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We apply multichannel-quantum-defect theory (MQDT) to multiphoton ionization of rare gases
in lowest-order perturbation theory. We determine MQDT parameters of J =1,3 odd-parity states,
J =0,2 even-parity states in xenon and krypton by fitting experimental energy levels and construct-
ing Lu-Fano plots. We present calculations of two- and three-photon ionization of xenon and kryp-
ton in the autoionization region between the two thresholds. We compare autoionization spectra
and also photoelectron angular distributions to experimental data [S. T. Pratt, P. M. Dehmer, and J.
L. Dehmer, Phys. Rev. A 35, 3793 (1986); J. L. Dehmer, S. T. Pratt, and P. M. Dehmer, ibid. 36,
4494 (1987)]. Agreement between theory and experiment is reasonable, especially for krypton.

I. INTRODUCTION

Rare-gas atoms, and in particular, xenon and krypton,
are often favored subjects for experimental studies of
multiphoton ionization (MPI). Until recently, most of
these experiments were performed at fixed frequencies
and at very high laser intensities. However, with the de-
velopment of pulsed tunable uv lasers, one is now able to
study in more detail the many-electron response of an
atom exposed to an intense radiation field. Some experi-
ments are oriented towards the spectroscopy of rare
gases, the multiphoton absorption being only a means for
probing states which either cannot be reached by tradi-
tional vuv absorption spectroscopy, or reveal different
facets of atomic dynamics through multiphoton absorp-
tion. Thus Blazewicz et al.! have studied Rydberg series
and autoionizing states in xenon and krypton through
four-photon excitation, while Dehmer and co-workers®?
have investigated three-photon autoionization processes
(line shapes and photoelectron angular distributions) in
Xe and Kr. The results of Dehmer and co-workers®? are
discussed in some detail in this manuscript.

In other experiments, performed at higher field
strengths, the radiation field begins to seriously perturb
the atomic states, causing an interplay between effects
due to the field and those due to the atomic structure and
dynamics. Landen et al.,* for example, have studied
MPI of krypton through three-photon-resonant four-
photon ionization at very high laser intensities (up to
7.8 10" Wcem™2). Hutchinson and Ness,” using two
colors, have reported laser-induced autoionization effects
in xenon. All of these works, to which must be added, of
course, the numerous studies® on above-threshold ioniza-
tion, multiple ionization, and harmonic generation (al-
though generally performed at fixed laser frequencies),
point to the need for theoretical techniques to describe
multiphoton absorption in rare gases and other complex
atoms.

Unfortunately, the theory of multiphoton ionization of
the rare gases has remained rather underdeveloped. The
approach of Kulander,” which consists in numerically
solving the time-dependent Hartree-Fock equations, en-
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ables him to calculate high-order multiphoton ionization
processes, going beyond lowest-order perturbation
theory. Although this is a very valuable method, it does
not provide, at least for the time being, information on
the details of the atomic structure, fine-structure effects,
photoelectron angular distributions, etc. Other recent ab
initio calculations,®® though limited to two-photon ion-
ization (in the weak intensity limit), point out the role of
electron correlation effects in the multiphoton absorption
process. Due to the complexity of the problem, none of
these approaches includes fine-structure effects, responsi-
ble for the series of autoionizing resonances between the
two ionization threshold P, ,, *P,,, of the heavy rare
gases.

Although multichannel-quantum-defect theory'®~
{(MQDT) has been extensively used in the description of
photoabsorption spectra of the rare gases,!>”!* apart
from an early and preliminary attempt, '® it has not been
applied to the description of multiphoton ionization spec-
tra. In the present work, we apply MQDT to the calcula-
tion of multiphoton absorption processes in xenon and
krypton. Our aim is to derive transition strengths and
ionization cross sections sufficiently accurate for a realis-
tic study of multiphoton processes in rare gases and com-
parison with experiments.>”> In this spirit, we present
calculations of two- and three-photon ionization in the
autoionization region between the two ionization thresh-
olds and slightly above the second threshold. We com-
pare some of the results to experimental three-photon au-
toionization spectra and photoelectron angular distribu-
tions.>3 Such measurements are extremely valuable for
MPI calculations in relatively weak fields as they provide
critical tests of the atomic structure content of the
theoretical model.

We adopt the so-called “‘eigenchannel” formulation of
Fano,'""'? well adapted for the rare gases, since the trans-
formation matrix U;, (eigenvectors of the reaction matrix
R) is close to a jj-LS coupling transformation. We per-
form a MQDT analysis of the J=1,3 odd-parity and
J=0,2 even-parity Rydberg series of xenon and krypton,
using the graphical method developed by Lu and
Fano'>~ ! and the computer program of Robaux and
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Aymar.'® MPI cross sections are calculated within

lowest-order perturbation theory for the radiation field,
by limiting the summation over intermediate states to the
discrete spectrum. The dipole matrix elements from the
ground state to the J =1 excited states are determined by
fitting to experimental oscillator strengths.'>!'” The di-
pole matrix elements between excited states are calculat-
ed by using MQDT wave functions, whose parameters
have been determined from the analysis of experimental
energy spectra.

