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Photoelectron waiting times and atomic state reduction in resonance fluorescence
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Photoelectron counting sequences for single-atom resonance fiuorescence are studied. The distri-
bution of waiting times between photoelectric counts is calculated, and its dependence on driving-
field intensity and detection efficiency is discussed. The photoeIectron-counting distribution is de-
rived from the waiting-time distribution. The relationship between photoelectron counting se-

quences and photon emission sequences is discussed and used to obtain an expression for the re-
duced state of the atom during the waiting times between photoelectric counts. The roles of irrever-
sibility and the observer in atomic state reduction are delineated.

I. INTRODUCTION

The fluorescent photons emitted by a single coherently
driven two-level atom exhibit the nonclassical property of
photon antibunching. ' The antibunching of fluores-
cent photons is seen in temporal correlations between
photoelectric counts; the detection of one photon makes
the detection of a second, after just a short delay, improb-
able. Photon antibunching is traditionally defined in
terms of the degree of second-order temporal coherence
g' '(t, t +~). This is the joint probability for recording
photoelectric counts in the intervals [t, t+At) and
[t +r, t +r+At), normalized by the probability for two
independent photoelectric counts. For antibunched light
the joint probability for recording photoelectric counts
closely spaced in time falls below the probability for sta-
tistically independent counts (separated by a time longer
than the coherence time); thus, g' I(t, t) ( l.

The antibunching of fluorescent photons is also
reflected in the sub-Poissonian character of the probabili-
ty density p(n, t, t+T) for recording n photoelectric
counts in the interval [t, t + T). p (n, t, t + T) can be de-
rived from g (t, t+~), although the detailed algebraic
relationship is quite complicated. Both g' (t, t +r) and
p (n, t, t + T) have been calculated for single-atom reso-
nance fluorescence by a number of workers. ' ' Because
of the complexity of general expressions in the time
domain, some workers only give the Laplace transform
for the photoelectron counting distribution, or give expli-
cit time-dependent expressions only for limiting cases,
such as short and long counting times.

Recent theoretical work on "quantum jumps""' has
drawn attention to the distribution of waiting times be-
tween photon emissions as another useful quantity for
characterizing photon statistics —in terms of measured
quantities, the distribution of waiting times between pho-
toelectrons. By "waiting time" we mean the time ~ be-
tween a photoelectric count recorded at time t, and the
next, recorded at time t +~. If photoelectron sequences
can be described by a Markov birth process, a single con-
ditional probability density w(r~t) specifies the distribu-
tion of waiting times between every pair of photoelec-
trons. We call this the photoelectron waiting-time distri-

bution. Photoelectron waiting times for coherent light
are exponentially distributed. ' Antibunching implies
that photons tend to be separated in time. The distribu-
tion of waiting times should then tend to peak around the
average time between photoelectric counts.

Photoelectron waiting times are certainly not new to
the field of photon statistics. Indeed, when a time-to-
amplitude converter is used for a delayed coincidence
measurement, the raw data provide the distribution of
waiting times between photoelectric counts. However,
when the count rate is sufficiently low, this distribution is
proportional (aside from dead-time corrections) to
g '( t, t +r). ' This relationship provides the technique
used to measure g' '(t, t +~) in the experiments of Kim-
ble et al. on photon antibunching in resonance fluores-
cence. Thus, the waiting-time distribution and its rela-
tionship to g' I(t, t +r) are known. But the waiting-time
distribution has not been mentioned until recently' ' ' ' '

in the large theoretical literature on resonance fluores-
cence. This is a deficiency, since it provides a clearer
physical picture of photon emission sequences, corre-
sponding photoelectron counting sequences, and their
nonclassical properties, than g' '(t, t+~). In this paper
we revisit the problem of single-atom resonance fluores-
cence and focus attention on the waiting-time distribu-
tion. (We will discuss waiting times between photon
emissions as well as between photoelectrons. When the
distinction is not important we simply refer to "the wait-
ing times" or "the waiting-time distribution. ")

There are probably two main reasons for the lack of at-
tention paid to w (~~t) in early work on resonance fiuores-
cence. The first is that g' '(t, t+r), not w(~~t), is the
quantity accessible to measurement. It might be asked,
why not use a time-to-amplitude converter to measure
the quantity it gives directly, the photoelectron waiting-
time distribution w (r~t)? The problem is that photoelec-
tric detection is very inefficient. The average time be-
tween photoelectric counts is unavoidably much longer
than the correlation time of the fluorescent light. Then
w (r~ t) is proportional to g' '(t, t +~); w (r~ t) can be mea-
sured, but only when it effectively reduces to gI I(t, t +r).
Actually, the proportionality between these quantities
does not hold for all ~, but it holds over many correlation
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times, beyond which w(alt) decays at a rate proportional
to the detection efficiency, .'"

The second reason for the lack of attention paid to
w(sit) concerns the theory of photoelectric counting,
which focuses attention on nonexclusive probabilities, and
tends to neglect the exclusive probabilities which are re-
lated to w( alt) .The Kelly-Kleiner treatment of pho-
toelectric counting is formulated in terms of the nonex-
clusive probability densities, or multicoincidence rates,

(t„t2, . . . , t );' w (t„tz, . . . , t )ht~bt2 . . At is
the probability that one photoelectric count is recorded
in each of the nonoverlapping intervals
(t &t « . t )

[tl, tl+Atl), [t2, t2+At2)~ . ~ [tm~tm+Atm ) .

No restriction is placed on the number of counts record-
ed outside these intervals. The hierarchy of field correla-
tion functions introduced by Glauber' is defined in terms
of these nonexclusive probabilities. In particular, the de-
gree of second-order coherence is given by

g' '(t, t+r)=w2(t, t+r)I[w, (t)w, (t+~)] .

Quantities of experimental interest are naturally ex-
pressed in terms of nonexclusive probabilities: of course,
the multicoincidence counting rates, and also factorial
moments of the photoelectron counting distribution. '

Stochastic photoelectric counting sequences can also
be characterized by the hierarchy of exclusive probability
densities p (t, , t2, . . . , t;[t, t+T]);' '

p (t„t„.. . , t;[t, t+T])d t, At, bt~

is the probability that m photoelectric counts are record-

p (ti, t2, . . . , t lto)

pm+1( 0~ 1r 2~. . . ~ t~i[ 0~ t~ ])I w)(t 0);

p ( t~ t2 . . . t l to )At~ Atp ' ' ' b, t is the probability
that, given a photoelectric count is recorded at to, the
next m photoelectric counts are recorded in the nonover-
lapping intervals (t& & t2 ( . & t

[t„t,+Et, ), [t„t,+b, t, ), . . . , [t, t +gt ) .

For Markov counting sequences

p (t) t2 ~ ~ t lto)= H p] (tlt —]) ~

The distribution of waiting times ~ between a photoelec-
tric count recorded at time t, and the next, recorded at
t+~, is given by

w(&it)—:p~(t+r)t) . (4)

The exclusive probabilities are not naturally related to
measureable quantities. However, they provide the ele-
mentary probabilities in terms of which p(n, t, t+T) is
most naturally defined:

ed in the observation interval [t, t + T], one in each of the
nonoverlapping intervals (t, & tz & ( t,„)
[t„t,+Et, ), [t, , t, +bt, ), . . . , [t,t +At ) .

The waiting-time distribution is related to the conditional
probability densities

p(n, t t+T)= f dt„ f dt„, f dt, p„(t„t„.. . , t„;[t t+T]);
1

for Markov counting sequences

p, (t„;[t„,t + T] )
p„(t&,t„.. . , t„;[t,t+T])= P w(t, t, , lt, , ) p—,(t, ;[t,t, ]),

w, (t„)
(6)

where p, (t, ;[t,t, ])b,t, is the probability that, if observa-
tion begins at t, the first photoelectric count is recorded
in the interval [t&, t, +At&), and p, (t„;[t„,t+T))l
w, (t„) is the probability that, given a photoelectric count
is recorded at t„, no photoelectric counts are recorded in
the interval (t„,t +T]. The photoelectron waiting-time
distribution determines the intervals between pairs of
successive photoelectric counts, and is therefore a quanti-
ty around which we can build a strong conceptual under-
standing of the counting sequences. Of course, if photo-
electron counting sequences are not Markovian w(alt) is
not so central; it is then just one of the hierarchy of prob-
ability densities p (t&, t2, . . . , t lto).

