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The two-electron Bethe-Salpeter equation is reviewed. The transition to a Hamiltonian form is
discussed, and the criterion that the first-order energy shift vanish is used to determine the
electron-electron potential that appears in the Hamiltonian. A similar program is carried through
for the three-electron case. The fundamental idea of Feldman and Fulton [Nucl. Phys. B195, 61
(1982)] is used for the transition to the Hamiltonian form, although some changes are necessary.
The optimum two-electron interaction is the same as that in the two-electron case. It is necessary to
introduce a static three-electron interaction, which then can be determined from the vanishing of
the first-order energy shift. It is extremely complicated and unlikely to prove useful in the near fu-
ture.

I. INTRODUCTION

The use of the Bethe-Salpeter equation' (BSE) for the
calculation of atomic structure has hardly been pursued
since the original appearance of the equation. Essentially
all the progress that has been made in the two-body prob-
lem has resulted from an approximation of the two-body
interaction by a instantaneous (unretarded) potential and
the reduction of the resulting equation to a Hamiltonian
form. A perturbation theory was then developed in or-
der to obtain corrections to the energy obtained from the
Hamiltonian equation. The choice of the instantaneous
potential is somewhat arbitrary. It has received some at-
tention in the literature for nonrelativistic (low-z) cases.
There does not seem to be any convincing prescription
for its choice in the relativistic (high-z) case.

In Sec. II, I review the two-electron problem in which
the nucleus is treated as a spectator merely providing an
attractive potential for the electrons. A slightly different
perturbation theory is introduced in order to make ener-
gies explicitly real. The criterion for fixing the instan-
taneous potential is that the first-order correction to the
energy shall vanish. This results in an instantaneous po-
tential which is very similar to the two-body potential ob-
tained from the configuration-space Hamiltonian direct-
ly from QED; i.e., without the intermediary step of the
BSE.

In Sec. III a similar program is attempted for the
three-body BSE. First the explicit three-particle interac-
tion (resulting from the exchange of at least three pho-
tons) is neglected. The two-electron interactions are ap-
proximated by instantaneous potentials and the reduction
to single-time (Hamiltonian) form is accomplished by fol-

lowing the ideas of Feldman and Fulton with some
surprising results. Negative energy states do not appear
in the single-time three-electron wave functions, a result
which is not true for the two-electron case.

The attempt to make the first-order correction to the
energy vanish fails in this case since we find that in addi-
tion to two-electron terms contributing to the energy
shift there are three-electron terms. These cannot be can-
celed by any choice of the instantaneous two-electron po-
tential. If we determine the two-electron potential from
the condition that there be no two-electron contributions
to the energy shift, then a two-electron instantaneous in-
teraction is obtained which is the same as that obtained
in Sec. II. That is, the presence of the other electron,
does not affect the optimum electron-electron interaction.

In Sec. IV we return to the original three-electron BSE
and include the three-electron interaction. The transition
to the Hamiltonian form is accomplished by allowing for
instantaneous three-electron potentials. (These have ap-
peared previously in both a classical and QED formula-
tion of the problem. ) The result is a surprisingly simple
generalization of the Feldman and Fulton prescription.
It is possible to obtain the optimum three-electron static
potential which makes the first-order energy shift vanish
but it is too complex to even display here. The extension
of this program to more thin three electrons would ap-
pear to be profitless at this time.

II. HELIUMLIKE ATOMS

The BSE for two electrons in a static nuclear potential
is well known. It is reviewed briefly here to establish no-
tation and define the different approach taken here. It
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can be written, in the Furry picture, as

S, '(e, )S, '(e, )P({e[)

fd'e'S(e', +e2)I |,([e [, [e'[)q([e'[),
277

(2.1)

where

S, (e, ) = [ W/2+e, —h, (1 —ill)] (2.2)

Here W is the energy eigenvalue, e,- is fourth component
of the ith momentum, h, is the Dirac Hamiltonian in-
cluding the nuclear potential, and g the usual positive
infinitesimal. A mass operator could also be included in

h,- in principle. The two-electron-irreducible interaction
I,z, in the sense described by Salpeter and Bethe, ' can
also be included to any practical order so that (2.1) is, in
principle, exact. In lowest order I,2 is local and time-
translationally invariant so that it becomes a simpler
function of its arguments