In Sec. II we briefly review multichannel-quantum-
defect theory and present the numerical methods used to
calculate multiphoton ionization processes, in particular,
autoionization spectra and photoelectron angular distri-
butions. In Sec. III we present these results and their
comparison to existing experimental data.??

II. THEORY

Quantum-defect theory is based on the fact that a Ryd-
berg electron moves essentially outside the core region
under the simple influence of the core Coulomb potential.
The effect of short-range interactions (inside the core re-
gion) can be described by a small number of parameters,
slowly varying with energy. These parameters can be
determined by ab initio calculations®® %2 or, as in the
present approach, semiempirically by analyzing available
data!?~ %17 (energy levels and oscillator strengths). Since
the details of the theory can be found in many pa-
pers' 121516 and reviews,'® we present here only those
equations that are necessary for the self-contained exposi-
tion and discussion of our work.

A. Review of multichannel-quantum-defect theory

The MQDT introduces different basis sets satisfying
boundary conditions at infinity or near the origin. The
collision channel wave functions W, are defined by'°

Y, =y, (f;cosmv; +g;sinmv;) , (1

where x; contains the core wave function and the
angular-spin part of the Rydberg electron wave function.
The remaining radial part is expressed as a linear com-
bination of regular (f;) and irregular (g;) Coulomb wave

functions. The total energy of the atomic system is
defined by
E, =g, +1; , (2)

where ¢; is the electron energy and I; the energy of the
core for the ith channel.

The f; and g; Coulomb wave functions are defined to
be energy normalized for positive energies. (They corre-
spond to the s,c wave functions of Seaton. 19) The asymp-
totic behavior of ¥, for g; 20 is

W, ~x,;(2/7k;) *sin(k;r +0,—mv,) , 3)
with

9, = liﬁ+112k +argl
i 2 kin ,-r arg ’

i
L +1 k_], 4)

where k;=1/2¢? denotes the momentum of the photo-
electron, /; its orbital angular momentum, and

I

k.

1

6, =argl |, +1—

the Coulomb phase shift.

When ¢; <0, the boundary condition at infinity re-
quires that v; satisfies the following condition (in atomic
units):

_ 1
g;=— —2;72‘ . (5)
WY, can be expressed in terms of the Whittaker function W
as

W, = y,(— D)Wy, — ) T(v, + 1, +1)] 12
XWV’_y,iH/Z(Zr/V,.) . (6)

The close-coupled channel wave functions W, satisfy
boundary conditions at a small distance r =r_, such that
the potential seen by the electron at r = r, can be written
as —Z/r. They take into account the short-range in-
teractions and are defined by

V,= 3 x; U (ficosmu,—g;sinmu,) . (7
i

The matrix U, connects channels i to the close-coupled
eigenchannels a. mu, represents the phase shift due to
the short-range interactions (at » =r.). The summation is
performed over the total number of independent channels
n,(=n,).

Both boundary conditions are satisfied if the wave
function of the system can be written as a linear combina-
tion of (W¥,) and as a linear combination of

a a:l,na
(¥, )izl,nlﬁ
V= A4.¥V,=>ZVY, . (8)
a i
This leads to the following equations:
> Ugsinm(v;, +u,)4,=0, 9)
> Ucosmlv,+u)A,=Z,; , (10)
a

A nontrivial solution of Eq. (9) requires that
det(F,;,)=det[ U, sinm(v; +pu,)]=0 . (11)

The solution of Egs. (11) and (5) in the discrete spectrum
and comparison with experimental data allows the deter-
mination of the quantum-defect parameters x,, U;,. Con-
versely, knowledge of the quantum-defect parameter
yields considerable information on the atomic spectrum:
it enables one to determine the energies of high Rydberg
states, and by extrapolation, the positions and line shapes
of autoionizing states. An equivalent formulation!®!>16
of Eq. (11) is

det(tanmv+R)=0, (12)
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where tanmv is the diagonal matrix with elements
(tanmv;);~, , and R=U tanmuUT7 is the reaction matrix

describing the interaction of the electron with the core
during the ‘“‘collision.” tanmu is the diagonal matrix

(tanmpy)g=1,n -

B. MQDT wave functions

For practical reasons, we choose to express MQDT
wave functions as linear combinations of the collision
wave function ¥; (which we calculate). We distinguish
three different regions.

(i) Discrete spectrum (all channels closed; €; <0 for all
i). The normalized MQDT wave function ¥ can be writ-
ten (for r 2 r,) as

v=TS ZWV,/N, (13)
with!?
d
N'=3zhi+ 3 ey (14)
i a dE

In Eq. (14), we neglect the energy dependence of the U,,
matrix. '?

(ii) Autoionization region (np channels open, i.e., such
that €; 20). There are n, independent solutions V¥, writ-
ten as

v,= ZZip\l/,p/Np , (15)

where ¥, , is defined by Eq. (1) with v;=—7,. The phase
shift 7, is chosen among the n, possible values of the
quantum defect —v;, where j denotes an open channel.
The normalization constant N, is such that

N=3 Z} (16)
i,open

and N, varies strongly with energy in the vicinity of the

resonances; it assures the energy normalization of the
wave function.