The existing derivations of p(n, t, t+T) for resonance
fluorescence fall into two categories. Most use the

Kelly-Kleiner formula expressed in terms of nonexclusive
probabilities. ' ' However, two derivations directly
track sequences of photon emissions from the atomic
source. These effectively calculate p(n, t, t+T) from
exclusive probabilities, as in Eq. (6), although they do not
use this language explicitly. In this paper we provide the
formal connection between treatments of photon statis-
tics based on the standard Kelly-Kleiner formulation,
and treatments made in terms of dynamical equations for
the emitting source. Lenstra showed that Cook's deriva-
tion of p (n, t, t + T) (Ref. 6) gives the same results as the
Kelly-Kleiner formula. Cook's treatment seems rather
removed from the theory of photoelectron counting since
it is based on the equations for momentum transfer from
the driving field to the atom. It is, however, effectively a
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derivation (for perfect detection efficiency) from Eq. (5).
We show the relationship between source emissions and
the Kelly-Kleiner theory in general formal terms, allow-
ing for arbitrary detection efficiency.

This formal relationship gives a clear picture of the
role of the detector in atomic state reduction. The detec-
tor is not the agent causing state reduction. The atom
collapses to its ground state due to its irreversible decay
into the vacuum; the collapses proceed at an average rate
given by the inverse atomic lifetime, quite indifferent to
the successful or unsuccessful recording of the emitted
photons. Photoelectric detection monitors these photons
with greater or lesser precision depending on the detec-
tion efficiency. We calculate the time development of the
reduced atomic state inferred by an observer during the
waiting time between photoelectric counts. This state de-
pends on detection efficiency. It rejects the observer's
lack of knowledge about the continuing collapses of the
atomic state associated with undetected photon emis-
sions.

Our plan is to attack the problem of photoelectron
counting statistics in resonance fluorescence from two
directions, and to relate the two approaches. Sections
II—IV provide a development from the standard Kelly-
Kleiner theory, then in Sec. V we show how the same re-
sults can be obtained from the dissipative dynamics of the
source. In Sec. II we derive the photoelectron waiting-
time distribution from its relationship to the nonexclusive
probability densities w (t„t2, . . . , t ). We discuss the
dependence of the waiting-time distribution on the
driving-field strength and detection efficiency, and show
how the nonclassical properties of photon antibunching
and sub-Poissonian statistics are clearly reAected in
w (w~ t) In Sec..III we show how standard expressions for
w(~~t), and more generally p (t, , t2, . . . , t;[t, t+T)),
can be reexpressed so that these quantities can be derived

directly from modified Bloch equations for the atom. We
derive a formal expression for exclusive probability densi-
ties from which we identify the reduced state of the atom
inferred during the waiting times between photoelectric
counts. In Sec. IV we calculate the photoelectron count-
ing distribution from Eq. (5). In Sec. V we derive the
same expression for exclusive probability densities
without reference to the theory of photoelectric detec-
tion, starting from the dynamical equations for the atom-
ic source. We describe the formal connection between
photon emission sequences and photoelectron counting
sequences and discuss the issue of atomic state reduction.
Section VI provides a summary and conclusions.

II. THE FHGTOEI. ECTRON
WAITING- TIME DISTRIBUTION

The Auorescent light from a coherently driven two-
level atom is incident on the photocathode of a pho-
toelectric detector. The detector quantum efficiency is g
(0 & g ~ 1), and the quasimonochromatic field at the
detector is described by the photon-Aux operator
I(t) ~ E ' (t)E '+ (t), where E I+ (t) and E ~ '(t) are the
positive and negative frequency components of the elec-
tric field [the mean photoelectron counting rate is

g ( I( t ) ) ]. The nonexclusive probability densities
w (t&, t&, . . . , t ) are given in terms of g and l(t) by' ''

w (r, , r„ . . . , r ) =71 ( '7:I(t ) I(t, )I(t, ):) ; (7)

::stands for normal ordering of field operators, and T
means that operators E ' ' and E '+ ' are to be written in
ascending and descending time order, respectively. The
exclusive probability densities p (t, , tz, . . . , t

[t, t + T] ) can be calculated from the nonexclusive proba-
bilities

p (r, ,r„.. . , t;[r, r + T])=ri g, f dt„' f dr„', . f dtI ( Vl(t„')I(t„', )'
r!

XI(rI )I(r )
. I(r, )I(r, ):)

where

('Texp[ —Q(r + T, r)]I(r ) I(t2)I(r, ):)
( 7:exp[ —Q(t + T t )]I(t ) l(t~ )exp[ —Q(tz, t, )]l(t, )exp[ —Q(t, , t)]:), (8)

I

Sl(r, , r, )=q f dr'I(r') .

Then, from Eq. (2), the conditional probability densities p (t, , tz, . . . , t ~to) are given by

p (t, , tz, . . . , r ~to) =(l(t) } rl (7 I(t )exp[ —A(t, t &)] . . l(t~)exp[ O(t2, t, )—]I(t, )exp[ —fl(t, , to)]I(to):).

(10)

Single-atom resonance fluorescence yields Markov
photoelectron counting sequences; therefore,
p (r„&,, . . . , r ~t ) and p (r, , r, , . . . , r;[r r+T])
factorize as in Eqs. (3) and (6). The formal proof of this
factorization is left until the next section. However, the

Markov property is easily appreciated on physical
grounds. It follows from the argument that is used to ex-
plain the antibunching of fluorescent photons. This
states that when each photoelectric count is recorded, the
atom is known to have returned to its ground state with
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the emission of one photon. Thus, after each photoelec-
tric count, the atom always evolves from the same
state —its ground state; therefore, the subsequent state of
the atom does not depend in any way on the history of
counts previously recorded. The probability for record-
ing the ith photoelectric count in the time interval
[t;, t; + b, t; ) will then depend on the time t, , of the last
photoelectric count, but it will not depend on the history
of prior photoelectric counts. Photoelectron counting se-
quences are therefore Markovian.

The return of the atom to its ground state when a pho-
toelectric count is recorded also guarantees that photo-

electron counting sequences are stationary. More pre-
cisely, they are stationary for all but the very first count.
The conditional probability densities p ( t „t2, . . . , t

~tp) are independent of the time tp This is true even if
the atom is not in a stationary state prior to the count at
tQ ~ We therefore define

(Pm (71,72, . . .
& 7m )—:((2m ( tp+ 71, Ep+72~. . . , Ep+ 7m ~ tp }

and write Eq. (10) in the form

P (7 72, . . . , 7 )

= (Io(0) ) 71 ( 'T Io(7 )exp[ —Ao(7, 7 1)] . Ip(72)exp[ —Qo(72, 71)]Io(71)exp[—Qo(71, 0)]IO(0):), ( 2)

with
7

Qp(7;, 7) )=7)f dt'Io(t')
J

p (t, , t, , . . . , t;[t, t + T])=w (t, , t„.. . , t )

P (7„72, . . . , 7 )

(18)

where

Ip(7) =I(tp+7) (14)

Wm+1(tp~tp+71~EO+72~ ' ) tp+7m )IW1(tp)

(19)

and tp is an arbitrary time ( allowing for retardation)
after excitation of the atom begins. %'e define the
waiting-time distribution by

w (7):—w (7~ tp )
—= p, (t +ot71}o

From the Markov property, and Eqs. (12) and (15),

(15)

P (7„7, . . . , 7 )= P W(7;) (16}

where

w(7) = (Io(0) ) '21( T:Io(7)exp[ Ap(7, 0)]—Io(0):)

(17)

In this section we calculate w (7) from Eq. (17).
We first note the connection between the photoelectron

waiting-time distribution and the degree of second-order
temporal coherence. For times that are much less than
the average time (7t( I ) )

' between photoelectric counts,
exclusive probabilities are simply related to nonexclusive
probabilities. We may replace the exponentials in Eqs.
(8), (12), and (17) by unity, and write
[t, —t, 1 «(g.(I ) ) ']

and [7« ( 21 ( I ) )
' ]

W (7) =W2(EP& EP+ 7)/W1(EP )

= 7t ( I )„g,',"(7 ) (20)

7)(I )„and g,', (7) are the mean photoelectron counting
rate and the degree of second-order temporal coherence
in the steady-state limit to ~ ~ . When either the detec-
tion efficiency or the photon flux is sufficiently small the
inequality 7«(g(I ) )

' will hold over many correlation
times. Under these conditions g,', '(7) can be obtained
directly from a measurement of w (7) using a time-to-
amplitude converter. ' The relationships expressed by
Eqs. (18)—(20} are easily understood. For short time in-
tervals t, —t, , between photoelectric counts, the proba-
bility for recording other counts during these intervals is
vanishingly small. Therefore, the probability density for
recording photoelectric counts at t, = tQ + T],
tz = to +w~, . . . , t = to +~ is the same, whether or not
it is conditioned on the requirement that no counts be
recorded at other times.