I', ~ ([e [, [e'[)=I',q'(e, —e~ —e', —eq),

with the spatial dependence suppressed. The 6 function
on the right of (2.1) serves to keep the "wave function"
on shell, which is the only region of [e [ space that need
be considered. The solution of (2.1) is a formidable task
so that essentially all investigations proceed by replacing
I

& p by v, 2 a static, or instantaneous, interaction indepen-
dent of the { e[ variables. This results in the Schrodinger
equation obtained by Salpeter,

Q' '([e [)= (S, +S, )4,
2'lTI

(2.7)

where now the eigenvalue occurring in S~ and S7 is W'

If (2. 1) is expanded about t(t' and W' the first-order
result is

F(W' ') — fd e'6 ge' v»2'
W(1)F

(
W(0) )q(0)+ ~

d 2 ~g y ~ gI q(0)
277

(2.8)

where

genvalue W "' is nevertheless real so that the lack of Her-
rniticity in (2.4) is unimportant. This will be significant
below. The static potential v~z is, at this point, arbitrary.
Its choice has been discussed in the past but a somewhat
different point of view is taken here.

The true eigenvalue W is close to W'" provided that
the static potential mimics the effect of I~2 sufficiently
well. In that case the first-order of W W'', can be ob-
tained as a linear expression in (I,z

—v&&). The require-
ment that W''' vanish then leads to an expression for v, z.
In order to implement this program we first need an ex-
pression for g"'([e[) in terms of 0&, (2.4), where g is
the solution of (2.1) with I&& replaced by v, ~. This has
been given previously as

( W' —h, —h2 —Sl, ~v, ~)4=0,
where W' ' is the approximate eigenvalue and

(2.4)
and

F( W) =( W/2-+e, —h, )( W/2+ez —h2) (2.9)

A)q ——A+ —A, A =A++ A

A+ =A+(1)A+(2),

A =A (1)A (2),

(2.5)

where A+(i) projects onto the positive (negative) energy
spectrum of h (i). It is easily shown that

F'(W)= F(W) .
d

dW
(2. 10)

In order to extract W' ' ' from this equation it is necessary
to multiply (2 ~ 8) from the left by a function which will
make the left side of the equation vanish. This eliminates
the dependence upon the unknown first-order wave func-
tion, |t '). The function which accomplishes this is

(2.6) q
(ol (P(S& +St ) 2''1

(2.11)

and that the presence of the 0 in (2.4) eliminates the pro-
found difficulti of the Breit equation, which is (2.4) with
A&2~ 1 ~ These difficulties are referred to here as the
Brown-Ravenhall disease (BRD). The potential Q, |,v, z is
not Hermitian but it is easily demonstrated that the ei-

where it is important that the Hermitian conjugate of the
propagators (2.2), be used in order to keep W' ' ' real for
Hermitian I,z. Operating on (2.8) with J d e6( g e)f'"
from the left yields

4&( W —h, —h~ —fl, ~v, ~)f d e'6 g e' P'''( {e'[)2'
= —W '' f d e tt '({e[)F'( W ')l('0'({e [ )+ f d e d e'5 pe 5 pe' g' ({e[ )6I 2$' '({e'[ ) . (212)2'

Then we must have

4 ( W' ' —h
&

—h2 —A, &2v&&) =0,
which yields

N=(A(qN)' .

(2.13)

(2.14)
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We now use W'''=0 in order to obtain v, ~. The }e} integrals can be performed by the insertion of the projection
operators A+, (2.5), around I„in all possible ways. We simplify by using the lowest order, (2.3), for I ~& and obtain

(4, 0&&v,zfl»+)= f dx f ™dse "[4((e 'A+I, &A+e 'e " +e A I,&A e 'e+"'
4~ — o

+ 1 g I P
'

2 —is( W' —x/2)
12

+e 'A I, A e 'e "' )+(1~2))4], (2.15)

where I&z I~&(——x) is an even function of its argument. Then the requirement that v&& be independent of the state, ex-
cept for its energy, implies a form for v». Notice that components of v» such as

A+(1)A (2)v, ~A+(1)A+(2)

do not occur, which is the crux of the cure of the BRD. If I» is independent of x then we obtain v» ——A, zI»A, z,
which then allows for the incorporation of any instantaneous piece of I» into v». If we compare the component of v»
proportional to A+I, & A+ to the two-electron potential obtained from a direct transition from Fock space to the Hamil-
tonian form of the configuration space equation, it is seen that they are the same.