(iii) Continuum spectrum (all channels open, g; 20 for
all 7). There are n, independent solutions which can be
chosen to be the close-coupled channel wave functions ¥,
(or any linear combination of these wave functions). In
order to stress the continuity between the different energy
regions [see Eqs. (13) and (15)] we write Eq. (6) as

\ya: 2 Zia\yia ’ (17)
with Z; = U,, and V¥,, defined by Eq. (1) with v; = —p,,.

C. Determination of MQDT parameters

In the present work we study two- and three-photon
ionization and autoionization of xenon and krypton. The
types of intermediate and final states involved in these
processes are indicated in Fig. 1. We need to determine
the MQDT parameters for the J =0,2 even-parity and
J =1,3 odd-parity Rydberg series. Each J state indicated
in Fig. 1 consists of several channels converging towards

A. ’HUILLIER, X. TANG, AND P. LAMBROPOULOS 39

ZP‘
. .
J=1 s,d 2 J=0
y P P
{J=3d,g Ao A {J=2p,f
J=0
J=2 p,f
J=1s,d
J=1s,d
5p6 's

FIG. 1. Schematic representation of the energy levels and
Rydberg series.

one of the two ionization thresholds ?P;,, or %P, ,. For
example, the J =2 even-parity subset contains the four
channels [P3,,1f7,5, [P321f5/05 [P321P320 [P321P1 )
(in jj coupling notation) converging to the first ionization
threshold and the two channels [P, ,,]fs,, [P, 13
converging to the second ionization threshold. The J =1
odd-parity series in xenon and krypton have been exten-
sively studied in the literature.'>'*!'7 The J =3 { states
of Kr have been analyzed by Aymar et al.,' in connec-
tion with detailed experimental measurements.?® We
shall therefore comment in more detail on the analysis of
the J =0,2 even-parity states.

Since only two ionization thresholds are involved, the
quantum numbers v; [Eq. (5)] can only take two different
values v, ,,v; ,. Equation (11) can be cast in the form

F(v,,,vy,,)=0 (18)

which, with v,,, defined modulo 1, determines the
energy-dependent Lu-Fano plot'? in the (v; 5, v, ,,) plane.
Theoretical energies (in the bound spectrum) are the in-
tersections of Eq. (18) and

E=I,,—1/2v,,=I,,—1/2v} , . (19)

For given J and parity, the MQDT parameters u, and
U, (where pu, is chosen to depend linearly on the energy)
are determined by fitting theoretical energies to experi-
mental energies.?> " 2° In the case of the rare gases, the
short-range interactions are dominated by the electrostat-
ic interaction: the close-coupled channels o are nearly
LS couples. The transformation matrix U,, is therefore
expressed as
Uo,=3SU_V (20)
a

ia” aa ’

where @ represents the LS-coupled channels, U, is the
Jj-LS transformation matrix, and ¥ describes the devi-
ation of the “true” close-coupled wave functions from
pure LS coupling due to spin-orbit interaction or
configuration mixing (e.g., between p°p'D, and
p’f'D,). V ;o 1 usually expressed as a product of rota-
tion matrices.

When a large number of channels is involved (e.g., six
in the J =2 case), and when available experimental data
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are scarce, fitting of energy levels may lead to several sets
of parameters; it is essential to use all possible informa-
tion on the dynamics of the multielectron interaction in
order to determine uniquely these parameters. A first
difficulty is to assign the parameters u, (whose first es-
timation can be determined on the Lu-Fano plot!'?) to the
corresponding LS-coupled channels. Consider, for exam-
ple, the J=2 p states. The energy splitting for the
different LS term involved can be expressed as a function
of Slater integrals:

E(*P)—E(*D)=%F*5p,np), 21
E('D)—E(D)=2G%5p,np) . (22)

Since G°<<F? (which has been verified by an indepen-
dent calculation), this leads us to assume that
E(PP)>E('D)>E(*D) and that the quantum defects
w(33*1L) vary in the opposite order. This ordering of the
U, parameters will be true as long as the spin-orbit in-
teraction (inside the core) is smaller than the electrostatic
interaction and that the channel mixing is not too impor-
tant.

A useful check on the accuracy of the MQDT parame-
ters obtained by fitting the energy levels is to calculate
the admixture coefficients Z; [Eq. (8)] in the JI coupling
scheme and to verify that the assignment of the excited
states by the MQDT fitting procedure corresponds to the
experimental assignment (allowing some exceptions in the
vicinity of perturbing states). We found that JI coupling
is in general more appropriate for the characterization of
high Rydberg states than jj coupling. This is particularly
true for high angular momentum states and can be under-
stood on simple physical grounds: The electron remains
most of the time far from the core region; its spin-orbit
interaction is very weak, since this effect varies in 1/73.
The dominant coupling is then the coupling between the
orbital momentum of the electron (/) and the total angu-
lar momentum of the core (J).

