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Experimental studies of the quasibound Stark spectrum of cesium are reported with emphasis on
the Stark redistribution of nonhydrogenic states onto the linear Stark manifold. We show that most
characteristics of the spectra are understood with analytical models describing the interaction of
one or several discrete states with one or several quasicontinua of discrete states. In particular, we

give experimental evidence for the discrete versions of Fano profiles and stabilization of states due
to interference effects. These are also important features of the continuum region which several ex-
periments have recently demonstrated.

I. INTRODUCTION

In this paper we present and discuss experimental re-
sults that concern the Stark redistribution of nonhydro-
genic states onto the manifold of states which are linearly
Stark quantized. Previous studies in the continuum re-
gion have shown that the breaking of the Stark dynami-
ca1 symmetry in nonhydrogenic atoms leads to several
features, such as the generation of Fano profiles and sta-
bilization processes (also called "interference narrowing")
arising from interference effects' between the Stark
channels. Fairly good interpretation is obtained by the
means of Harmin's theory and numerical calcula-
tions.

Similar pllenomena affect the quasibound part of the
Stark spectra below the classical ionization limit. Fano
profiles spread over discrete series and stabilization
effects arising from interfering discrete channels are ex-
perimentally recorded. Here, a completely analytical
description is possible and successful by extending the
earlier model by Fano (in 1935) describing the interac-
tion of one discrete state with a set of discrete states act-
ing as a quasicontinuum. The use of the general theoreti-
cal approach recent1y developed by Harmin and Liu
et al. in the case of interference narrowing is here not
necessary, though it is a necessary step in interpreting the
data in the true continua regions. Previous limited re-
ports of the present work have been described in Refs.
10—12. Both experimental and theoretical approaches
complement each other quite nicely and afford an impor-
tant clarification of the physics of the Stark effect and its
role in line-shape formation.

Section II is devoted to a basic review of the Stark
effect on nonhydrogenic species. Section III recalls and
extends the theory of one discrete state interacting with a
quasicontinuum of discrete states. Section IV focusses on
experimental results, generation of pseudo-Fano profiles
and decoupling of states from the quasicontinua. An an-
alytic interpretation of the results is given in Sec. V and
compared with a numerical theory.

Notations are E for the energy and F for the electric
field. Atomic units are used and for the electric field are
associated with the value I', =5. 14 X 10 V/cm.

II. STARK EFFECT ON NONHYDROGENIC
SPECIES—REVIEW

A. The Stark eft'ect: General considerations

The interaction of an electric field with hydrogenic
species has attracted much attention for years. For the
hydrogen atom, the existence of a dynamical symmetry
makes the problem tractable in a formal way. Writing
the Hamiltonian (in atomic units),

H = ——+F-r,
2 r

the projection of the angular momentum L = r X p on the
F field axis is a constant of motion. Another one is 3„
the dynamical constant deduced from the Runge-Lenz
vector. ' The set of commuting observables (H, L„A, )

allows for a complete classification of the spectrum and
eigenfunctions.

The standard treatment based on the separability of the
Schrodinger equation in parabolic coordinates (g, g, y) al-
lows one to show that the g motion is bounded while the
g motion is shaped by the barrier and may be unbound-
ed. The resonance character of the states is thus
enhanced close to the maximum of the barrier. This is
associated roughly with the so-called classical ionization
energy E, = 2&F. For E—&E„ the spectrum is quasi-
bound, labeled with the eigenvalue of A, = ( n 2 n, ) /n-
where (n„n2) are the parabolic quantum numbers. A
consequence of the dynamical symmetry and separability
is that the states associated with different values of the
parabolic quantum numbers do cross. Consequently, the
states can be labeled through these zero-field quantum
numbers, up to the classical ionization field.

B. Stark eA'ect in nonhydrogenic species

When the effective potential acting upon the electron is
not Coulombic, the Stark dynamical symmetry is des-
troyed. But at sufficiently large r, the hydrogenic behav-
ior should be recovered asymptotically as the potential is
nearly Coulombic while at small r, non-Coulombic
corrections are dominant over the Stark interaction.
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Hence the solution to the Stark problem for nonhydro-
genic atoms is mainly one of the connection between
these two regions of spherical and parabolic symmetries.
This has been solved quite generally by Harmin and
applies successfully to most experimental situations as
well as to similar problems. '

Experimental consequences of this breaking of the
symmetries lie in the general noncrossing rule of the ener-

gy levels. Optical excitation of the interacting Stark
channels leads to the generation of Fano profiles under
varied conditions ' and to the stabilization of reso-
nances ' ' embedded in the continua, through destruc-
tive interference effects.

C. Unified treatment of the quasibound Stark spectra

The quasibound Stark spectrum at low fields is the
domain of the linear Stark effect. The Coulomb symme-
try is reorganized along the subgroup chain
SO(4)&SO(2)SO(2) of the parabolic type. In contrast
with the high-field limit, most of the physics can be ana-
lyzed in detail with elementary calculations. This is espe-
cially true for the question of nonhydrogenic effects. '

The energy-level structure of the hydrogen atom is'

1 + ,'nFq+O—(F )+ . . -

2n

q =n& —n2, n =n, +n2+ lml+1;

q is the difference of the zero-field parabolic quantum
numbers. The odd or even character of ~m

~

—
q is fixed by

the n value. The spectrum depends only on ~m~.