To calculate w (7) for times that are not short com-
pared to the average time between photoelectric counts,
we expand the exponent in Eq. (17) and write

7 ~2

W (7)= (Ip(0) ) 21 g ( —71) f d7 f d7, f d71( 7:I ( O)I7(p7)IO(7 1) Ip(71)IO(0): )
m =0 0 0 0

(21)

The correlation functions that appear inside the integrals are proportional to the nonexclusive probability densities

Wm +2( tp, tp +71, t p +72, . . . , tp +7m, t p +7 )
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These correlation functions factorize by the Markov property (a formal proof is given in Ref. 19); we have

(TIp(r)Ip(r )I p( r i) ' ' ' Ip(ri)Ip(0):& =fp(r t~ )fp(7~ r~ ]) ' ' ' fp(7i)(Ip(0)&

where [read f (r, ) =f (r, —0)]

'gfp(;; —i)=il(Ip(1;) &g (tp+7;, tp+7; i)

=q(I &„.g,',"(r, —&,

(22)

(23)

is the conditional probability density for recording a photoelectric count at time t0+~, , given that a count was recorded
at time t0+7 ] this probability density is independent of t0 and we therefore express it in terms of steady-state quanti-
ties (tp~ ~ ). By substituting Eq. (22) into Eq. (21), we have

GC T ~2

w(7)=rt $ ( rt) I—dr J dr, . j dr fp(r 'r )f—p(r —r~, )
. fp(r, )

m=0 0 0 0
(24)

The infinite series can now be summed by taking Laplace
transforms with respect to ~. We find w (~) = e ~'sinh [—'(P' —II')'~'r] .2 i 2 2 1/2

p' —0 (30)

rtf p(s)
w(~)=

1+ref p(s)
(2&)

The average waiting time is

w= I drew(r)=(I&, , ', (31)

1p(s)= (2 )
2s (g+2P)(s+P)+0

(26)

2p is the Einstein A coefficient, 0 is the Rabi frequency,
and g (0& (& 1) is the collection efficiency of the detec-
tion system. We define an overall detection efficiency
q'=gg, and then

0w(s)= il P
s (s +2p)(s +p)+ 0 (s + il'p)

The inverse Laplace transform gives

(27)

where w(s) and fp(s) are the Laplace transforms of w (w)

and fp(r), respectively.
The detailed dynamics of the atomic scattering process

enter through the explicit form of fp(r). Using Eq. (23),
and familiar results for (I &„and g,', (r), ' we have

(I&„=(2 )—
2 0+2p (32)

is the average steady-state photoelectron counting rate;
(I &„ is the product of the Einstein 3 coefficient and the
probability for the atom to be found in its excited state.

The distribution of ~ about its mean ~ reveals the non-
classical character of the fluorescent light. In Fig. 1 we
compare the distribution given by Eq. (30) with that for
photoelectron counting sequences with the same ~ pro-
duced by coherent light. Coherent light produces un-
correlated photoelectric counts. The waiting-time distri-
bution can be obtained from Eq. (25), setting
qfp(s)=sir, corresponding to g„(r)=1; waiting times
are exponentially distributed:

w(r)= g [(s —s, )w(s)], , exp(s, r), w„„(r) =(1!r)e (33)

where s, , sz, and s3 are the roots of the cubic equation
For coherent light w„h(0) is a maximum. Thus, the
most probable waiting times are short waiting times. In
comparison, each of the curves in Fig. 1 has w (0)=0.
Short waiting times are therefore improbable in photo-
electron counting sequences for resonance fluorescence.
This comparison identifies the antibunching of photoelec-
tric counts. Indeed, since w (r) is proportional to g,', '(w)

for r ((r [Eq. (20)], the condition w (0) & w„h(0) = (1/r)
is equivalent to the condition g,', '(0) & 1.

The full waiting-time distribution gives a more com-
plete picture. The integral of w(r) over all r is unity.
Therefore, if w(r) falls below w„h(~) for short times, it
must rise above w„h(w) for longer times. However, we
are comparing distributions that have the same mean. It
is not possible then for the curves w(r) and w, „h(r) to
cross only once. They must cross at least twice. Figure
1(b) gives a good example. The waiting-time distribution

(29)s(s +2P)(s+P)+f1 (s+rl'P) =0 .

The photoelectron waiting-time distribution provides a
clear picture of the antibunched and sub-Poissonian char-
acter of the photoelectron counting sequences. We dis-
cuss these features first for counting sequences produced
with unit detection efficiency. When g'=1, every emitted
photon is recorded as a photoelectric count. Then the
statistics of the photon emissions are reflected, uncon-
taminated by random deletions, in the statistics of the
photoelectric counts.

Unit detection e%ciency (awaiting times
for photon emissions)

By setting g'= I in Eq. (29), we find s& —— p, and-
&2 3

= —p+(p —0 )' . The waiting-time distribution is
given by
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in this figure describes photoelectron counting sequences
that are quite explicitly antibunched in comparison with
a random counting sequence (with the same I/T). .Both
short and long waiting times are less likely than for ran-
dom counts; ~aiting times close to the average, ~, are
more likely. The result is a peaked distribution that re-
veals a tendency for photoelectric counts to be recorded

at regularly spaced times.
The condition g,', '(0) &1 identifies the existence of

such a global redistribution of waiting times. But, on its
own, g,', '(0) —1 is a poor measure of how much photo-
electron counting sequences deviate from those for
coherent light. Figure 1(a) shows the form of w(r) for
weak driving fields (II /13 « 1). In this limit we find
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FIG. 1. Comparison of the photoelectron waiting-time distributions for resonance fluorescence and coherent light of equal intensi-

ty: g'= 1, and (a) t2/v 2p=0. 2, (b) 0/v'2@= 1, (c) 0/v'2p= 5.



1206 CARMICHAEL, SINGH, VYAS, AND RICE 39

w (r) =/3y (1+2y) [exp[ —y (1+y/2)Pr] —e ~'(2 —e~') I, br = I d~r w(~) —~
0

and

(34)
6/3 II=2v

( Q 2 +2/32 )
2

(38)

w„„(r)=Py (1—y)e

where

(3~) From Eq. (33),

Thus,

(39)

y =0 /2P' . (36)

We have kept terms in y to sufticient order that

f o dr w(r) =1+0(y ). This is necessary to give an ac-
curate comparison between w (r) and ta„h(w) over the
full range of r. For short times, Eq. (34) gives
w (r) ~ (1 —e ~') =g,', (r); it is still true that w (0)
=g,', I(0)=0. Also, Fig. 1(a), and Eqs. (34) and (35), show
a redistribution of waiting times qualitatively the same as
Fig. 1(b): w(~) &iU„„(r), r &&r; w(r) & w„„(r), r-7;
w (r) & w„h(r), r »F. However, the photoelectron
counting sequences described by Eq. (34) differ from a
random counting sequence by only a small amount. Only
the rare photoelectric counts that follow a previous count
by r( I//3«F bring a difference from the exponential
distribution of waiting times for coherent scattering. In
this sense, the photon statistics in the weak-driving-field
limit approach those for elastic dipole scattering, just as
the fluorescent spectrum in the weak-driving-field limit
approaches the spectrum for elastic scattering.