III. LITHIUMLIKE ATOMS

The three-electron BSE has not been dealt with extensively in the literature. ' It can be written as

S& 'Sz 'S, 'g( }e} )= S, ' f d e'5 g e' Ale& —e', )I&&(}e},}e'})t)( }e'})+(1~3)+(2~3)
2~

'7

f d e'5 ge' I' '(}e},}e'})P(}e'}), (3.1)

where there are now three e, variables, the on-shell con-
straint being e

&
+e, +e3 ——0. The propagators are now

S, = +e, —h, (1 —iv)), (3.2)

with the symbols having the same meaning as above. The
three pair interactions, of which only the first is written
explicitly, contains the same pair interaction I, as oc-
curred in Sec. II so that in lowest order the first term on
the right in (3.1) describes a photon exchange between 1

and 2 while 3 propagates as a spectator. The last term is
the intrinsic three-electron interaction which cannot be
generated from the iteration of any combination of the
first three. Its leading term arises from the exchange of
three photons. For the moment we neglect this three-
electron term.

The replacement of I» by v» a static interaction yields
an equation which is not easily reduced to a Schrodinger
equation form. Before turning to this problem we first
consider the limitation placed on the form of v» by the
requirement that the BRD shall not arise. That is, we
adopt the point of view that the BRD is well understood
and that a consistent derivation of the Schrodinger equa-
tion from @ED will preclude its appearance. The disease
arises from intermediate states in an expansion of the
wave function which are part of a continuum and are de-
generate with the initial state. For the two-electron prob-
lem, one in the positive energy continuum and one in the
negative continuum of h can be arranged to be degenerate
with the initial state. The projection operators occurring
in (2.5) eliminate that possibility since they result in
A+(1)A (2)%=0. For the more-than-two-electron case

it is clear that any combination of electrons with some in
positive and others in negative energy states can form a
continuum which will be degenerate with the initial state.
Therefore, if the BRD is to be avoided, all electrons must
be either in positive energy or in negative energy states.
This precludes the occurrence of a part of the static po-
tential of the form

+A (1)A (2) V, ~A (1)A (2), (3.3)

where for generality, V» and V, z are allowed to be
different. We use this form below.

The next step is analogous to (2.7) the relation between
the Bethe-Salpeter wave function P' ' and the
Schrodinger wave function N. Feldman and Fulton
have given a prescription for the nonrelativistic problem
which is essentially the same one used here. The two-
electron example can be taken as a prototype. In (2.7) the
Schrodinger, or one-time, function W must be propagated
to a two (unequal) time function f' ' in all possible ways.
This is accomplished by propagating either the first parti-
cle with S[ or the second with Sz to different times. The
three-electron case is more complex in that propagation
of the equal-time function N to three unequal times can

A (1)A (2)v„A+( 1 )A+(2)

and its Hermitian conjugate. A term of this form could
take a part of 4 with all electrons in positive states and
move a pair to negative states and thereby cause the de-
generate configuration which results in the BRD. This
restricts the possible static pair interaction to the form

v, ~= A+(1)A+(2) V, ~A~ (1)A+(2)



MARVIN H. MITTI.EMAN 39

be done in more than one way. In order to describe the
most general case we need the two-body propagator

S 2 —S, +S, —v„—1 —1 —1

1

z S, (e, )S~(ez)S3(e, )v, &f1,zS, z (e, +e, )X+,(0)

(2~)

(3.1 1)

==', W'" +e~+e& —(h, +h, )(1—i ri) —v, p,

which satisfies the integral equation

S„=(S, '+S~ ') '(1+v„S„).

Then the Feldman-Fulton prescription is

tt'"( I e ] )=,[(S,+S, )S„+(S,+S, )S„
(2~i )

+(S, +S, )S„]4 .

(3.4)

(3.5)

(3.6)

where

SIq (e, +eq)

= [=', W " + e
~ +ez —(h

~
+ h, )(1 —i g)] ' (3.12)

and the on-shell condition has been used. The second
type of term comes from the second term of (3.7) substi-
tuted into the first term on the right of (3.9). Perfor-
mance of de2de', results in

1f' '(Ie
I
)=

z S~SzS3(X+S, 'v, qS, ~+Sq 'v), S„
(2~i)

+S, v„S~, )4&,
—1

which proves to be a more useful form. Here

(3.7)

X=S, '+S, '+S, '=WI"I —gh, (1 iri) . —(3.8)