At fixed m, the linear Stark spectrum is composed of a
set of n —

~m~ sublevels (labeled with q), the spacing of
which is 2~„where cu, =—,'nF a.u. is the linear Stark fre-

quency. The spectrum of two manifolds for m and m+1
are shifted by co, from each other [see, e.g. , Fig. 1(a)]. Fi-
nally, the degeneracy on the m value of each q sublevel is
n —

~q~. The eigenfunctions are the zero-field parabolic
ones.

The extension of a Stark manifold being 2nco, (for
~M~ ((n) and the spacing between two manifolds I/n,
then a condition for merging of the Stark manifolds is
n co, = —,

' or n F= —,'. In hydrogen, the energy levels cross
without interaction. '

When the effective potential acting upon the electron is
not Coulombic, the n degeneracy of the n shell is re-
moved. In high Rydberg states of alkali-metal atoms,
there are, however, clues that the system will behave hy-
drogenically. Actually the wave functions of most states
are concentrated in regions where the departures from a
Coulomb field are small, leading to small quantum de-
fects. Penetrating states (usually for I ~ 2) are an excep-
tion leading to nondegeneracy of the I value. We call
these states (S, P, and D) "nonhydrogenic states. " For
I ~3, quantum defects are negligibly small and these
(n —9) states build an incomplete hydrogenic mani-
fold. ' Owing to their degeneracy, they should exhibit a
linear Stark behavior in the field, in contrast to the
nonhydrogenic ones. Further interaction between the
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FIG. 1. Comparison of the spectrum and oscillator strengths
distribution for the complete (a} and incomplete (b) Stark mani-
folds. Removing one level shifts the spectrum by co, . However,
as the spectra of the complete manifolds are also shifted by co,

according to m being odd or even, this makes the incomplete
m =0,1,2 manifold spectra very similar to the spectra of a com-
plete m =3 manifold. In addition, the distribution of the F state
becomes similar.

two classes of states described hereafter as "Stark redis-
tribution of nonhydrogenic states" is the matter of this
paper 1 1 1 2 20

D. The incomplete manifold treatment

The properties of an incomplete manifold at low field
are very easy to deduce in a standard way. The essential
difference with the situation in hydrogen is that states
with 1~2 are out of this manifold. Both the spectrum
and eigenfunctions are thus deduced from the complete
SO(4) situation using a resolvent formalism (see, for ex-
ample, Refs. 10 and 20—22).

The conclusions are summarized in Fig. 1, where the
spectrum and oscillator strengths distributions (of the F
state) of both the complete and incomplete ( m =0, 1,2,3)
manifolds are compared. Although the distributions are
very different when the manifolds are complete, they be-
come fairly similar to those of the m=3 complete case
when the m=0, 1,2 manifolds are incomplete. The num-
ber of components is n —3. The Stark effect is still linear
and the spacing is approximately" 2'„but the energies
of the sublevels are shifted by co, when one level is re-
moved (Fig. 1 and Sec. III).' When the electric field is in-
creased, the nonhydrogenic states (experiencing a quadra-
tic Stark effect) should interact with the incomplete mani-
fold of states spaced with 2'„which can be modeled as a
quasicontinuum of discrete states.

The Stark redistribution of nonhydrogenic states can
be described in the framework of a very simple analytical
model of "one discrete state interacting with a quasicon-
tinuum of discrete states. "
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III. GENERAL FRAMEWORK —ONE DISCRETE STATE
INTERACTING WITH A QUASICONTINUUM

OF DISCRETE STATES
a = 1—

q

df (E,')
dE'

Such a situation has been considered by Fano ' over
50 years ago and Ands here one of its most striking exper-
imental realization.

A. Simple model of the perturbed spectrum

The model involves one discrete state ~y) interacting
with a set of X discrete states I ~P ); 1 ~p ~ XI. These
are eigenstates of the Hamiltonian Ho with energies E
and E, respectively. This is schematized in Fig. 2(a).

When the coupling V between ~g) and the manifold is
included, the eigenstates of H =Ko+ V become

I y~);1 ~q ~%+I] such that H~y ) =E'~y ). Their
explicit form is E' E— 7T= —iV cot

CO

A graphical representation of Eq. (5) is shown in Fig. 3.
The poles of f (E) are the unperturbed energies IE
with weight

~ V~~ . The new eigenspectrum is given by
the intersection with the straight line (E' E—). The dis-
tribution aq of the discrete state onto the new eigenstates
essentially depends on the slope off (E) at E'.