The nonclassical-character of photoelectron counting
sequences also appears in the counting distribution
p„(n, T) —= lim, „p(n, t, t+ T). The width of p„(n, T)
depends on the counting time T. The condition

g,', '(0) & 1 guarantees that p„(n, T) will be sub-Poissonian
in the short-counting-time limit (/3T «1). Deviation
from the Poisson condition An = n is measured by

Q(T)=An /n —1

= (I )„T[g,', '(0) —1]

1 0,= —
( &)—

2 II +2P
(37)

The deviation from a Poisson distribution is very small
when /3T «1. For longer counting times larger devia-
tions from Poisson counts are possible. ' Figure 1(b) is
plotted for the driving-field strength that maximizes ~Q~

in the long-counting-time limit (/3T » 1 ), with

Q ( ~ ) = —0.75. The origin of the large sub-Poissonian
effect is clear from the form of w(~). If w(r)=5(r —r)
there will be negligible variation in the number of pho-
toelectric counts recorded in a time T »~. The waiting-
time distribution shown in Fig. 1(b) is highly peaked
about ~. Therefore, reduced fluctuations in the number
of photoelectric counts recorded for long counting times
should be seen when waiting times obey this distribution
rather than the exponential distribution for coherent
light. This statement can be made quantitatively. Using
Eq. (30), the variance b,r is given by

A~ /A~„.,h
—1=- 6P II

(0, +2/I )
(40)

Nonunit detection efficiency

When considering nonunit detection eSciency a dis-
tinction must be made between photon emission se-
quences and sequences of recorded photoelectric counts.
The formal relationship between these sequences is dis-
cussed in the next sections. Intuition tells us what to ex-
pect, however. When g'&1, sequences of photon emis-
sions are converted to sequences of photoelectrons by the
random deletion of undetected photons (alternatively, the
random selection of detected photons). As the rate of
random deletion increases (selection decreases), the ran-
domness of the detection process becomes increasingly
important in determining the photoelectron statistics.
%'hen g' ((1,photoelectric counts are essentially record-
ed randomly, at a rate much lower than the rate at which

This is precisely the quantity Q( ~ ) characterizing the
deviation of the photoelectron counting distribution from
a Poissonian distribution for long counting times.

In comparison with Fig. 1(b), Fig. 1(a) shows a very
small peaking of iU(r) about ~ We t.herefore expect that
~Q ( ~ )

~
&(1 for the parameters of Fig. 1(a). This is what

we find in Eq. (40); ~Q(~ )~ (&1 when II //3 (&1. This
comparison can be stated in terms of the two time scales
that govern the form of w(r): For fl /P (1, a large
sub-Poissonian effect in the long-counting-time limit re-
quires the correlation time 1/P to be similar to the mean
waiting time F.

This criterion does not also hold in the strong-driving-
field limit. In this limit the correlation time and the
mean waiting time are the same, but Eq. (40) shows that
~Q( ~ )~ &&1. Figure 1(c) shows m(w) for fl //3 &&1. On
the basis of the two curves shown here we can understand
why fluctuations in the number of recorded counts in the
1ong-counting-time limit should be similar for strongly
driven resonance fluorescence and coherent scattering. If
the Rabi oscillations are averaged in Fig. 1(c)—the first
Rabi maximum against the second Rabi minimum, the
second Rabi maximum against the third Rabi minimum,
and so on —the average w(r) will rise from zero and then
closely follow the exponential distribution w„h(r) —a
form similar to that shown by Fig. 1(a). Then the depar-
ture from Poisson counts should be small by the ratio of
the Rabi period I /II [the rise time for R(~)] to the mean
waiting time r- 1/P [the exponential decay time for
E(r)]. This is indeed what is found in Eq. (40) (variances
actually give this ratio squared).
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photons are emitted. The photoelectron waiting-time dis-
tribution approaches the exponential form for a random
counting sequence.

The expression for w (~) [Eq. (28)] does not have a sim-
ple form when 2l'&1. However, setting 0=p we find

—
2pe

—
( 1 p)Pr—

X [1—2e ' '"~'cos( ,'v'3p—P2 m. /—3)],
where p, =(1—2l')' . The average waiting time is

2.=(21 t, I }„)
where

0
ss 0 2 f12+2p2

(I) = '(2 )—

For 21'=1 Eq. (41) gives

w(~)= —,'p r e

and for g'«1,
w (2 ) = —,'71'(1+ —,'21')pt exp[ —

—,
' I'2(1+ ,'rl')p2-]—

—2 exp( ——', P2 )cos( —,'&3P~ —2r/3) I .

(41)

(42)

(43)

(44)

(45)

ln Fq. (45) we have kept terms in 21' to sufficient order
that Jo"d2. w(~)=1+0(21' ).

Equation (45) shows the approach to an exponential
distribution for low detection efficiency. It has a similar
form to Eq. (34); w (2.) is less than w„„(2) for short times,
rises slightly above w„„(~), and then falls below w„„(~),
decaying slightly faster than w„„(~) for long times —in
comparison with w„h(~), w (r) is slightly peaked about 2..
The expected relationship [Eq. (20)] between w(w) and

g,', '(~) for 21'~0 also holds; we find

lim [w (2.)/ —,'21'p]
g'~0

=1—2e ' '~'cos( '&3P2. 2r—/3) =g,'—, '(2) .

The eft'ect of reduced detection efficiency for other
driving-field strengths is illustrated in Fig. 2. The same
general features are seen. When F cc 1/21' greatly exceeds
the correlation time 1/p, w(~) approaches w„„(~) for
i)) 1/P, while w (~)/rt(I )„approaches g„'(~) for
r-1/

2&pc
Io(&)= d A E' '(r, to+2. )E'+'(r, to+z),

%cog D

where co~ is the atomic resonance frequency and the in-
tegral is taken over the surface of the photoelectric detec-

+tor. The electromagnetic field operators E' —(r, t) may
be written as the sum of free-field operators E f—'(r, t) and
the source operators '

co~ p sinO
E,' —'(r, t)= ea —(t —~r

—r„~/c),
4me, c'~r —r~ ~

+

(46)

(47)

where &+=~+)( —
~, and & =~ —)(+~ are atomic

raising and lowering operators ( ~
+ ) and

~

—) are the
upper and lower states of the atomic transition), r„ is the
position of the atom, p is the atomic dipole matrix ele-
ment, O is the angle between p and r —r~, and e is a unit
polarization vector (lying in the plane of p and r —r„,
perpendicular to r —r„, with a positive projection on p).
Because of the explicit time and normal ordering, free-
field operators can be dropped if the electromagnetic field
is initially in the vacuum state. We then write

Io(2 ) =g6', I( to+ ~)8', + '(to+ z), (48)

with collection efficiency g=(8m. /3) ' fDd0 sin 9, and

the atomic source. We work from Eq. (8) to show
how the exclusive probability densities p (t, , t2, . . . ,
t;[t, t+T]) can be evaluated directly in terms of
dynamical equations for the source. The calculation is
not difficult, but involves cumbersome notation. We
therefore outline the approach for the simplest example.
We first show how w (~) can be calculated from dynami-
cal equations for the source. The general expression for

p (t„t2, . . . , t;[t, t+T]) can be inferred from this re-
sult.