Finally, as pointed out by Aymar,?® there remains an
indeterminacy in the matrix U,, (more precisely in the
sign and also amplitude of some coefficients of the Via)s
which cannot be lifted by fitting energy levels only. We
note that this work will simulate further experiments on
the spectroscopy of even-parity states of the rare gases
which could enable us to lift this indeterminacy. Let us
point out, however, that in the cases investigated in this
work, the U;, matrix does not differ much from the jj-LS
transformation matrix; the (dipole) interaction between s
and d states (J =1) is rather weak; the quadrupole in-
teraction between p and f states (J =2) is even more re-
duced. Thus the possible inaccuracy in some of the
coefficients of the MQDT wave functions, due to lack of
information, should not affect much the final result.

The optimal parameters obtained for the J =0 and 2
even-parity states in Xe and Kr are indicated in Tables I
and II. [For completeness, we also indicate in Table III
the parameters for the J =3 (d states) in Xe; the other
sets of parameters can be found elsewhere.!>!%!"] In
Figs. 2 and 3 we present the corresponding Lu-Fano plots
for Xe and Kr. Some low-lying states (6p in Xe and 5p in
Kr) have not been included in the fitting procedure.
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Some information about the importance of channel in-
teraction can be deduced in a simple way'® from the Lu-
Fano plot. The gaps between the different branches at
the crossings can be related to the coupling strength be-
tween the different channels. In Figs. 2 and 3 these gaps
are rather small and the branches are nearly at right an-
gles (especially for Kr). This confirms that the channel
mixing is not very pronounced. It is in particular re-
duced compared to odd-parity spectra. !21417

Around v;,,=2 and 3, the Lu-Fano plot exhibits spuri-
ous branches due to the presence of (artificial) states
P, ,2f, *P,,,3f. This problem, previously noted by

Seaton, '° can be solved by replacing Eq. (11) or (12) by
the equivalent form
4y =0, (23)

the factor 4 = A(E,l)=H;,:0(l+pzs) removing the
spurious roots.?’ In the present approach we shall simply
remove the artificial states and extrapolate the Lu-Fano
plot in the region v;,=2 and 3 [Figs. 2(a) and 3(a)],
which leads practically to the same result.

Finally, the experimental results of Pratt and co-
workers show evidence of some autoionizing *P,,g
(J =3) states in Xe and Kr.>> There are no experimental
data on P87/, *P3;289/2, *P3,287,, energy levels.
Note that these states are almost hydrogenic, with very
small quantum defects. In order to be able to qualitative-
ly compare with the results obtained by Pratt and co-
workers, >3 we have introduced g and g’ states in our cal-
culation in the following way. The channel with the
highest energy ('P) has a zero quantum defect. The other
channels have quantum defects corresponding to the en-
ergy difference with the 'P channel, calculated by using
hydrogenic wave functions and scaled by the factor
1/mv}. The U,, restricted to g states is the jj-LS trans-
formation matrix. Finally, we introduce a small interac-
tion between g and d (J =3) states in order to allow g’
autoionizing states to decay into the d continuum chan-
nels. Note that this decay is anyway extremely weak.

In conclusion, we would like to point out that it is
essential to have some physical insight about the values
of the MQDT parameters u,, U, in order to get realistic
results by fitting experimental energy values. In the
present work we have performed -calculations using
single-configuration Hartree-Fock wave functions for p
and d states and hydrogenic wave functions for f and g
states in order to get some information about the quan-
tum defects and coupling strengths. This information
could also be inferred from additional experimental data.

D. Dipole matrix elements and multiphoton ionization
cross sections

Following Geiger,!” we determine dipole matrix ele-
ments from the ground state 5p°!S, to J =1 excited
states by fitting oscillator strengths in the discrete spec-
trum. The oscillator strength to a particular bound state
is given by (in atomic units)

z%v%[ED“A“]Z’ (24)
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TABLE I. Multichannel-quantum-defect parameters for J =2 even-parity (p and f) states in Kr and

Xe.
a f3F f'D f3D piP p'D p’D
i Py, fsn Py, fan Py, fss Py ap3s P3p3p P3pi s
Kr y‘; —0.009 0.023 0.028 0.585 0.609 0.666
/.L}, 0.076 0.089 0.017 0.061 0.088 —0.013
Ui, 0.687 0.612 0.399 —0.004 —0.008 —0.008
—0.218 0.696 —0.684 0.0 0.004 0.006
—0.693 0.383 0.610 0.0 —0.009 —0.006
0.003 0.0 0.002 0.395 —0.566 0.723
0.002 0.005 0.006 0.860 0.504 —0.075
0.0 0.005 0.015 —0.322 0.652 0.686
Xe ;L?, 0.013 0.032 0.041 0.494 0.557 0.623
ul 0.020 —0.001 0.060 0.134 0.074 0.063
Ui, 0.650 0.605 0.458 0.0 —0.037 0.026
—0.231 0.731 —0.639 0.0 —0.044 —0.036
—0.724 0.309 0.615 0.0 —0.019 0.034
0.0 —0.023 —0.050 0.227 —0.377 0.897
0.0 0.036 —0.003 0.802 0.595 0.048
0.0 0.043 —0.024 —0.553 0.708 0.437
where the close-coupled dipole matrix elements D, can Dy=(flerli), 27