These equations can be cast in closed form in various
special cases. For an infinite manifold of equally spaced
sublevels (with spacing co), the poles IE =pc@I coincide
with those of the cot(~E/co) function. When the cou-
pling is constant over the (infinite) manifold (

~
V

~

=
~
V ),

the summation in Eq. (5) can be performed exactly as

p =1

b„=a V (E' E)—
I V, Iz

E. )

a= 1+

ly, &=~, lq &+ g b„„lP, &,

(4)

When the coupling is slowly varying with p, the pro-
cedure can be amended by expanding the coupling at the
energy E' as /V

/
=(/V

/

—/V / )+/V~/ . Here /V~/
stands for the local value of the coupling at the unper-
turbed state numbered q (whose energy E is just above
E'). Hence, Eqs. (4) and (5) give

where we have defined V = ( lt ~
V~ y ) . The perturbed

energy spectrum I
E'; 1 ~

q
~ N + I ) (obviously differing

from t E J ) is given by the implicit equation

/V /'f(E')=E' E— (5), , E,' —E,
and a is rewritten as

and

—
i
V i'cot

CO

~E'
=E' —E —F

q

where F and G are

~'f V I' (E —E F)'—
a = 1+G+ +a

q q

&p
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FIG. 2. One discrete state interacting with a quasicontinuum
of discrete states. (a) Without interaction between the discrete
state ~&p) (with energy E~) and the manifold ( ~g~ );1~p ~A']
(with energy E~). (b) Interaction taken into account. This may
lead to the generation of Fano-shaped profiles in the intensity
distribution of the discrete lines, shown for three values of the
Fano parameter Q.

FIG. 3. Graphical solution of the eigenvalue equations (case
of an equally-spaced infinite manifold). The unperturbed ener-
gies E~ are poles of f(E). The resulting spectrum is obtained
through the intersection of f (E) with a straight line
(co/vr~ V! )(E E) in the case of constant c—oupling. According
to the slope co/n

~ V~ one obtains the anticrossing regime (I), the
Fano-type situation (several levels around E are affected) (II),
and strong redistribution (III) in which all the energies are shift-
ed by m/2.
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F =F(E')= g E' —E

I v, I' —
I v, I'

Gq=G(Eq)= g
(Eq Ep—)' (10)

B. Physical implications of the model

F and G express, respectively, a shift and broadening of
the distribution of the discrete state onto the manifold
due to the variations of the coupling. The shift vanishes
when the situation is symmetrical both as concerns the
positions and distributions of

I V~ I
.

with

e (Eq E Fq )/(I /2)

2V
Q= (T„+H ),

q

where

V, T, —V, T,q

p 1 Eq —Ep

(13)

(14)

(15)

(16)

From Eq. (8), the distribution Ia of the discrete state
onto the manifold is Lorentzian shaped, with a width

' 1/2

I =2~ (11)
2

1+
~'I v, I'

C. Optical excitation and pseudo-Fano profiles

The appearance of the redistribution process is likely
to be strongly affected by interference effects when opti-
cal excitation of both the discrete state

I y ) and of the
manifold is possible. Denoting T as the transition opera-
tor, we define T~=(yI TIi ), T~=(@~ I TIi ) where Ii ) is
the lower level of the transition. Then the amplitude of
excitation of Iyq ) is

(y, I Tli ) =a, T„+y (12)

The second term arises from the combined effects of exci-
tation and coupling, and can be simplified through ele-
mentary manipulations and use of Eq. (5). The probabili-
ty of transition at energy E' (normalized to

I
T

I ) is

where the negligibly small G correction to the broaden-
ing has been dropped. The variations of Fq and G with
the quasicontinuous energy parameter E' may generate
small asymmetries. From Eq. (11) and Fig. 3, there are
three principal regimes in the redistribution of the
discrete state

I p ) onto the manifold.
(1) The anticrossing regime when

I VI «co (case I in
Fig. 3). The perturbation is local leading to anticrossings
with one state of the manifold. The width of Ia I is
I —2I VI «co and the slope co/m.

I
V

I [Eq. (7)] is nearly
infinite. Most of the spectrum is unperturbed.

(2) The redistribution regime when
I VI ) co (case II in

Fig. 3}. The discrete state is redistributed onto
I /co=2m.

I VI /co states of the manifold, the energies of
which are perturbed.

(3) The strong-coupling regime when
I VI ))co (case III

in Fig. 3). The discrete state is redistributed onto most of
the states of the manifold. When

I VI /co~ ~ the redistri-
bution is complete and from Fig. 3 the new eigenenergies
are shifted by co/2 compared with the unperturbed ones.
This character (see Sec. IID) has already been found
when comparing a complete and incomplete manifold
spectrum (Fig. 1).

When the spacing co between two adjacent states is
smaller than the width I, then the eigenenergies t

E'
]

constitute a quasicontinuous energy variable. Hence,
provided that I, F, and Q are smooth functions of the
energy, Eq. (13) describes a quasicontinuous Fano profile
with parameter Q. The excitation profile is thus asym-
metric. As shown in Fig. 2, I is the envelope of the set of
discrete lines. As in the continuous case, interference
effects make the distribution very different from the
quasi-Lorentzian shaped Ia I

. The maximum of I is as-
sociated with E =1/Q and the minimum with s = —Q.
Even if the excitation probability T of the discrete state
is zero, the profile is still asymmetric if H &0. H is
analogous to a shift arising from mixed effects of the vari-
ations of the transition probability and coupling over the
manifold. A case of special interest (see Sec. V) is when
the matrix elements T and V are proportional. This is
the situation when optical excitation of the manifold
states and coupling to the discrete state I p ) are through
the same state of the manifold. From (16), Hq is then
proportional to the shift F of the discrete state. Equa-
tion (15) thus becomes

Q = (F +b), —=2
q

V
T

q

(17)

D. Stabilization e8'ects for two discrete states
interacting with a quasicontinuum

When two discrete states Igr, ) and I yz ) interact with a
quasicontinuum and with each other, the process may
lead to complete decoupling of one state from the
quasicontinuum through interference effects.