The derivation of w(2) from Eq. (21) relied on the eval-
uation of all the nonexclusive probability densities and
their summation after taking Laplace transforms. The
summation in Eq. (21) can also be performed in the time
domain to give a compact time-domain expression for
w (~). We begin by displaying the time ordering and nor-
mal ordering explicitly. The photon Aux operator is
given by

III. CALCULATION OF EXCLUSIVE PROBABILITY
DENSITIES FROM SOURCE DYNAMICS

'(t) =v'2Pct+ ( t— r„D /c), — (49)

In this section we begin the task of relating photoelec-
tron counting statistics to the quantum dynamics of

where r~D is the distance from the atom to the detector.
Substituting from Eq. (48), and using the cyclic proper-

ty of the trace, Eq. (21) can now be written in the form

w(~)= Itr[8,'+'(t )f6", '(t )]I
oo T ~2

X g ( —21') f 'd~ f d2. , f 'd~, tr[ 6,'+'(t 0+~)6,'+'(t 0+2)6,'+'(to+~, ) . @,'+'(to+2. , )

m=0 0 0 0

X8,'+'(tO)f6,' '(to)8,' '(to+2. , ) . 6", '(to+~, )

XB,' '(t +~ )A", '(t +2-)]
OO ~2

=[«(&go)] '21' g ( —21') f d2 f d2 i
. f dvitr[Se ge ' e ' Sfo],

m=0
(50)
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with

o =g—'(to r aD /c) =exp[L (to r~D/c) lY . (51)

f is the initial density operator for the electromagnetic field and its source, and L and 4 operate on the space of Hilbert
space operators; for any operator 0,

LO =(1/iA')[H, O],
+0=6',+~(r„D/c)OAI '(r„D Ic)=(2/3)a 0&+,

where H is the Hamiltonian in a frame rotating at the frequency co„(we assume on resonance excitation):

(52)

(53)

H=

+fan(toq

—co„)r k vari, q+g R(Kk vari, i.8++Ki*, ir k i& ) —Ii(Q/2)(a++& ), (54)
k, A, k, A.

where r k & and rk & are creation and annihilation operators for the electromagnetic field mode with frequency co&, wave
vector k, and polarization state A, , ~k & is a coupling constant, and 0, is the Rabi frequency for the driving field. The
sum in Eq. (50) is evaluated using the identity

oo 7 T2

exp[(L +aZ)w]= g a f dw f dr
&

. f dw&exp[L (r—w )]4'exp[L (r —w &)]I Sexp(Lr&) .
m=a 0

(55)

Then

w(r)=[tr(Sgo)] '7/'tr[SeI~ 'i''Sfo] . (56)

Equation (56) gives a simple formal expression for the
waiting-time distribution; but it is not very useful for an
explicit evaluation of to(~). The difficulty is that L acts
in the full space of the electromagnetic field and the
source, and the trace is to be taken over the many modes
of the electromagnetic filed as well as the source. We can
remove this difhculty by adopting the methods used in a
master equation treatment of source dynamics. Using
these methods we can perform the trace over the elec-
tromagnetic field a priori, leaving an expression to be
evaluated in the space of the source alone. The master
equation for single-atom resonance fluorescence reads'

I

distribution is defined by the probability density

(61)p&(to+rIto):li (1 )=Ps(7)po(7)

where li, (r) is the probability density for recording a
photoelectric count at to+~ and no counts in the interval
to to to + 'T given a photoelectric count is recorded at to;
ps(~) is the probability density for recording a photoelec-
tric count at to+~, giUen no counts are recorded in the
interval to to to+~ given a photoelectric count is record-
ed at to; and po(w) is the probability that no counts are
recorded in the interval to to to+~ given a photoelectric
count is recorded at to. Equation (60) can be written as
such a product:

w (~) =i/'tr[Sp„(r)]trI exp[(X —il'S)r]po], (62)

p=Lp, where

p„(~)=
exp[(X —i)'S)~]po

tr I exP(X —il'$)r]PoI
(63)

Xp= i (0/2)[cr++ &,p]
is a source density operator, with

+P(2& pd+ —&+a' p
—pa+& ),

where the source density operator p is defined by

(58)
~po

P „(0)=do=
tr(Spo)

p"( to raD Ic)—
tr[Sp(to rgD/c)] .

(64)

p=tr„„d[f(t)] .
using Eq. (53)(59)

The trace over field modes in Eq. (56) is evaluated in the
same approximation used to derive Eq. (57) from the
Liouville equation g=Lf This simply resu. lts in the re-
placements L ~X and g'~p. We have

u (r) =[tr(Spo)] 'rt'tr[Sexp[(X —i/'S)~]Spo] .

p„,(0)=p, =I —) &
—

I
.

From Eqs. (61) and (62) we identity

l~, (r) =i/'tr[Sp„. (r)]
=g'(2P) & +

I p„(~)I+ ),

(65)

(66)
The expression on the right-hand side of Eq. (60) may be
evaluated by solving a set of modified Bloch equations for
the driven atom.

Before we describe the formulation in terms of
modified Bloch equations, let us say something about the
formal structure of Eq. (60); this structure has a simple
and instructive physical interpretation. The waiting-time

and

P o(~) =tr I exP[(X —il'$)~]PoI

=trI exp[(X —g'S)~]I —) &
—

I I .

The physical significance of the density operator p„(r) is
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clear from Eq. (66). The right-hand side of this equation
is just the product of the detection probability g' and the
photon Aux from the source, calculated with respect to
p„(7.). Thus, p„(w) describes the reduced state of the
source (at the retarded time to+ r r—„D/c) inferred from
the measurement, with efficiency g', recording a pho-
toelectric count at to and no counts in the interval to to

to+a. The density operator p„=po describes the re-
duced state of the source inferred from the photocount
recorded at to alone; as expected, this count tells us that
the atom was in the ground state at to —

r~D /c.
To actually evaluate the- expression on the right-hand

side of Eq. (62) we write this equation in the equivalent
form

2.8 8.0

a) (b)

2.1- 6.0—

1.4- 40

0.7 2.0-

0
0

I

50
I

100
2pr

150 200 0
l

10
2pr

l

15 2i

8.0

6.0—

40

2.0-

0i
0

I

10
2pr

I

15 20

FIG. 2. Comparison of the photoelectron waiting-time distributions for resonance fluorescence and coherent light of equal intensi-
ty: (a) 0/&2P= I, g'=0. 1; (b) t1/&2P= 5, q' =0.1; and (c) t2/&2P= 5, g'=0. 01.
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0 =(X—i/'$)O, (69)

where

(X —r/'$)0= i(A/2)[o++o. ,p]+(1—i}')(2/3)o Oo+

w (r) = il'tr I Sexp[(X —rt'$)r]poj

=g'(2P}&+
I f exp[(& —g'~}r]l —

& &
—I] I+ & .

(68)

The action of the propagator exp[(X —il'S)r] on an
operator 0 is found by solving the equation

—2P 0 0 0
(1 —r/')2P 0 0

0 0 —P 0
—6/2 fl/2 0 —P

where 0 has the vector components

o, =&+fof+&, o, =& —fof —&,

O, =Re(&+ IOI —&),

o, =1m(&+ fo f

—&) .

(72)

(73)

O=MO

with

(71)

—/3(o+o 0+Oo+a ) .

[Note that Eq. (69) does not conserve tr(o ), which is why
the explicit normalization appears in Eq. (63).] Written
in matrix element form, Eq. (69) reads

When r/'=0, Eq. (71) reduces to the normal Bloch equa-
tions.

The waiting-time distribution is obtained by solving
Eq. (71) with initial conditions 0, (0)=03 (0)=04(0) =0,
Oz(0)=1. Then w(r)=i}'(2P)oi(r). This calculation
reproduces the result given in Eq. (28). The reduced state
of the source inferred during the waiting times between
photoelectric counts is given by

O, (r)l+ &&+ +O, (r}I—&&
—I+to.(r)(l+ &&

—
I

—
I

—&&+I)
p (r)=

O, (r)+O, (~)
(74)

There is no dependence on 03(r) since the equation for 03 decouples from the remaining three equations and
03(r}=exp( —Pr)03(0) =0.

A generalization of the argument leading to Eq. (60) gives an expression for the exclusive probability densities

p (ti, t2, . . . , t,„;[t, t + T]) in terms of dynamical equations for the source (an alternative derivation appears in Appen-
dix A of Ref. 23). We find

p„,(t, , t~, . . . , t;[t, t+T])
=r/' "'trI exp[(X —/'7S)(t + T —t )]4 /exp[(X —g'$)(t2 —t, )]Sexp[(X—i/'4')(t, —t )]p(t —r„D Ic) f

. (75)

Equation (60) follows as a special case of this result, when, from Eqs. (2) and (4), we write w ( r )

=pz(to, t„+r;[to,to+r])/w, (to). Using the specific form of 4 defined in Eq. (53), Eq. (75) factorizes as

(76)

where w (t, —
t, , ) is given by Eq. (68),

p, (t;[t,t+T])/u, (t )

tion (76) establishes the Markov and stationary (after the
first count) character of photoelectric counting sequences
for single-atom resonance fluorescence.