That is, first a pair propagates away from the one-time
function N and then one of this pair propagates still fur-
ther in time. This must then be symmetrized in all parti-
cles. The use of (3.2), (3.4), and (3.5) and the on-shell con-
strain allows this to be rewritten as

) S]S2V12 de 1S1 e
1 S2 e

1(2~)'

XS,~( —e, )4 . (3.13)

The remaining integral is identical with that in (3.10).
The on-shell result is

1

q S) (e ) )Sq(eq )v(~A)qS (q (e ) + eq )
(01

(2~)

&&v„S,z(e, +ez)&b . (3.14)

The third type of term results from the third term of (3.7)
similarly substituted into (3.9). After performance of the
e', and e', integrals the result is

The demonstration that this is indeed the correct assump-
tion is accomplished by the substitution of (3.7) into a
form simply derivable from (3.1) with I,z ~v, and
I"'=0

I

, S) (e, )S~(e~ )S,(e, )v, ~(2~)-'

X f deIS~(eI )v„S~&(eI+e3)4 . (3.15)

1'' '([e])= S((e))S~(eq)
2~

X f d e'5 pe' 6(e3 —e3)

X v&z1(' '( [e'] )+(1~3)+(2~3), (3.9)

where 8' is replaced by W in all the propagators in
(3.7)—(3.9). The performance of the e' integrals on the
right will be briefly described.

There are three types of terms. The first arises from
the substitution of the X term of (3.7) into the first term
on the right of (3.9). Performance of de', de', results in a
term

, S,S,S3v]p f de', S, (e', )S, ( —e', —e, )X4 .
(2~)

(3.10)

The poles of both propagators lie on the same side of the
real axis so that the contour can always be closed so as to
enclose no poles. The integral therefore vanishes. The
fourth type of term arises from the substitution of the last
term of (3.7) into the first term on the right of (3.9). This
can be obtained from the third type of term, (3.15), by the
interchange 1~2. It also vanishes.

The combination of (3.11) and (3.14) results in

1 —1S,S~S,(v, ~+S, v, ~S, ~ )f1&P,
(2~)'

(3.16)

(3.17)

where use has been made of (3.5), (3.8), and the commuta-
tivity of A, 2 with S,2 and S, with v, 2. We have further
replaced A»W, (2.5), by AN, where

The e', integration path is closed in the upper half plane
thereby picking up the pole in one or the other of the
denominators supplied by the two propagators. Which of
the poles is selected depends upon the sign of h, and h2
and it is clear that the integral vanishes if they have op-
posite signs. The result is

where A+ are now three-particle projectile operators.
This replacement is correct since we have seen that the
three particles must all be either in positive or all be in
negative energy states in the wave function W. The ex-
pression (3.16) must now be symmetrized in all pairs in
order to form the right side of (3.9) after the substitution
of (3.7). The full equation is
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1 S]S3S3(X+S3 v]3S]p+S2 v]3S]3+S] vp3S23) 0—I —I —I

(2vr )

1
S]S3S3(v]2+v]3+v23+S3 v]3S]p+S2 v]3S]3+S] vp3S33)QC' .—I —I —I

(2~)

The [eI dependence must cancel explicitly since 4 is assumed to be independent of this set. This can only occur if

ON =A++,
that is, 4 contains no negative energy states. Then the equation for N follows immediately,

W' ] —gh, —g v,, 4=0
I l )J

and

(3.18)

(3.19)

(3.20)

v;- =A+ V; A+, (3.20a)

so that V]3=0, (33). The absence of the negative energy states in N is exactly the result obtained from the transition
from the Fock-space Hamiltonian formulation of QED to a configuration space equation of the form (3.20). The expli-
cit appearance of the negative energy states in the two-electron problem, (2.4), is not repeated for three or more elec-
trons.

