzian with a full
width at half maximum (FWHM) linewidth Ace, , and we
consider only a small bandwidth de—:2~B at line center,
the noise within this bandwidth will be given by

dc'
C, (narrow band)= C&(full linewidth) .

77 AQ)a /2
(A6)

Trad2a= (N2 N~ ) . —
27T Act)a

(A7)

Combining all of these gives the desired result

N2
C, (bandwidth B)=

N~ —N ) cogp
(A8)

In addition, the midband power gain coefficient 2a for a
randomly polarized Lorentzian transition with radiative
decay y„dand FWHM linewidth bee, can be written as

(P (r)P*(r'))=C, 5(r —r'), (A 1 )

where the correlation volume for the three-dimensional 5
function 5(r —r ) is of atomic dimensions, and hence
much smaller than an optical wavelength.

To determine the constant C& we note that the phasor
amplitude pz of the oscillating electric dipole moment
due to the total spontaneous emission in any small
volume element V will is given by

p—:f P (r)dr (A2)
V

where we take the volume element V to be large com-
pared to the correlation volume for P&(r) but still small
compared to an optical wavelength. The average power
radiated by a noise dipole p~e "' from the small volume
V is then given, from standard em theory, by

9o~ (pep x ~ 'r)ohio C, VI„=
12~c 12~c

(A3)

where c is the velocity of light in the medium and we
have used (A 1) in deriving the second equality. But this
emission should correspond to the spontaneous emission
from the number of upper-level atoms N2 V in this small
volume, assuming each atom radiates at a spontaneous
emission rate (or Einstein A coefficient) y„d. Hence we
can also write

y„dN~VAco
Iav

3
(A4)

where the factor of 3 in the denominator is inserted be-
cause the atomic dipoles will in general by randomly po-
larized and we want the emission only into one sense of
polarization, not all polarization directions.

The constant C& corresponding to the total spontane-
ous emission into the full linewidth of a reasonably nar-
row atomic transition is thus given by

Though derived for a Lorentzian transition, this result is
in fact very general, for any kind of atomic response pro-
ducing a net absorption coefficient o, at frequency co.

To verify this we could equally well note that the
blackbody-radiation energy density U~R in a narrow
bandwidth B in any medium at temperature T can be
written as

2 g3 exp(A'co/k T) —1
(A9)

a
I &BR I' V

abs (A 10)

Equating one-third of this narrow-band power absorption
to the power emission of (A3) again gives directly the
same result as (A8).

APPENDIX B: TWO-SECTION
TRANSMISSION LINE NOISE

Consider a periodic transmission system composed of
alternating segments of single-mode transmission line
of length l

&
and I2 having power transmissions

L& =exp( —2a&l&) and L2 =exp( —2a212), and noise tem-
peratures T~ (finite) and T2=0, respectively. Using stan-
dard arguments, one can show that the thermal noise
power I(N) emerging after N segments of this line, ob-
served at the output end of an l2 segment, will be

where EBR is the phasor amplitude of the blackbody E
field in bandwidth B. The energy absorbed from these
fields in a volume V of an atomic medium of e6'ective
conductivity o., and hence absorption coefficient
a =goer /2, will be
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( 1 —L I )L2I(N)=(L, L~) I(0)+[I—(L)Lq) ] kT, B
1 2

( 1 —L 1 )L2

1 2

(Bl)

kT) B, a212 ~0, L2 1

L2kT]B a&l& )) 1 L ] ~0
a, l,

kT)B, e)l, , a2l2 ((1, L ),L2 1
a, l, +e, l2

(B2)

This formula is the single-transverse-mode analog of Eqs.
(41) and (42). It leads to the three limiting cases

and all three of these limits are obviously physically
correct.
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