=tr
f exp[(X —r/'&)(t + T —t )]f —) ( —

l f (77)

p, (t, ; [t, t, ])=r/'(2/3}(+
f I exp[(X il'4')(t, ——t)]

Xp(t —r~D Ic}If+ ) (78)

is the probability density that the first photoelectric
count is recorded at ti if observation begins at t. Equa-

is the probability for no photoelectric counts in the inter-
val t to t+ T given a photoelectric count is recorded att, and

IV. DERIVATION OF THE PHOTOELECTRON
COUNTING DISTRIBUTION FROM EXCLUSIVE

PROBABILITY DENSITIES

We have derived Eq. (75) from the theory of photoelec-
tric detection, which describes the sequences of photo-
electrons generated by a field illuminating the photo-
cathode of a photoelectric detector. The connection with
source dynamics was made using Eq. (47) to express the
field at the detector in terms of the dipole operators of
the radiating atom. It is also possible to arrive at Eq. (75)
without referring to the theory of photoelectric detection
at all, using the master equation for the atom to follow
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the sequences of photon emissions. We will describe this
alternative approach in the next section, but first let us
calculate the photoelectron counting distribution from
our result for the exclusive probability densities.

The photoelectron counting distribution for single-
atom resonance fluorescence has been calculated by a
number of authors. Most of these calculations"' ' use
the Kelly-Kleiner formula'

p(nrem+, rI=(7'. ' exp[ —n(i+T i)])[Q(t + T, t)]"
n~

(79)

where II(t+T, t) is defined by Eq. (9). The right-hand
side of Eq. (79) can be evaluated in a series of steps paral-
lel to the calculation of w(r) in Sec. II. The exponential
is expanded to give

(n +m)!
p(n, t, t+T)=rt" g ( rl)—

n!rn! 0m=0

X f "' d&„, . f 'dr, &TI(t+r„)
0 0

XI(t+r„+,). . . I(t+&i):),

(81)

then the correlation functions in the integrand factorize as in Eqs. (22) and (23), and the summation can be performed
after taking Laplace transforms with respect to T. The calculation of p (n, t, t + T) from exclusive probability densities
is a little more straightforward. From Eqs. (5) and (76) we have

T 7 T2

p(n, t, t+T)= dr„dr„, dripo(T —r„)w(r„—r„,) w(r2 —&i)pi(ri~ ),
0 0 0

where r = t —t, and we have defined [Eqs. (77) and (78)]

po(T —r„)= p, (t +r„;[t+r„,t + T])/w, (t +r„)=trI exp[(X —g'4)(T —r„)]~—) ( —
~ I, (82)

and

p, ( r, ~
t):—p, ( t + r, ; [t, t + r, ] ) = il'( 2/3) ( +

~ exp [ (5 —il'l )r, ]p( t r„D /c )—~
+ ) .

Taking Laplace transforms, Eq. (81) gives

p(n, s, t)=go(s)[w(s)]" 'p, (s~t) .

(83)

(84)

p(n, s, t) is the Laplace transform of p(n, t, t+T) with respect to T, and po(s) and pi(s~t) are the Laplace transforms,
with respect to r, of po(~) and p, (r~t), respectively. Equation (84) displays the underlying structure of the sequence of
photoelectric counts —a first count described by p, (r~t), followed by n —1 counts described by w(r, r, , ), —
i =2, . . . , n, and finally an interval without counts described by po(T —r„). Explicit expressions for w(s) and po(s) are
found by solving Eq. (71) with O(0) =

~

—) ( —
~, and the explicit expression for p, (s~ t) is found by solving the same

equation with O(0) =p(t —r~D/c). Equation (27) gives the result for w(s). For po(s) and p, (r~ t) we find

(s +P)(s +2P)+0Pos=
s(s +P)(s +2/3)+0 (s +rt'/3)

(85)

s (s +/3) ( +
~ p, ~

+ ) —s 0 Im( +
~ p, ~

—) + II /2
p, (s~ t) = il'(2/3)

s (s +/3)(s +2/3)+ 0 (s + il'P)
(86)

where p, =p(t —r„D/c).
Of course, the simple structure of Eq. (84) is lost in the

time domain. Indeed, inversion of the Laplace transform
leads to a very complicated expression for p(n, t, t +T).
Actually, the moments of p (n, t, t + T) are more relevant
to experimental measurements than the full counting dis-
tribution. Low-order moments are given by relatively
simple expressions, and, in particular, much attention has
been paid to the quantity Q = b, n /n —1 which charac-
terizes the sub-Poissonian character of the photoelectric
counts. ' ' Explicit results for p (n, t, t + T) are still use-
ful, however, for illustrating the sub-Poissonian statistics.

Since very few plots of the counting distribution have ap-
peared in the literature we present a number here.

Most of the published expressions for p (n, t, t + T) are
limited to special cases, such as unit detection
efficiency, ' short or long counting times, ' ' or weak
or strong driving fields. ' Singh has given a general ana-
lytic result for resonant excitation. A slightly difT'erent

algorithm was used to generate the curves plotted in Figs.
3 and 4. This algorithm is described in the Appendix.
Figures 3 and 4 compare the photoelectron counting dis-
tribution for single-atom resonance fluorescence with that
for coherent scattering of the same intensity. Both
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rtmt
p ~p (87)

his treatment of photon antibunching by absorber theory:
"In absorber theory an upward transition in the detector
atom c, which constitutes the measurement process, can
be interpreted as the actual physical cause of the corre-
sponding reversion of the atom to its ground state despite
the fact that the transition in c occurs after a has reverted
to its ground state. " The idea that photoelectric detec-
tion plays a causative role in atomic state reduction ap-
pears again in recent work on quantum jumps: "The
detection of this photon then projects the atom in a lower
manifold;" ". . . giving rise to discontinuities or jumps
associated with the detection process;" "These experi-
ments have a special fascination, . . . , they allow one to
watch the reduction of the wave function by the measure-
ment process on the oscilloscope screen. " (emphases
added).

What role does photoelectric detection actually play in
the return of the atom to its ground state after each pho-
ton emission? Indeed, what does it mean to speak of pho-
ton emissions as realized events separate from photoelec-
tron detection? We offer an answer to these questions
based on the calculation that follows. The viewpoint for
which we argue holds that photoelectric detection does
not cause atomic state reduction. Projection of the atom
into its ground state is caused by the dissipative nature of
the atomic dynamics, and reoccurs, on average, at the
mean spontaneous emission rate, with complete
indifference to the presence or absence of an observer.
Photoelectric detection merely monitors emitted (real-
ized) photons. It does not intrude into a coherent quan-
tum dynamic in the manner implied by a measurernent-
induced wave packet reduction; it is the irreversible decay
into the vacuum that interrupts the coherence of the
source dynamics. No doubt, in general outline, this
viewpoint is already widely held; it is the natural one sug-
gested by intuition. However, it is rarely recognized ex-
plicitly and has not been stated succinctly in the theoreti-
cal literature on resonance fluorescence.

We begin with the master equation for the atom plus
quantized driving field:

source can be used for the same purpose that Cook uses
the momentum quanta gained by the atom. We will
eventually recover results for a classical driving field by
taking the formal limit of infinite photon number and
finite energy density. If the initial state of the driving
field has mean photon number no and photon number
variance cr, this limit is taken with

no~~, g~O (V~~),
crlno~O, g+no=Q/2const .

In this limit

(90)

tr/(X'P ') =X(tr/P ') =XP, (91)

where the trace is taken over the driving field; Eq. (87)
then reduces to Eq. (57).