We can now try to determine the as-yet arbitrary two-electron interaction in a similar way to that used in Sec. II.
Equation (3.1) (still neglecting I' ]) is perturbed about W] ] and l(' ', (3.7). The requirement that W''' be real results in

=4(X+S]~v]3S3 +S]3v]3S2 +Si3vp3S] )S]S2S3(0) —I ~ —I ~ —I

( 2]ri)
(3.21)

where v; is taken to be Hermitian and S, ' =(S, )
' in the i)~0 limit. The further requirement that l(''' not appear in

the final equation for W ' ' [as was done in (2.12) for the two-electron case] yields

W —gh, —g v, =0
I I )J

or, coupled with (3.20) and (3.20a),

(3.22)

(3.23)

The expression for W ' is readily obtained and is explicitly real. The requirement that it vanish and the use of (3.9)
yields

f d e 5 g e ]tt ([e I )S] '(e])Sz '(ez)S3 '(e3)g' '([e I)

= f d e 5 ge p' '([e)) S3 '(e3}f d e'5 pe' I,2+ . . g' '([e']) . (3.24)

The evaluation of the left side of the equation with the aid of (3.6) and (3.20a) is straightforward but somewhat lengthy.
The procedure merely involves repeated contour integrals for two of the e; parameters. The use of (3.20) or (3.22) re-
sults in the expression (2m) {C&,(v]i+v]3+v23)N). The right-hand side of (3.24) is much more complex. The substitu-
tion of (3.6) and (3.20a) results in 16 terms which arise from I]z. The symmetrization in the electron designation results
in 32 more. Most of the original 16 are of the type ( . . I,2 v» . . ) which are three-body potentials which will be
discussed in Sec. IV. The two-electron terms, interpretable as v]z, arise from the first two terms in each of (3.6) and
(3.20a). For these we use

S]S~S3(X+S3 v]2S]p) —(S, +Si)(S3+S]3) (3.25)

and its Hermitian conjugate. The 6 functions in the e parameters can be used, and then a simple change of variables
gives

dx dy dz [S,~(z)+S3( —z)] S, —+ —+S~ z ————
Sm

12 3 1 2 4 2 4
I]~(x}—,

' [S3 ' (z)+S3 '
( —z) ]

X X
X S ———+S z ————

2 4 2 4 [S3(—z)+S]z(z)]N . (3.26)

The y integrals can be done by raising the denominators in which they occur into an exponent by a parametric integral.
This gives
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C

——0&*( W —h3 —h], ) f dx f ds e " dz S],(z)F]2(x,s) S]3(z)(W —h3 —h]2)4,4 ' ' — . o — ' [(W/3) —z —h ]
(3.27)

where

F„(x,.s) =e "" -[e 'I„(x)e '+(1~2)] .

The z integral in (3.27) can be done by first expanding the S]z's in eigenfunctions of

(3.28)

h]2=h]+h, +v„, (3.29)

thereby turning S, 2 into a sum over c numbers, which allows the principal value integral in (3.27) to be performed. The
result allows an inference from (3.24) which is

4+v„A = f dx f ds e " "" '[e""I„(x)e ''"+(1~2)] .4~ - 0
(3.30)

This should be compared with (2. 15), the analogous result for the two-electron case. The (+, + ) part of (2. 15) is iden-
tical with (3.30) showing that this part of the optimum two-electron potential is the same in both cases. The other com-
ponents of (2.15) do not occur in the lowest-order static pair potential when three (or more) electrons are present. They
instead occur as higher-order pair potentials or three-body potentials.

In order to complete the program outlined above we see that it is necessary to introduce three body potentials. This
is done in Sec. IV.

IV. INCLUSION OF THREE-ELECTRON INTERACTIONS

In Sec. III the necessity for the inclusion of a three-electron potential arose in two ways. The first was due to the in-
trinsic three-electron interaction I' in (3.1). The second arose from the requirement that the first-order correction to
W', the eigenvalue of the Hamiltonian equation, (3.20), should vanish. We therefore write the static approximation to
the full three-electron BSE as

'( [e I ) = S]S,v]2 f d'e'5 g e' 5(e, —e', )g'"'( [e I )+(1~3)+(2~3)
2~

7

S,S,S,v ' f d'e'5 Q e' g~ ( I
e'I ) .

2&
{4.1)

Here v'" is the static-three-electron potential and all the
other symbols are unchanged. We must now provide a
modification of tt' ', (3.6) or (3.7), which can allow for the
participation of v'" in the propagation of the single-time
function N into the multitime functions g' '. The clue to
providing this is that v" is a single-time operator which
is meaningful only when it operates on a single-time wave
function. This limits the possible forms of the terms in
which v" can participate. We modify (3.7) as

the v term of (4.3) gives

1 (0)
S&S&S&v&2S]& A, ]2v+ .