Such a situation is realized for the m = 1 Stark spec-
trum of Cesium to be discussed in Sec. V C (see Fig. 4}.
The interaction V (the Stark Hamiltonian) depends on the
parameter F (the electric field strength) as V =FV.

Finally, the previous analysis extends to the case of a
discrete state interacting with a continuum by consider-
ing the eigenfunctions

I P ) /co'~ normalized per unit en-
ergy, when co~0. The anticrossing regime (Sec. III B) no
longer exists and interference profiles become established
once the interaction Vis nonzero. The results agree with
the analysis of Fano.
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IV. EXPERIMENT

We describe here the experimental conditions for the
observation of the previous effects in the Stark redistribu-
tion of nonhydrogenic states of cesium. Detailed analysis
of the results will be given in Sec. V.

A. Experimental setup

F

Thus, V is the dipole moment operator. We assume here
that ~g, ) and ~yz) interact with the manifold through
some ~yo) component such that (qr, ~V~yo) =V, and
with each other with (y;~V~y ) =V; . These transition
matrix elements differ from the hydrogenic ones due to
the quantum defects in cesium.

The interaction of the two discrete states leads to an
anticrossing of their energy curves. The passing through
anticrossing results in the transformation ~y& )~—~pz)
and ~yz) ~ ~y& ) of the eigenfunctions ~g& z). Their cou-
plings with the manifold (y, z~V~yo) thus evolve as
V, ~—Vz and V2~V, . Hence one of the two states
has zero coupling with the manifold at some field value
Fd. Denoting Fo the field value at the anticrossing, one
can obtain

and

Fo
Fd=

1 +Vl2( Vz Vl ) /V1V2( Vl 1 Vzz)
(18)

Hence, two discrete states interacting with a manifold
lead to pseudoprofiles as described in Sec. III C, but fur-
ther interaction of these two profiles results in a decou-
pling of one state through interference at a given field
value. A discrete state is thus stabilized with no interac-
tion in the otherwise interacting channels, at a specific
nonzero field value. This process is obviously analogous
to the creation of quasibound states embedded in the con-
tinua.

FIG. 4. Schematic representation of the situation of two
discrete states interacting with a quasicontinuum of discrete
states. This refers to the situation in cesium for the m = 1 states.
Interference eftects at anticrossings lead to the decoupling of
one state (stabilization) from the other channels.

Cw dye laser excitation of the nF and nP cesium Ryd-
berg series is achieved from the ground state ~6S, /z ) us-

ing the "hybrid resonance" process. This amounts to
populating the ~5D5/z 3/z) states through nonresonant
absorption of one photon, followed by resonant absorp-
tion of one more photon, allowing efficient excitation of
the ~nF) and ~nP) Rydberg series (up to n =160). The
process is Doppler limited. Detection of the Rydberg
series is performed by the means of a thermoionic detec-
tor with an arnplification factor of the order of 10 .

The cw-ring dye laser, Ar+ pumped, is servocontrolled
to 1 MHz and allows a 150-GHz frequency scan by lock-
ing it to an external cavity which is presure swept, or
250-GHz electronic scans. The laser frequency can be
modulated by typically 200 MHz at a modulation fre-
quency around 95 Hz. Either amplitude modulation
(AM) with a chopper or frequency modulation (FM) have
been used, followed by convenient phase sensitive detec-
tion.

The cell contains the electrode arrangements for apply-
ing the electric field in the interaction region, between a
plate and a mesh. The field homogeneity is better than
0.02 V/cm. The detection region which is electrostatical-
ly shielded from the other one contains a 800-K heated
tungsten wire, 0.15 mm in diameter, which develops an
electronic space charge. Stray electric fields are no more
than 0.05 V/cm.

The pressure is kept low enough (=10 Torr) to
avoid molecular background and collisional perturba-
tions of the signal. The range of applied fields (supplied
with a battery) is limited to 0—20 V/cm. Higher values
trigger the lighting of discharges.

B. Excitation scheme in electric field

According to the laser polarization, the excitation can
be changed from hydrogenic to nonhydrogenic in the
same atom. There is, however, a drawback in the excita-
tion scheme which is the lack of selection on the sublevel

mJ of the intermediate 5 DJ state populated in the disso-
ciation process. This implies that several Rydberg series
with m =0, 1, 2, or 3 can be excited according to the po-
larization. As L, is a constant of motion in Stark effect,
this indicates that the spectra reAect the independent su-
perposition of several noninteracting series with different
weights.

The electric field does not affect the fine structure
(DE=97.588 cm ') of the 5D states and the maximum
Stark splitting of the sublevels is negligible ( «1 CrHz).
The hyperfine structure is negligible. In the Rydberg
spectra the hyperfine structure is negligible too. The fine
structure of the nP, /z, nP3/Q nD3/2 and D5/z states is
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affected in the conventional way by the Stark effect. The
fine structure can be considered negligible for the
nF, nG, . . . series. The quantum defects of the states
are 5(S)=406, 5(P&&z)=3.592, 5(P3&z)=3.559, 5(D3&2)
=2.475, 5(D5&2 ) =2.466, 5(F)=0.033, 5(G) =0.007. In
zero field, the oscillator strength from the 5D to the nF
series is 30 times that for those from 5D to nP.