The formal solution to Eq. (87) has

p '(t + T —r„D Ic)=exp(X'T)p '(t —r~D Ic) . (92)

where

wt

n=0
(93)

po=lO. —)(» —
~po, —,o, —

and, for n ~1,
I

Pn —1, +;n —1, +P„'= (~n —1, +) ~n, —))
pn, —;n—1, +

(n —I, +~
X (n, —

f

pn —], +;n, —
I

pn, —;n,—

(94)

(95)

We wish to separate the time evolution generated by
exp(X'T) into two parts: evolution that is confined to
each manifold of source states with a definite number of
energy quanta, and evolution between these manifolds,
accompanied by the loss of one energy quantum from the
source. We first introduce a projection operator P that
separates the (block) diagonal part of the density operator
describing source states with definite numbers of energy
quanta:

with

X'p '= ig[a&++a cr,p ']

+P(2cr p'cr +
—cr +cr p' —p'& + cr ),

where

It can be shown that Pp ' evolves independently of
(1 —P)p ', formally, that P commutes with X'. Thus,

Pp '(t + T r„D Ic)=exp(L'T)P—p '(t —r„D Ic) .
(88)

We now decompose the source dynamics by writing

1/2
CO gP
2AeOV

(89)

is the atom-field coupling constant, and p
' is the density

operator for the coupled atom-field source. We used a
classical driving field in Sec. III [Eq. (58)]. Quantizing
the driving field now is simply a temporary notational de-
vice that allows us to track photon emissions using the
quantum number on the energy states of the source. The
number of photons emitted during any time interval is
given by the number of energy quanta lost during that in-
terval from the source. Thus, energy quanta lost by the

X'=(X' —S)+4 . (97)

Sp„' =p'„, +.„, ~n+—1, —)(n —1, —
~

. (98)

Note that 4 also sets the atom in its ground state, accom-
plishing the atomic-state reduction seen in Eqs. (64) and
(65). Using Eq. (96) and the identity (55) we now write

X' —4 has the property that it only couples matrix ele-
ments within the manifold spanned by ~n

—1, + ) and
~n, —) to other matrix elements within that manifold
[also (X' —S)p o=0]. 4 couples the manifold spanned by
states with n energy quanta to the manifold spanned by
states with n —1 energy quanta:
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Pp '(t + T —r AD/c) =exp I [(&'—&)+&]T)Pp '(t —r„D lc)

f dt f dt, . f dt, exp[(X' —g)(t + T —t )]g
m=0

X exp[(X' —4)( t —t, ) ]4

Xexp[(X' —S)(t& —t)]Pp '(t —r„Dlc) . (99)

The exercise we have performed here merely isolates the part of the source dynamics associated with energy loss into
the fiuorescent field. Use of the projector P is not, in fact, essential. We could write Eq. (99) with Pp

' replaced by p ',
as a decomposition of Eq. (92). However, the projector allows us to visualize the significance of 4 and X —4 more
readily. Pp (t —r„D/c) is a density operator describing a statistical mixture of source states with definite numbers of
energy quanta at time t —r„D/c:

QO p '„(t —r„D Ic)
Pp (t rAD/c) X p (t rAD/c)

„=p tr[p '„(t —r„D Ic)]
(100)

where p„=tr(p '„)=p'„, +.„,++p'„.„ is the probability that the source contains n energy quanta. Under the ac-
tion of 4 and X —0' in the integrand of Eq. (99), a source state with n energy quanta at time t —

rAD /c, evolves into a
state with n —m quanta at time t+T —r~D/c. The photon emissions are generated by the m appearances of 4,
separated by intervals of evolution without photon emission generated by X —S. If we define the probability for n pho-
ton emissions during the interval [ t —r „Dlc, t + T —r „DIc] by

p, (n, t, t + T) —=p„(t, t + T) (101)

t2

dt, p~(t&, t2, . . . , t~;[t, t+T]),
where

p' (t„t,, . . . , t;[t, t+T])
=tr[exp[(L' —4)( +tT —t )]4 Sexp[(X' —S)(t~ —t, )]/exp[(&' —p)(t )

—t)]Pp (t —r„ /c) I . (103)

In the limit def ned by Eq (90) the trace over the driving field is evaluated as in Eq. (91), and we have

p' (t&, t&, . . . , t;[t, t+T])

where p„(t, t + T) is the probability that the source is in a state at t + T r„D I—c reached from p '(t —r„D ~c) with the
loss of n energy quanta, we can write

t

p, (n, t, t+T)= f dt f dt (102)
t

=trt exp[(X —S)(t + T —t )]S Sexp[(L —$)(t2 —t
& )]+exp[(+ —p)(t —t)]p(t —r /c) I (104)

we have used trf (Pp ') = trf (p ') =p.
Equatio~ (104) defines the exclusive probability densities for photon emissions; they are the same as the exclusive

probability densities for photoelectron counting sequences for unit detection efficiency [Eq. (75)]. To take the final step
giving the p (t&, t2, . . . , t,'[t, t + T]) for g &I, we must simply account for the fact that an emitted photon is detect-
ed with probability 9 ~ and is not detected with probability (1 —~ ). Let us look at the simplest example, the derivation
of p)(t), [t, t+T]). The one photoelectric count recorded at t, corresponds to the detection of a photon emitted at

rAD /c'. This photon emission may be preceded during the interval [t —
rAD /c, t&

—
rAD /c), and succeeded during

the interval (t& —
rAD Ic, t + T —

rAD Ic], by any number of undetected emissions. Therefore,

QO QO E+ T —
El T2

P, (t&, [t, t+T])= g g q'(I q')'+'f —dr', f 'dr,', . f drI
p =Oq =0

—t
1

T
P

T2

dip dip 1

' ' ' drlpp+q+1(t +rl, . . . , t +rp, tl, tl+r], . . . , t]+rq, [t, t + T]) .
0 0 0

(105)
After substituting for

pp+q+ ((t +et, . . . , t +rp, t(, t) +&I, . . . , t) +wq,'[t, t + T])
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from Eq. (104) and evaluating the sums using Eq. (55), we find

p, (t); [t, t + T])=g'tr[exp[(X —4)+( I q—')g](t + T —t, )/exp[ [(X—4)+( I —g')g](t) —t) )p(t —r„D /c) )

= r)'tr [ exp[(X —rt'g)(t + T —t, )]g exp[(X —rt'g)(t) —t) ]p(t —r~D /c)] . (106)

Thus, p', (t, ; [t, t + T] ) is transformed into
p)(t), [t, t+T]) by the substitution 0'~g'~V. A more-
general calculation shows that Eq. (104) is transformed in
the same manner into Eq. (75).

We have developed a picture of photon emission se-
quences that parallels the picture of photoelectron count-
ing sequences in Secs. II and III. We are permitted the
interpretation that photons are emitted, accompanied by
the consequent reduction of the atomic state, without
reference to the process of photoelectric detection.
Detection is simply a matter of casting a net to catch em-
itted photons; they are caught randomly with probability
g'. We may replace the statement, the atom returns to its
ground state at to —r„D/c due to photoelectric detection
at to, by the statement, a photoelectric count is recorded
at to because the atom returned to its ground state (with
the emission of a photon) at to r„D/c. —

The exclusive probability densities for photon emission
[Eq. (104)] can be written in the factorized form of Eq.
(76). In particular, the distribution of waiting times be-
tween photon emissions is given by

LU~ ( r }= lc ( r)~ =i'
(107)

where

(108)

tr(e) "''~ —) &
—

~
) is the probability that no photon is

emitted during the interval to —r„D/c to t+~—r„D/c
given a photon was emitted at to —r„D/c, and p(r) de-
scribes the reduced state of the atom at time
t„+~—r~D/c given a photon is emitted at t„—r~D/c
and no photons are emitted during the interval
t„—r ~D /c to to +~—r ~D /c —the reduced state of the
atom between photon emissions. According to our inter-
pretation this state is reached dynamically, without any
influence from the observer; although, of course, observa-
tion is necessary to know when each return to the ground
state takes place. On the other hand, p„(r) defined by
Eq. (63) describes an atomic state inferred from imperfect
information (g'&1) about the photon emission se-
quences. It describes the observer's state of knowledge
about the atom, given the available information is collect-
ed with less than perfect efficiency.