be deduced from the dipole matrix elements in LS cou-
pling D_,

D,=3V_.D, (25)
a

(D)

a)g=1 n are determined by fitting oscillator strengths
calculated through Egs. (24) and (25), to experimental os-
cillator strengths.!”?®2° In the autoionization region the

density of oscillator strength is given by

"p
%=25 2 [ZDaA‘;r/Nf, : (26)
p=1 a
We check that we obtain good agreement with experi-
mental values?® and other theoretical'®>!'%?? calculations
for Xe and Kr. In Sec. IIl, we present some one-photon
autoionization profiles.
Dipole matrix elements between excited states are
defined by

TABLE II. MQDT parameters for J =0 p states in Kr and
Xe.

a p'S piP
i Py,pv 2 P3p32
Kr ul 0.461 0.585
1l 0.425 0.329
U, 0.465 0.885
0.885 —0.465
Xe ub 0.417 0.572
uh 0.051 0.152
U 0.330 0.944
0.944 —0.330

where € is the polarization of the radiation field which, in
the present work, is chosen to be linear. (f[r)=W¥,,
(ilr) =W, are MQDT wave functions [see, e.g., Egs. (13),
(15), or (17); we limit ourselves to the calculation of
bound-bound and bound-free dipole matrix elements].

V¥, and W, are determined only outside the core
(r=r.). We use the Burgess-Seaton cutoff procedure’ to
eliminate the well-known divergence near the origin, by
introducing

2L +1

¥, W, {1—exp[10r/];(I;+1)]} (28)

We check that the final result does not depend on
r.[=1(I+1)/10a.u].

The N-photon generalized ionization cross section to
lowest-order perturbation theory is defined as

ac

ap

N neg
S 3 IpJIP. (29)

J a=1

oN=2m

o
Fy
oy is expressed in cm?Vs¥ ! units. a (in the paren-
theses) is the fine-structure constant, ¢ the speed of light,
and a, the Bohr radius. (ac/ayis 1 s~!in atomic units.)
® is the photon energy (au). F,=3.22X10*

TABLE III. MQDT parameters for J =3 odd-parity states in
Xe.

a d’3F d'F d3G
i P1/2f5/2 P3/2d5/2 P3/2d3/2
Xe S 0.497 0.379 0.356
ul 0.024 0.012 0.011
U, 0.623 —0.634 0.460
—0.082 0.528 0.845
0.778 0.564 —0.278
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N J 6p' Kr J=2
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FIG. 2. Three stages of the plasma-vacuum interface devel-
opment under the influence of the Rayleigh-Taylor instability of
a thin plasma layer above a vacuum and limited from above by a
rigid wall. Here we have taken a=exp (yt)/4; yt=0,1.5, 1.75.

photons/cm?s. There is a double summation on the total
angular momentum of the final state (J) and on the num-
ber of open channels n, (or n, in the autoionization re-
gion) for each J. Finally, the N-photon ionization ampli-
J

[fm
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tude DY is defined by

_ (ale'rlm){mle-x|n) - - - {ple-r|i)
Di= 3 [E,—E,—(N—1o] - (E,—E,~w) '

m,n,p

(30)

In the present work we limit the summation over inter-
mediate states in Eq. (30) to the discrete spectrum. We
sum up to about 25 Rydberg states, in order to obtain
reasonable convergence of the series. Since we investi-
gate two- or three-photon ionization processes near the
threshold (more precisely between the two threshold and
slightly above the second ionization threshold), the ener-
gy corresponding to the absorption of the next to the last
photon remains below the first excited state (both in Xe
and Kr). The discrete part of the spectrum gives the
most important contribution to the summation and the
approximation made by truncating the series should yield
reasonable cross sections in this energy range. Note that
summing over the whole spectrum in the MQDT formal-
ism is by no means a simple problem, which goes beyond
the scope of the present paper.

E. Photoelectron angular distributions

In order to calculate photoelectron angular distribu-
tions,*"3? we use the incoming-wave normalization for
the final-state wave function, expanded as follows:

oy kE)) =3 e 2 Y5, (k) 3 e M ald M NI GIM T omy jm )T my jm; | Imgsm)la) 31)
¢ Lm,; iJa
8, is the Coulomb phase shift, k the momentum of the photoelectron. k =(0, @) characterizes the direction of the out-
going electron by reference to the polarization axis (for linear polarization) or by reference to the propagation axis (cir-
cular polarization). The collision channels (i) are here identified by the set of quantum numbers {J,jJM,} (jj coupling).
In the open continuum, (al|J jJM,)=(ali)=UL; the other coefficients in Eq. (31) are usual Clebsch-Gordan
coefficients.
The N-photon partial ionization amplitude can be written as

MN(ic\)[ms,mJC,Jc]z 2 i[(_1)(1/2)*rnj*j+JC‘Mjei5[+17TllaYlmj(l’(\)[(2j+1)(2J+1)]I/2
im, jJa