Finally, o. polarization of the laser allows one to excite
mainly m =+3 Stark series, which involve states with
I ~ 3 with negligible quantum defects. Hence the behav-
ior will be nearly hydrogenic at the lowest field values. "
In contrast ~ polarization of the laser leads to the excita-
tion of m =0,+1,+2 series which involve nonhydrogenic
S, P, or D states. This situation is basically nonhydrogen-
ic and leads to Stark redistribution of nonhydrogenic
states onto the incomplete manifold. In spite of the su-
perposition of several series with different m, which are
noninteracting, it is possible to experimentally discrim-
inate between them.

C. Linear Stark eftect on nonhydrogenic series

Several experimental examples have been shown previ-
ously for m =+3 states" -for which conditions are
nearly the hydrogenic ones. That is, one observes the
linear Stark quantization of a complete Stark manifold
with n —3 components.

With ~ polarization of the laser, at low fields, one ob-
serves again a linear Stark spectrum (see Fig. 5). For
n=42, it shows 39 components spaced with 2', and the
spectrum can be shown to be nearly identical to the one
for ~m~ =3. Actually, the spectrum retlects mainly the
contribution from the ~m~=1 states. This is the linear
Stark spectrum of an incomplete manifold (see Sec. II D).
The missing component is contained in the P and D states
which are still energetically separated from the manifold.

D. Stark redistribution and generation
of pseudo-Fano profiles

When the field is increased, the Stark redistribution of
nonhydrogenic P and D states begins. This is shown in
Fig. 6 for various field and n values, and, for reasons to be
made clear below, this mainly concerns the series with
m=1. As expected from Sec. III, the redistribution of
the discrete states leads to the generation of pseudo-Fano
profiles. According to the resolution ED=1 GHz com-
pared to the spacing co =2'„ the phenomenon appears
continuous or discrete (see Fig. 2 of Ref. 12).

When the interaction begins, the redistribution is not
complete. It affects the intensities and positions of about
ten sublevels of the Stark manifold which indicates that
the interaction occurs in the intermediate coupling case
(Sec. III). Detailed interpretation of these patterns is
given in Sec. V. Early experimental evidence for this
effect exists in the plots in Ref. 1.

E. Stabilization of the quasibound Stark spectrum

From Fig. 6 it appears likely that an appropriate in-
crease in the field value will allow the two profiles on
each wing of the manifold to merge somewhere close to
its center. What happens is shown on Fig. 7 for the
n =54, m=1 Stark manifold. A sharp and intense line
develops from the strongly competing channels at a well-
defined field value. Its width is the Doppler width which
indicates that it no longer interacts with the other Stark
channels. This process is the "stabilization" of a discrete
state in the quasi-continuum through interference effects.

This is in fact one of the most perfect experimental

,
', (a)

n=44

(b) (c)
I

n=50

n=44 n=45

47 48 E(cln-')

FICx. 5. Linear Stark effect on the (n =42, m= 1) incomplete
manifold of cesium at F=7.30 V/cm. The 39 components are
spaced with 2', =1.18 GHz (Doppler limited-frequency modu-
lation of the laser). The P and D lines from nonhydrogenic
states are seen on both sides. (Energy E in excess of 16700
cm '. ) The lower trace is the stick spectrum calculated from
matrix diagonalization (see text, Sec. V).

FIG. 6. Experimental examples of pseudo-Fano profiles seen
in various conditions of n and F field values. According to the
magnitude of the spacing 2', compared to the Doppler width (1
CxHz), the phenomena may look continuous or not (Ref. 12). (a)
F=6.36 V/crn (frequency modulation, FM); weak redistribution
of the discrete state on the n =44 manifold. (b) F=9.17 V/crn
(FM); intermediate redistribution regime. (c) F=4.5 V/cm
(AM); same as (b), but the spacing is smaller than the Doppler
width. The profile then looks continuous. (d) F=8.40 V/cm
(FM); the redistribution on a larger scale showing the two states
~y4—,) interacting with the n=44 and 45 manifolds (see Sec.
V C).
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ec. III D,realization ol' n of the situation considered in e~.
where two discrete states are interacting wit a quasicon-
tinuum of discrete states. The full experimental story of
the birth and death of the stabilized resonance is s own

h t d monstrated that the interference

amplitude-modulated plot (see Fig. 8 on a wider scale
affords the evidence of the existence of another state,
more strong y coup el l d to the Inanifold and leading to a

n

100-

I

01
I ~ I ~ ~

10
F (Wcm)

(h

L

(Q

F= 8.40V~cm FIG. 8. Log-log plot of the decoupling field Fd for several n

values between an50 d 100. The dotted line represents the
theoretical prediction d n =d' '

t,F '=0.67 from Sec. V C). Experimen-
tal records with amplitude modulation techniques are shown in
h

'
exhibiting various stages of the stabilization process.

(Field values: F=0.35 V/cm for n=96 to 102; F=4.25 /cm
for n = 59 to 61; F=7.25 V/cm for n =54.)

large pseudo-Fano profile.
This phenomenon obeys a n F=const sca gcalin law (see

Sec. V) and can be tracked from n=40 to n=100 in the
Rydberg spectrum with the present rangn e of field values.
This is shown in Fig. 8.