We are suggesting that photon emission sequences may
be inserted as realized events lying behind the observed
photoelectron counting sequences. We can do this be-
cause the source is an open system that loses energy ir-
reversibly to the vacuum. The irreversibility effectively
performs a continuous quantum measurement, without

the need for a conscious observer to record the emitted
photons. However, we must be careful not to go too far
with our realized photon emissions; the observer does
have a role to play. Photoelectron counting sequences
are described by a classical stochastic process. Photon
emission is a mixture of classical stochastics (describing
emission times) and quantum mechanics. Source dynam-
ics are certainly not described in their entirety by a classi-
cal stochastic process. We cannot even say that they
decompose, unambiguously, into photon emission events
that leave the atom in its ground state, connected by
quantum evolution without emission. This is one permis-
sible interpretation, one that is matched (by the choice of
S) to the behavior observed with a broadband detector.
However, if the fluorescence is observed in a different
manner, different behavior will be seen, behavior that
does not fit the same interpretation of the emission
events. Specifically, a narrowband detector designed to
record photons within the frequency range of one Rabi
sideband observes the atomic state reduced to one of the
"dressed" states, a superposition of the ground and excit-
ed states. A different decomposition to that given by Eq.
(97) can isolate the emission of these photons. In fact, it
is possible to decompose 4 into four pieces, each describ-
ing one of the four types of transitions down the dressed
state cascade, each reducing the atomic state in its own
way. The master equation [Eq. (57}] combines all avail-
able pictures of the photon emission process in a single
quantized dissipative dynamical equation. As we expect
with a quantum system, different measurement schemes
see a different facet of a multifaceted quantum dynamic.

The observer's role is to select the facet of the source
dynamics revealed by the method of observation. We
should not confuse this role with the cause of the atomic
state reduction. All potential reductions are incorporat-
ed within the source dynamics, and performed by the ir-
reversible interaction with the vacuum, in the absence of
an observer. The distinction is not purely semantic. This
is made clear when we realize that there are other situa-
tions in which photoelectric detection does cause a col-
lapse of the wave packet. This occurs, for example, when
the detector monitors an otherwise closed system, ex-
tracting energy as it counts photons from a system that
would not show a dissipative dynamic if the detector
were turned off. Various authors have described photon
counting of this type. Most recently Srinivas and
Davies discuss this approach as an example of the theory
of continuous quantum measurement. In fact the
mathematical form of the decomposition of source dy-
namics outlined in this section parallels the language used
by Srinivas and Davies to treat the interaction between a
photoelectric detector and the field it measures. But it is
irreversibility that provides the common ground, not
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detector-field interaction. In the case of single-atom reso-
nance fluorescence the irreversibility certainly does not
originate in the presence of the observer's detector (one
may, of course, take the viewpoint of absorber theory
where it originates in the extended detector provided by
the entire absorbing environment). Mandel has em-
phasized the distinction between open and closed systems
in the relationship between the work of Srinivas and
Davies and the Kelly-Kleiner theory of photoelectric
detection. He argued that the Kelly-Kleiner theory is
appropriate for treating open systems. Using single-atom
resonance fluorescence as an example, we have shown ex-
plicitly how Kelly-Kleiner theory accounts for the photo-
electron counting statistics of a photoemissive source;
with a modified interpretation it actually incorporates the
language of Srinivas and Davies.

VI. SUMMARY AND CONCLUSIONS

We have studied photoelectron counting sequences and
photon emission sequences for single-atom resonance
fluorescence, emphasizing exclusive probability densities
rather than the nonexclusive probability densities more
commonly discussed. Photoelectron counting sequences
are Markovian and stationary (after the first count) and
are essentially characterized by the distribution of wait-
ing times between photoelectric counts. We have calcu-
lated this waiting-time distribution, w (r), allowing for ar-
bitrary detection efficiency, both from the Kelly-Kleiner
theory of photoelectric detection and from a modified set
of Bloch equations for the atomic source.

For times much shorter than the average time between
photoelectric counts, w(r) is proportional to the degree
of second-order temporal coherence g„'(r). Its full time
dependence gives a clearer view of photon antibunching
and sub-Poissonian counting statistics in resonance
fiuorescence than does g,', (r). In the limit of weak driv-
ing fields or low detection efficiency w (r) approaches the
exponential form for coherent light at all times except
those that are much shorter than the mean time between
photoelectric counts. The most dramatic nonclassical
effects are seen for unit detection efficiency and moderate
driving-field strengths, where w(r) is peaked about the
mean time between counts. Then photoelectric counts
are recorded approximately regularly spaced in time.

We have formally related photoelectron counting se-
quences and photon emission sequences by calculating ex-
clusive probability densities from two approaches —first
from the theory of photoelectric detection, and then
directly from the master equation describing the dissipa-
tive dynamics of the atomic source. We have argued that
photon emission may be viewed as a realized process un-
derlying observed photoelectron counting sequences.
The detector simply records an emitted photon with
probability g', or fails to record it with probability
(1 —rt'). From this point of view the atomic state reduc-
tion associated with each photoelectric count is caused by
the irreversible interaction of the atom with the mul-
timode vacuum, not by the detection process itself. We
have calculated the reduced state of the atom between
photoelectric counts inferred by an observer monitoring
the fluorescence with a detection efficiency g'.

Our discussion has been directed specifically at the
problem of single-atom resonance fluorescence. Howev-
er, the formal approach of Secs. III and V may be applied
to analyze photoelectron counting sequences for other
photoemissive sources. An important example is a radi-
ating optical cavity with intracavity interaction. This
general scheme includes such systems as the laser, optical
bistability, and the parametric amplifier. Photoelectron
counting sequences for a radiating cavity mode are not
generally Markovian and the waiting-time distribution
does not have such central importance. Future work will
show whether exclusive probability densities provide a
useful and practical tool for analyzing the emission and
counting statistics for such a source.
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APPENDIX: AN ALGORITHM
FOR COMPUTING p(n, t, t + T)

Inversion of the Laplace transform p(n, s, t) requires
the calculation of coefficients C„', i = 1,2, 3,
m =0, 1, . . . , n, in a partial fraction expansion of the
right-hand side of Eq. (84). Then

n (2 7)m 3

p(n, t, t+T)=~)'" g g C„' exp(X, , 2PT),m. .
)

n™

where the A, , =s, /2p are eigenvalues of the matrix

N= 1 —g' 0
—fI /4P fl /4P

0/2P
—Il /2P (A2)

0
w(s) = r)'(2P) (N sI )

' 1—
11

&+Ip, l+ &

(A4)

p &
(sl t) =g'(2p) (N —sg ) &

—
Ip, l

—
&

Im&+ lP, l

—
&

(A5)

where p, —:p( t —r „D /c ) and I is the 3 X 3 identity matrix.
The coefficients C,', appearing in Eq. (A1) can be

computed from the eigenvalues and right and left eigen-
vectors of X. We define matrices

N governs the time evolution of po(r), w (r), and p, (alt).
It is obtained by deleting the third row and third column
from the matrix M defined by Eq. (72). We have

0 0
Po(s)= (N sI) '

1 +—(N sI) ' 1—
0 2z

(A3)
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and

R =(R,~)=(r~r2r3) (A6) Then

Co,o=&;r; ~cr; (A 15)

L—:(L,, ) =(1,I21, )

with

LR=I,
where

Nr, =k,-r, ,

(A7)

(A8)

(A9)

P; 1', +13,r; P; rk+13t, r,

and, for n ~2,

(A16)

(A17)

and

(A10)
Cl

n, O

~ —t a, CJ, , —(
—1)"a C„'

r=0

(A. ,
—s) 0 0

The transformation L N R =diag(X„A2, A, 3) diagonalizes
N, and we may write a;C„",„—(

—1)"crt, C„'

(A.,
—

Ak )"
(A18)

(N sI) '=—R 0

0

(A.z
—s)

0

0

(A, 3
—s)

L ~ Cn, m +i n —1, m —1

n —1

(A11)

The following algorithm for computing the C„' is de-
rived by substituting Eqs. (A3) —(A5) and (All) into Eq.
(84), and then collecting terms in (s —

A, , )

We define (i =1,2, 3)

r=m
C„'

)r —m+1
J i

+
(g g )r —m+1

e, =R1iL,2,
(t3; =(R t;+R2; )L;~,

r; =R i, (L;&&+ Ip I+ &+L;z& —
Ip, I

—
&

+L, 1m&+ Ip, l

—&) .

(A12)

(A13)

(A14)

1 ~m ~n —1, (A19)

Cn, n ~i Cn —1, n —1 (A20)

in Eqs. (A16), (A18), and (A19), (i,j,k) is a cyclic permu-
tation of (1,2,3).
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