R } joJd }Z,-an,V- (32)
m; mg —m;||m; mj —M,
[

For the sake of generality, we do not make here any dis- d (J.) N
tinction between the open continuum (all channels open; IN ac | e
Z,,=U,,) and the autoionization region [a—p; BTy dQ Qo Fy
Z,, is defined by Eq. (8)]. In the latter case, J, can only
take one value (3). NE 2

Finally, the N-photon differential ionization cross sec- > Mk )[ms’mjc"l‘” ’ (33)
tion is given by e



1118 A. L’HUILLIER, X. TANG, AND P. LAMBROPOULOS 39

(0]
Xe J=2 ( a )
% e, 7p 8p 12p /
0 ——
E osF )
g °°
4f 10f
1.0 1 1 1 1
1.5 2.0 2.5 3.0 3.5
Y,
0 -
Xe J=0 ( b)
h=l
<] 6p 7]
E 0.5 . P 8p 12p
o
< 6p'
1.0l 1 ' :
1.5 2.0 2.5 3.0 3.5
Y,
/2

FIG. 3. Energy-dependent Lu-Fano plot for J =2 (a) and
J =0 (b) xenon bound states.

In the following we present some applications of the
method exposed in this section.

III. RESULTS AND DISCUSSION

A. Autoionization spectra

In Figs. 4—6 we present some autoionization spectra in
Kr and Xe corresponding to absorption of one to three
photons. The number of photons involved is indicated in
brackets in the figures. The energy range, 115000-
116 500 cm ~ ! in Kr, and 103 000-106 000 cm ! in Xe, is
chosen for illustration purposes, more than because of
any numerical limitation. In Figs. 4(a) and 5(a) we indi-
cate both the one-photon ionization cross section (in cm?)
and the density of oscillator strength df /dE, so that the
reader may directly compare these results to experimen-
tal measurements®® or other theoretical calculations.'
For two-photon (Fig. 6) and three-photon [Figs. 4(b) and
5(b)] ionization, we express the ionization cross sections
in the usual cm?”s” ~! units [see Eq. (29)].

Figure 6 shows two-photon autoionization spectra in
Kr [Fig. 6(a)] and in Xe [Fig. 6(b)]. The autoionizing res-
onances which appear in the spectra are indicated in the
figure. The primes indicate that the ion is in the P,
state. The solid line is the total ionization cross section.
The dashed line shows the partial cross section corre-
sponding to the transitions to J =0 final states. This con-
tribution is much smaller (by about a factor of 30) than
that of the J =2 states, except, of course, in the vicinity
of the J =0 resonances. Finally, the cross in Fig. 6(a) in-
dicates the experimental measurement of the two-photon
ionization cross section by McCown et al.,* in good
agreement with the present calculation.

In Figs. 4(b) and 5(b) we present three-photon autoioni-

df/dE

0]
115.0 115.5

Energy

116.0_ 116.5
(10%cm™)

FIG. 4. Autoionization spectra in Kr. (a) Density of one-
photon oscillator strength and photoionization cross section.

(b) Three-photon ionization ( ) total cross section,
(— — —)J =3 partial cross section.

zation spectra and we compare them to the one-photon
autoionization spectra in Figs. 4(a) and 5(a), involving the
same (J=1) autoionization resonances. As in two-
photon autoionization, the solid line is the total ioniza-
tion cross section. The dashed line is the J =3 partial
cross section. In contrast to the J =1 partial cross sec-
tion, the J =3 cross section is almost flat. The sharp
J =3 resonances nearly do not interact with the adjacent
continua.
The J =1 three-photon autoionization resonances

2 50

xe [1]

o, (10" cm?)

oy (10 %%em®s?)

FIG. 5. Autoionization spectra in Xe. Same as in Fig. 4.
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FIG. 6. Two-photon autoionization spectra in Kr (a) and in
Xe (b). , total ionization cross section; — — —, J =0 ion-
ization cross section. X, experimental point by McCowen et al.
(Ref. 33).

show some similarity with the J =1 one-photon reso-
nances: the symmetries are the same and the widths
comparable. The line shapes are, however, different. In
fact, since the matrix elements involved in one-photon
absorption are different from those in three-photon ab-
sorption, one should not expect much resemblance be-
tween one- and three-photon autoionization line shapes.

In conclusion, let us comment on the evolution of an
autoionization spectrum as the number of photons ab-
sorbed to reach these states increases, or more
significantly, as the total angular momentum J of the final
state increases. What is obvious from the spectra in Figs.
4(a), 6(a), and 4(b) (dashed line) and also in Figs. 5(a), 6(b),
and 5(b) (dashed line), is that autoionization processes be-
come less and less important as J increases: the interac-
tion between the channels decreases from J =1 to 3. This
is due to the nature of the electron-electron interaction
(involving higher multipoles for J =2,3). The highest an-
gular momentum states remain mainly outside the core
and therefore do not interact much.