V. DISCUSSION AND THEORETICAL
INTERPRETATION

6.65

6.15Vicm

71.5 72 72.5 71.5 72

FIG. 7. Stabilization of a discrete state atat the center of the
n=54 manifold (frequency modulation spectroscopy; energy E

16700 m '). The local field-energy region isin excess of cm
na can bed n Fi . 4. The evolution of the phenomena can eschematize on ig.

=6.14 6.66, 7.04,b d for a 1arge range of field values (F=o serve or
he vicinit of a decou-7.72, 8.42 V/cm from bottom to top) in the vicini y o

lin field amplitude which ranges betwe en 7 and 7.25 V/cm
). The width of the line is then(experimental spectra: left traces). e

n with the numericalabout 1 GHz (Doppler width). Comparison wi

theory at the same e va uesfi ld 1 s (right traces) shows satisfactory
agreement wit goo repro

'
h d oduction of the main characters of t e

ities (seeatterns, but not for the. absolute values of the intensities see
tex t) The same phenomenon is s own at

Fi . 8, with amplitude modulation techniqu es. The
broad modulation results from the other discrete s a e

'

ing with the manifold states which generates a Fano profile.

—( in +2 )D+i n 3+P ) )0'n (19)

exhibit a inear ar e . '
tivel' St k effect. They constitute an effective

two-level system weakly interacting wiwith the (n — ev-
els of the n incomplete manifold.

f ) with the in-At higher fields, the interaction o cp„
complete manifolds generates pseudo-Fano profiles.

above the n manifold, respectively, that increase and e-
crease into the n manifold as F increases from zero. i-

The model of Sec. III combined with proper evaluation
of the nonhydrogenic matrix elements in cesium allows

imental results.for a detailed interpretation of the experime
However, a detailed comparison of line intensities with

ach. Dia onalization
on 11 adjacents manifolds meets any stability require-
ments in e prth resent range of field and n values.

i outfield the nonhydrogenic P and D states lie ouIn zero e, e no
of the m=1 incomplete manifold (cf., Ftg. . s
difference o eir q'ff of their quantum defects 5(P) —5(D) is only

10 (mod. 1), that is far smaller than ~5(D) —5( )~ an0.1 rno .
~5(P) —5(F)

~
(mod. 1), the two states (nn+3 P and

(n +2)D have nearly equal energies. At low field
(F=~5(P)—5(D)~n ), they are mixed at first order by

ith the states ofthe Stark interaction while the mixing wit
the incomplete manifold is negligible. The mixed com-
ponents



39 INTERFERENCE AND STABILIZATION IN THE QUASIBOUND. . . 1073

A. Evaluation of the matrix elements

There are only eight matrix elements to evaluate as
shown in Fig. 9. This is done using the method of Ed-
monds et al. ' applied to situations where I (&n

1/2

( n l m~z
~
n l + 1 m ) = ,' n— (l +1) —m

(2l + 1)(2l + 3 )

nally, the energy curves associated with y„+ ) and

~y„+, ) (which are strongly mixed with the n manifold's
parabolic channels) anticross. Near this point, a proper
linear combination of the two states is stabilized with no
interaction with the n manifold. This eigenstate is a su-
perposition of low l states, with no contribution from the
states of the incomplete n manifold.

TABLE I. Values of the nonhydrogenic matrix elements of
the dipole (d;) for the situation considered in Fig. 9. They are
evaluated through Eq. (20) and Ref. 29 in atomic units for m=1
states. Notice that the phase convention here and in Ref. 29 is
that radial wave functions are positive at infinity.

d, = (n +3 P~z~n +2 D) =0.66n
dz = (n +3 P~z~ n +3 D ) =0.08n
d, = (n +2 D~z n F) =0.56n'
d~ = (n +2 Djz n +4 P ) =0.21n
d~ = (n F~z~n + 3 D ) =0.50n

d6= (n +4 P z~n +3 D) =d,
d7= (n +3 D~z~n —1 F)= 0—08n.

d, = ( n +2 D
~
z

~
n + 1 F ) = 0—06n. '

d9=(n —1 F~z~n+2 D)=d~
d& o= ( n +3 D~z~n + 1 F ) =d3

Xgo(b. n *), (20)

where go is tabulated in Ref. 29 with argument hn* the
difference of the effective quantum numbers. The values
of the matrix elements for cesium m = 1 states are given
in Table I.

B. Analysis of the experimental pseudo-Fano profiles

The energies of the discrete states ~tp„—) [Eq. (19)] are
E„—+ =E„+V„,where E„ is the averaged energy of the
(n+3)P and (n+2)D states and V„=d,F=0.66n F.
The interaction of the ~y„+—+, ) states with, respectively,
the (n, m= 1) and (n + l, m =1) manifolds is through the
D~F matrix element with (y„++&~ V~n +1F)=d3F/
v'2-0. 40(n +1) F and (y„+&~ V~nF) =d&F/&2
=0.35n F. The distribution of the nF state onto the
manifold can be evaluated assuming complete redistribu-
tion, ' i.e., ( ll ~

nF ) ~ n ' . Since the spacing is
co =2'„ this leads to V+ /co =0.133&n + 1 and
V /co-0. 117&n. From Eq. (14) the widths of the
profiles are thus I + =0.33n F and I =0.25n F (or
An+ =I +/2', =O. 1 ln and bn =0.08n spacings ').