(2~i)

The v„operator on the second term of 5]t' gives

1 (0)
2 ]2 2 2 ]z &2 7 ]2

(2vri)

The last two terms of 5P' ' yield

(4.4)

(4.5)

j(0)(
[ I ) q(0)(

[ ] ) +5q(0)(
I ] )

where ]t) "'( Ie ) ) is given by (3.7) and

S]S,S,(v+v„S„) ]3
0

(2~i)

(4.2) 1 (0)S]S2S3v]2S ]7 0 3(]v 3D]3]$]3 +v 23D$3 $13 )N,
(2~i )

(4.6)

where

+v(3S )3)/' ) )+v7)S23/ 7g )C D, =(X —v,, ) (4.7)

(4.3)

where v and the y, are static operators (independent of
Ie)) to be determined below. When (4.2) is substituted
into the right side of (4.1) three new types of terms arise:
First, from the v, terms operating on 5g "', second, from
the v'" term operating on P~ ', and third from the v'"
term operating on 5g'

In the first type, the v]z operator of (4.1) operating on
1

S]S2S3v(3)

(2~i)
(4.8)

where X is given in (3.8) and S'&z' in (3.12). All the con-
tour integrals used in obtaining (4.4)—(4.7) were already
encountered in Sec. III.

The second type of term, obtained from the operation
of the v" term of (4. 1) on @'" is obtained by using the
same contour integrals, with the result
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—7 i~+ i~ »X&3+ z3 z3~23= (4. 10)

plus two additional equations obtained by permutations
of the subscripts. These can be combined to give

The third type of term, from the v" term of (4.7) operat-
ing on 5g ' again requires only the same contour in-
tegrals and results in

1 (3) A
S,SqS3v

(2mi)

v]2D]23 12+ v]3 ]33 13 v23 23723)@

These results are then assembled. The requirement of the
cancellation of the explicit dependence on the IeI vari-
ables places constraints upon the j eI-independent opera-
tors v, v'", and y,-, . These are

{0)of' '= ~S]S~S,(X+S, 'v]~S]~+S~ 'v„S„
(2]ri)

1+S, v S„) — v
( w' ' H—2)

which, using (4.2) and (3.7), gives

S]S~S3(X+S3 v]pS]p+S2 v]3S]3
(2]ri)

—1 1+S, v~3S23 )
( W"]—H, )

X v'"+v'" v"' e1

gr(o)

(4.19)

(4.20)

D]~)']z =D]3)']3=D231'g3 =—Q

which, when substituted back, yields

Q= X —g v,, 'v=5, 'v

or

(4.1 1)

(4.12)

The two independent solutions of N arising from 4+ and
yield diA'erent results. If we choose the + solutions

(i.e. , 4+ ——0), then X= —4, and the last factor of (4.20)
vanishes. This is not an interesting solution for the BSE
since the zeroth-order approximation to the BS wave
function vanishes. For the other case (N =0), we ob-
tain d&=&&+ and (4.15) becomes

—1

) „=D„Q
The equation for N that emerges is

(4. 13)
( w '

H2 —v'"—)&P =0

and (4.20) becomes

(4.21)

W" ] —y h, —y v„+i —v'-" —v'-']a-'v e=o .

(4. 14)

The choice v= v'" makes v'"5 'v Hermitian. Then
(4.14) can be written as

1

O' ' —H
(4.15)

where

H2=+h, + gv;, .
I I )J

The definitions

e =@+X, X=(W"]—H, )-'v]"e

(4. 16)

(4.17)

(4.18a)

( W' ' H+v ')&0 =0— (4.18b)

which gives two diAerent sets of eigenvalues.
We return to 5)i' ' (4.3) with the result (4.13) which

gives

can be used to turn (4.15) into a pair of linear eigenvalue
equations

S]S~S,(X+S, v]~S]2+S~ v„S„
(2~i)

+S] ' v~;S,3)0&, (4.22)
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which is the form (3.7) originally given by Feldman and
Fulton for the nonrelativistic case in which three-body
interactions do not occur. We see that the only
modification introduced by the three-body static poten-
tial is in the Schrodinger wave functions. Its relation to
the BS wave function is unchanged by this potential.

The condition that 8""vanish which was exploited in
Sec. III to obtain v; could now be completed with the
determination of v' '. The results are sufficiently lengthy
to make their display here impractical.

The program discussed above could be extended to the
four-electron case. The complexity of the algebra is
greatly increased by the necessity for inclusion of three-
electron propagators, S», , etc. , in the extension of (4.22)
to this case. This probably precludes the useful extension
to the many-electron problem.
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