B. Comparison with experimental autoionization
spectra (Refs. 2 and 3)

In Fig. 7 we compare the results of our calculation
(dashed line) to experimental measurements (solid line) of
three-photon autoionization in Xe [Fig. 7(a)] and Kr [Fig.
7(b)]. The vertical scale has been chosen in order to
match the background and the maximum of the s’ state
(9s” in Xe, 8s’ in Kr). No adjustment has been made for
the horizontal scale.

Figure 7(a) shows good agreement between our result
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FIG. 7. Comparison with experimental data in Xe (a) (Ref. 2)
and Kr (b) (Ref. 3). , experimental data; — — —, present

work; —«—.—- , calculated 9s’ Xe resonance supposed with the
experimental peak.

and the experimental data.® The calculated 9s’ peak is

slightly displaced, by about 1.5 A, i.e., 18 cm~ ', If we su-
perpose the theoretical and experimental maxima (dot-
dashed line), we obtain a good agreement for the width
and the line shape of the resonance.

The comparison in Kr (Ref. 3) shown in Fig. 7(b) is less
satisfactory. There is good agreement for the 5g’ and 8s’
peaks, but the 6d’ resonance, as produced in our calcula-
tion, appears to be very broad, spread over a much larger
wavelength range than in the experiment. We tried
changing some of the MQDT parameters involved in the
description of this state (in particular, those which are
not unambiguously determined; see Sec. II) without any
improvement. This discrepancy may be due to the trun-
cated summation, or, more generally, to the various ap-
proximations inherent in our calculation. Autoionization
is a very subtle effect, resulting from an interference be-
tween different paths leading to the same final state: if
the respective amplitudes for these processes are not ac-
curately determined, the resulting line shape may be quite
different from the actual one. This would be especially
true for broad states such as the 6d’.

C. Photoelectron angular distributions

We have determined photoelectron angular distribu-
tions for three-photon absorption to the 9s’ and 7d’ au-
toionizing states in Kr and Xe and we compare them in
Figs. 8 and 9 to experimental measurements performed
by Pratt and co-workers.”? The experimental data are
indicated by the closed circles. The solid line is the best
fit with the data.??® Our result is shown by the dashed
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3). — — —, present work.

line. The distributions have been vertically matched at
the maximum.

Photoelectron angular distributions involve the addi-
tion of all amplitudes of the transitions leading to
different final states [see Egs. (32) and (33)]. It is there-
fore a very sensitive test to any theoretical calculation
and even a partial agreement with experimental observa-
tions should be considered as satisfactory. A good agree-
ment is obtained in Kr (Fig. 8). It is not as good for the
7d’ state in Xe [Fig. 9(b)], since the calculation is not able
to reproduce the increase at 90°. Finally, the angular dis-
tributions for the 9s’ Xe state [Fig. 9(a)] are substantially
different. We do not understand the exact reason for this
discrepancy. One possibility is that the approximation
which consists in neglecting the small-r region (by intro-
ducing a cutoff) may not be valid for s wave functions,
which have a non-negligible amplitude near the origin.
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FIG. 9. Same as Fig. 8 for xenon (see Ref. 1).
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But again, why does the 9s’ state of Kr not present the
same problem?

D. Two-photon ionization
above the second ionization threshold

Finally, we have also calculated two-photon ionization
above the second ionization threshold, up to about
130000 cm ! in Xe, and 140000 cm ™! in Kr, before the
first intermediate resonance. We represent these cross
sections in Fig. 10 (solid line), together with other calcu-
lations.®'®3* The crosses indicate the MQDT result ob-
tained by Gangopadhyay et al.'® The difference between
these two results comes from the more accurate MQDT
analysis in the present work and the different method for
calculating the first photon absorption. We used fitted
one-photon oscillator strengths. Gangopadhyay et al.
calculated these oscillator strengths by using a quantum-
defect ground-state wave function.

The only other extensive calculations in the rare gases
are those of McGuire,* represented in Fig. 10 by the
dashed line. These results are always higher than our
cross sections. McGuire uses an independent-electron
approximation. Introduction of the electron-electron in-
teraction in the description of MPI of the rare gases
reduces the cross sections.® In Fig. 10(a) we have also
represented (short-dashed line) the random-phase approx-

o, (cm?*s)

!
110 120 130

[ TTTIIT

I

!
120 130 140
Energy (103em™

FIG. 10. Two-photon ionization above the second ionization
limit in Xe (a) and Kr (b). ——, present work; X, MQDT re-
sult by Gangopadhyay et al. (Ref. 18); — — —, independent-
electron calculation of McGuire (Ref. 34); —. —. —- , random-
phase-approximation exchange (RPAE) result of L’Huillier and
Wendin (Ref. 8); ----, linear RPAE result of L’Huillier and Wen-
din (Ref. 8) (without double excitations; see Ref. 8).
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imation (RPA) result of L’Huillier and Wendin.® This re-
sult (which does not include the fine-structure splitting)
lies slightly below the present calculation. This is to be
expected, since the RPA result also includes double exci-
tation effects, such that one photon excites one electron, a
second photon excites a second electron.®® These effects
will further reduce the cross sections. Part of them may
be inherently included in the MQDT which uses experi-
mental energies and oscillator strengths. However, no
double excitations are introduced in the fitting of energy
levels nor in the diagonalization of the collision channels.
We would therefore expect the MQDT result to be closer
to the intermediate result obtained by L’Huillier and
Wendin® (dot-dashed line), without these effects. The cal-
culations to which we compare are, however, extremely
different, both of them involving significant approxima-
tions. It is then difficult to attribute any differences to
specific physical effects included or not included in the
different approaches, more than to the inaccuracy due to
the numerical approximations. The overall agreement
can be considered as satisfactory. It emphasizes that
independent-electron approximations cannot correctly
describe the dynamics of a MPI process in the rare gases.