Conditions for the generation of pseudo-Fano profiles
are those described in Sec. IV where both the coupling
and excitation of the channels are via the same

~
nF )

(n 1)F

d9
d7

d2

d

d4 ds
d8

(n+g) F

n-1 (Il+3)P (n+2) D (n+4) P (n+3)P n+1

FICs. 9. Stark effect on m=1 states of cesium (theoretical
simulation). The dipole matrix elements d; can be evaluated
simply from Ref. 29 and are sufficient for understanding the ex-
perimental results on Fano profiles and stabilization. Their nu-
merical values are given in Table I.

component. From Eq. (17), b, is given by b, „+=d3(+/
2=0.28n Fg+ and b,„=—d&g /2= —0.25n Fg
where g

—stands for

((n +4)P~ T)5D )
((n +1)F~T~5D )
((n +4)PI Tl 5D )

(21)

( nF~ T~ 5D )

The modulus of g
—is independent of n The. g

—have op-
posite signs (g+ = —

g ). With the present phase conven-
tions, radial wave functions have the same signs at
infinity. Hence

~
nF ) and

~
n + 1 F ) are in phase opposi-

tion close to the origin. Consequently, 6„+ and h„have
same sign, equal to that of g+ which is not known. The
modulus of g+ is

~

g+
~

=0.17 from evaluations of the ratio
of the matrix elements or measurements of the zero-field
intensities of the P and F lines. Hence the shift 6 arising
from the interference effect in optical excitation is of
same sign, whatever the wing of the manifold and what-
ever the n value. From Sec. IV and Eq. (17), the profile is
a minimum at E = —

Q or E F.„+=—b, „—. — —

Finally, the shifts F—arising from the variations of the
coupling are of opposite signs with the present distribu-
tion of the coupling (see Fig. 1). They shift the discrete
states ~g„—) outwards. This imphes that Fano parameters
Q

—are different [from Eq. (17)].
For the conditions of the plot in Fig. 10 the experimen-

tal values are n =44, F=8.40 V/cm, and 2', =1.4 GHz.
Fitting the two profiles, ~yz~) and ~pre&), leads to the ex-
perimental values Q&~=2, I ~~=3 GHz, and Q~~ = —1.3,
I 45=6 GHz. The previous estimates leads to I" =2.8
GHz and I +=3.6 GHz. The underestimation of I
comes from the departure from equiredistribution of the
~45F) state on the wing of the manifold (it is closer to
~ p4, ) due to the quantum defect 5 =0.033). Hence
V )th, ,-0.8 GHz, ( Vq+ )th„,-0.9 GHz while ( V

Measurements of the position of the minimum of the
profiles lead to 6,+, , =0.9 GHz and 6...=0.9 GHz also
(this is done by comparing to the positions E„+— of the
discrete states ~q&~~) evaluated from +V„or better by
taking into account the interaction with the manifolds
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Z',

the position of the lines are concerned and fairly good
reproduction of the shapes. But the experimental intensi-
ties of the manifold are enhanced by the superposition of
contributions from m=0 and m=2 states due to the
drawback in our excitation scheme (Sec. IV). From Sec.
II D, we see that this adds an independent contribution
with roughly the same spectrum, but does not add any
new interference effects. As seen on the plot on Fig. 10
the (m =2, 47D) line is still out of the manifold (its Stark
effect in contrast with m = 1 P and D states is quadratic )

and its width is still the Doppler width.

52 53 54 E(cm-'}

FIG. 10. Fano profile generation associated with the interac-
tion of nonhydrogenic m =1 (P,D) states with the n =44 and 45
incomplete manifolds (F=8.40 V/cm; energy E in excess of
16700 cm ', amplitude modulation). The difference in the ap-
pearance of the profiles (g4&) and (g4&) illustrates the main point
in the theory of Fano profiles. The shift b due to the interfer-
ence effect is towards high energy. The shift due to the varia-
tions of the coupling on the manifold is outwards. This leads to
an enhancement of the asymmetry on the high-energy wing of
the manifold and to a compensation on the low-energy wing.
This general character of the patterns is stable whatever the n

value. Comparison with numerical simulations (bottom trace)
reveals excellent agreement for both the positions and shapes.
However, the experimental intensities of the states of the mani-
fold are too intense due to contributions from m =2 states. Ac-
tually, the m=2, 47D line is seen with high intensity, with a
width comparable to the Doppler width. The arrow indicates
the zero-field position of the n =44 hydrogenic manifold.

other than respectively n =44 or n =45). Hence the shift
b, is positive towards high energies and the sign of g+ is
thus positive too. From these considerations, determina-
tion of the signs of the matrix elements in g+ can be ob-
tained.

The determinations of F* are deduced from the values
of 6 and Q. One obtains (F ),„,= 1.5 GHz and
(F~+),„~,

= —4.5 GHz. Both shifts express a repulsion
from the manifolds as expected. That they are very
different comes from the slight asymmetry in the matrix
elements, and especially from the fact that the !45F) is
closer to ! |p&& ) leading to a departure from equipartition.

Finally, theoretical values from the full numerical cal-
culations are (F },h, ,=1.8 GHz, (I },h, ,=2.7 GHz,

= 5.4 GHz, (b, +
),„„,=0.9 GHz, and thus compares fair-

ly well with the experimental results.
All the major aspects of the theory of Fano profiles are

thus illustrated here with simple calculations. The asym-
metry of the profiles on the low and high energy wings of
the manifold is mainly due to compensation on one wing
and addition on the other, of the two 6 and Fq contribu-
tions to the Q parameter. This character holds true
whatever the n value. Comparison with the numerical
theory (Fig. 10) indicates a 100-MHz agreement so far as

C. Analysis of the stabilization process

2

= —,'(!n+2 D&+!n+3 P&

—In+3 D)+In+4 P)), (22)

while the other one leads to a large Fano profile (see Fig.
8 and Ref. 12) indicating a strong coupling with the Stark
manifold. The decoupled state from Eqs. (19) and (22) is
a superposition of four P and D states with low I values
and is not mixed with the manifold's states.

However, this model is not completely satisfying as
!4d ) has a nearly zero probability of optical excita-
tion. Actually ( Nd! T!5D ) ——,

'
I ( n +4 P!T!5D ) + ( n

+3 P!T!5D )!=0. The interference process is destruc-
tive which contradicts the experimental results. The ori-
gin lies in that the coupling of ! y„+i ) and !y„) with
the n+ 1 and n —1 manifolds cannot be ignored as

(y„+,! V!n +1 F ) =0.30/n at the decoupling, which is
comparable to the distance of!p„+, ) to the center of the
n+ 1 manifold. Including these efFects only weakly
modifies the conclusions so far as the position is con-
cerned due to the nearly symmetrical character of all ma-

The interpretation of the experimental plots on Fig. 7
can be done in the same way. Comparison with numeri-
cal simulations reveal a fairly good agreement as con-
cerns the positions of the lines and the position of the
decoupling (in field and energy). Even far from decou-
pling, the shapes of the profiles agree. There is, however,
a discrepancy in the intensities of the manifold lines
which, as previously discussed, is due to contributions
from essentially the m =2 series.

For n =54, the stabilization process involves !y~~ ) and

!q&zz) which interfere very close to the center of the
n=54 manifold. The matrix elements involved in the
theory of Sec. III D are (using the evaluations of Sec. V A
and Table I): Vii-0. 66(n —1) and V2z- —0.66n and
the coupling V, 2 between !y~4) and !p~~) is V, 2= —0.07n . Their coupling with the manifold is
from Sec. VA V, =V2- —0.37n F. One deduces Fd
-0.75/n and the energy Ed- —(1/2n ) —(0.02/n ).
The decoupling takes place approximately at the zero-
field energy of the n manifold which follows from the
symmetrical character of the situation (the P and D states
are nearly degenerate and at half distance from the mani-
folds). As V, 2 (0, the decoupled state is
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trix elements. Using ( y„— V~ n —1 F ) ——0.36n F, the
field value at decoupling is

Fd =0.67/n' (23)

VI. CONCLUSIONS

We have thus experimentally studied two basic phe-
nomena of significant importance for the physics of the
Stark effect on nonhydrogenic atoms. Studies have been
done in the quasibound part of the spectrum which al-
lows accurate measurements to be performed. The study
of stabilization was here possible on a broad scale.
Analytical interpretation of most of the features of the
spectrum have been done with a model involving the in-
teraction of one discrete state with a quasicontinuum of
discrete states, which finds here one of its most perfect
experimental realizations.

Both Fano-shaped profiles and stabilization effects are
precursors of the processes previously seen in the con-

and the oscillator strength of the decoupled state is now
(4d ~T~5D ) ——0.275 (nF~T~5D ). The intensity of the
decoupled line is thus about five times greater than those
of the manifold for n = 50.

Finally, the new field value of decoupling compares
fairly well with experimental measurements between
n =50 and 100, as shown in Fig. 8, and gives
(Fd),„„,=(0.67+0.04)/n . That this value is twice the
field value associated with crossing of the edge states of
the n and n + 1 manifolds is an accident [it follows from
the values of the matrix elements in Eq. (20)].

Further use of the model of Sec. III would allow de-
tailed analytical studies of the width of the process
against n and F as shown in Ref. 12.

tinua region. The only difference is that the scattering
width of the states is negligible in our conditions. States
are quasibound states and not resonances, but, in both
cases, the origin of phenomena is the same. It is the
Stark redistribution of nonhydrogenic states onto the hy-
drogenic channels which results from the breaking of the
Stark dynamical symmetry.

Such stabilized discrete states, having low angular mo-
menta and being decoupled from the parabolic Stark
channels at a nonzero electric field value may be of in-
terest in the context of atoms manipulations with exter-
nal fields owing to their strong optical oscillator
strengths allowing efticient laser excitation, as well as in
collisional studies. Obviously, the tunability of the phe-
nomena on the F field and on the n value is one more im-
portant character.

Very similar situations, involving quasicontinua of vi-
brational states are also expected to be found in mole-
cules or other systems as Rydberg atoms in magnetic
fields or crossed fields and as well in autoionizing spec-
tra. This of course has great importance in the context
of line-shape formation and in analyzing the data in va-
pors or for plasmas diagnostics purposes.
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