Finally, we have also calculated three-photon ioniza-
tion above the second ionization limit. Our results are
within 20% of those obtained by McGuire.** For exam-
ple, at 266 nm, we have 0;=6X 1078 cm®s?. The result
of McGuire®* is 5X107% cm®s?. Perry and Landen®
have measured 0;=1.2X 1073 cm®s?. Kulander’ calcu-
lates a cross section equal to 2.5X 1078 cmSs2. All of
these results are in reasonable agreement. We, however,
believe that McGuire’s results may be slightly too high,
because of the independent-electron approximation. In
our calculation the error may be due to the truncated
summation approximation, which may become worse as
the number of photons increases.

The present results are also in reasonable agreement
with earlier results by Gangopadhyay et al.'® As given
in Ref. 18, the results for three-photon ionization appear
to differ by six orders of magnitude. This difference,
however, has been traced to an error in the coefficient
converting energy units from a.u. to eV.

IV. CONCLUSIONS

In closing, we would like to discuss the potential of
MQDT in the description of multiphoton ionization spec-
tra, as well as the limitations of the present approach.

Multichannel-quantum-defect theory allows one to
take into account various intrachannel and interchannel
interactions between different Rydberg series. The notion
of “state” or ‘“‘configuration” is replaced in this formal-
ism by the more powerful concept of “channel.” Instead
of “configuration mixing” (i.e., for each state of a particu-
lar channel), one talks about ‘“channel mixing.” The
effect of spin-orbit interaction, for both the core and the
outer electron, is taken into account by considering jj-
coupled channels converging to different thresholds
(separated in energy by the fine-structure splitting) and
coupled via the electron-electron interaction. The sem-
iempirical approach which is based on fitting experimen-

tal data provides a very accurate description of the atom-
ic structure. MQDT is very well adapted to the descrip-
tion of properties of high Rydberg states and, in particu-
lar, autoionization profiles. This is especially important
for complex systems such as the heavy rare gases, where
other (ab initio) theoretical approaches become impracti-
cal for the description of the details concerning the spec-
troscopic and dynamic properties of the atom.

On the other hand, MQDT, in the form employed in
this work, is less accurate in the description of the
ground state and perhaps some of the low-lying excited
states which often are excluded from the fitting pro-
cedures as implemented here. It is, however, possible to
circumvent such limitations in accuracy by combining
MQDT with ab initio calculations as obtained, for exam-
ple, through R-matrix?""??> or relativistic RPA (Ref. 20)
approaches.

The important question, in the present context, is to
what extent this theory can be applied to multiphoton
ionization problems. The main advantage is that it gives
an extremely accurate description of the atomic spec-
trum. This is very useful for the description of resonant
processes in the discrete spectrum or in an autoionizing
region, since the positions of the states need to be precise-
ly determined. And it provides a good description of the
dynamics of complex atomic systems.

As we have emphasized in this paper, the summation
over intermediate states poses a different problem. The
approximation consisting in limiting this summation to
the discrete spectrum is probably reliable before the
minimum between the first and the second intermediate
resonance, and for a small number of photons absorbed.
Dalgarno-Lewis types of procedures®® cannot be used in a
simple way. One solution might be to perform the sum-
mation explicitly? or to combine the Green’s-function
techniques developed in single-channel quantum-defect
theory with additional information obtained from the
MQDT analysis. We shall deal with this problem in the
near future.

In conclusion, we think that multichannel-quantum-
defect theory can be a useful tool for the realistic incor-
poration of atomic structure in the description of multi-
photon processes, especially if the limitations mentioned
above can be removed. In the present work we have ap-
plied MQDT to calculations of two- and three-photon
ionization and autoionization processes in Xe and Kr.
We found satisfactory agreement with experimental
data®? and other theoretical calculations.”®** We are
also in the process of applying this technique to the inves-
tigation of other multiphoton absorption processes,*>
which will be presented in forthcoming publications.

Our earlier incomplete analysis'® stimulated a few ex-
periments which have proven quite valuable to us in this
work. We present our new results—which still contain
loose ends—with the hope and appeal for further experi-
mental input. The complexity that makes multiphoton
calculations difficult and demanding has a positive side.
It probes the dynamics of a multielectron atom at a level
not accessible and complementary to single-photon ab-
sorption; which, in our view, makes the whole effort very
worthwhile.
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