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Numerical analysis of stochastic relaxation in bistable systems driven by colored noise
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The numerical analysis of stochastic relaxation in bistable periodic potentials driven by colored
external noise is carried out by employing a numerical algorithm based on a well-established
continued-fraction expansion. The present investigation is aimed to sort out conflicting theoretical
predictions by providing a detailed and accurate numerical description of the phenomenon. Some
of the perturbation theories reported in the literature are shown to reproduce, each to a different ex-

tent, the stationary probability distribution of the problem, whereas a nonperturbative approach is

required to approximate the relevant relaxation time (mean first-passage time). Our numerical
analysis exhibits the lack of a comprehensive theory of bistability in the presence of colored noise.
A new finding of the study herein is the extension of the property of isospectrality of the Fokker-
Planck equation under potential inversion (from bistable to metastable). Such a property is proved
to hold for Fokker-Planck equations describing one-dimensional systems also driven by colored
external noise.

I. INTRODUCTION

( (et)) =0, (e(t)e(0)) =2D5(t) . (1.2)

The determination of the mean first-passage time
(MFPT) for bistable potentials plays a central role in a
number of problems of statistical mechanics and syner-
getics. ' For one-dimensional systems such a process is
described by the stochastic differential equation

x = f'(x )+e(—t),
where f(x ) represents a bistable (nonlinear) potential and
e(t) an external Gaussian noise, the statistics of which
has to be determined. In the white-noise limit the follow-
ing correlation functions provide a complete description
of the noise source:

picture of many-body phenomena the noise source de-
scribes the heat bath of the irrelevant variables which
are assumed to have relaxed to equilibrium independent
of the dynamics of the relevant variable x(t ). Any realis-
tic heat bath, no matter how large the system volume, is
characterized by at least one small relaxation time ~. The
corresponding stochastic fluctuations are termed colored
noise. The most common choice of time-correlated noise
statistics is represented by

(e(t)) =0, (e(t)e(0)) =(D/ )exp( —
~

t
~

/r) . (1.5)

In spite of its apparent simplicity, the problem (1.1)
and (1.5) is mostly unsolved. The stochastic differential
equation (1.1) and Eq. (1.5) may be replaced by the two-
dimensional system'

The Fokker-Planck equation (FPE) corresponding to the
system represented by (1.1) and (1.2) has a simple form

x = f'(x )+m, —

e= —( I/r)e+( I/r)ri(t ),
(1.6)

P(x; t ) = —f '(x ) +D P(x; t ),B . B ~ B

Bt
'

Bx Bx
(1.3)

and a number of its features are expressible analytically.
In particular, the stationary probability distribution func-
tion P„(x ) =lim, „[P(x;t)] is independent of the initial
conditions and reads

P„(x ) =X exp[ f(x ) /D ], — (1.4)

where N is a suitable normalization constant. The
MFPT, however, can be given an accurate analytical ap-
proximation, as first shown by Kramers in 1940. Fur-
ther refinements have been introduced over the years by a
number of authors who specialized Kramers's approach
to deal with more realistic physical conditions. '

An important effect which must be accounted for ex-
plicitly in order to attain a deeper insight into a variety of
physical problems is the intrinsic noise menory. In our

B P(x, e;t ) =Lzp(x—, e)P(x, e;t ),
Bt

(1.7)

Lt;p(x, e) = f '(x ) —e +— e+—,(1.8)
B, B 1B DB

Bx Bx v BE' 7 BE

does not admit of detailed balance. As a result, the
analytical expression for the stationary solution

where ri(t ) is a Gaussian external noise with correlation
functions (1.2). In Eqs. (1.6) the time-correlated heat
bath (1.5} has been replaced with a Markovian process
e(t) driven by a white noise q(t). Such a procedure in-
troduces some arbitrariness due to the choice of the sign
of e in the first equation (1.6). As a consequence, the in-
variance under parity x ~ —x which holds good for even
potentials, f( —x)=f(x), is broken. In many applica-
tions, however, the actual description of the system under
study provides a natural symmetry-breaking mechanism.

The FPE corresponding to Eq. (1.6},
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P(x;t;r)= J P(x, e;t)de, (1.9)

so as to reproduce the static and some of the dynamical
features of the FPE (1.7) and (1.8) up to the accuracy re-
quired. Such expansions are obtained from the full FPE
on projecting out, adiabatically, the auxiliary variable e.

It is often claimed that this kind of expansion, irrespec-
tive of the method employed for eliminating e, would
determine a perturbation expansion for P(x;t;r) in the
noise parameters D and ~. In practice, a reordering of
the expansion terms according to powers of the perturba-
tion parameters is not feasible because the terms generat-
ed at any step of the elimination procedure scale
difFerently with respect to D and ~. ' ' Finally, it must
be remarked that the convergence of the adiabatic elim-
ination is not uniform in x. This means that, for in-
stance, we do not expect to achieve an equally good ap-
proxirnation to

P„(x;r)—= lim P(x;r;r)
l~oo

in the whole x domain.
The results of the various expansion schemes can be

summarized as follows. To the first step in the relevant
adiabatic elimination procedure a bona fide FPE for
P(x;t;r) is recovered where both the drift function
G(x;r) and the diffusion function D(x;r) may depend on
the correlation time r,

P(x&t)r)—= G(x;r)+ D(x;r) P(x;t;r) .
Bt Bx Bx

(1.10)

Although discrepancies among different approaches may
look negligible at the lowest order, they affect markedly
the determination of the related approximate stationary
distribution P„(x;r) (Refs. 7 and 9—13) and MFPT (Refs.
10 and 12—19). Three different forms of (1.10) reported
in the literature are worth mentioning.

(i) r expansion (Refs. 7 and 10). On employing different
techniques, several authors derived the same form to be
supposedly valid for small D and ~,

G(x;r)=f'(x), D(x;r)=D[1 rf"(x)] . —

Fox' has recently proposed a modified version of (1.11)
which also applies in the sma11-~ limit only (functional-
calculus method).

(ii} United theory (Ref. 11}. Jung and Hanggi suggest-
ed a different form

P„(x,e)= lim [P(x,e;t)]
f —+ oo

is unknown. In order to circumvent this difficulty a
variety of approximations has been introduced in the
literature. ' The central idea consists in deriving a
partial differential equation —in the form of an infinite
expansion —for the reduced probability distribution
function

G(x; r) = [f '(x )+rDf "'(x )[1+rf "(x )]

X [1+elf"(x )]

D(x;r)=D[1+rf"(x )]

(1.12)

D(r}=D/[I+r( f"(x ) ) ] (1.14)

and G(x;r) =f'(x ). Here the average is to be taken over
the unknown stationary distribution P„(x;r) self-
consistently.

The recent debate on the validity of the approxima-
tions (1.11)—(1.14) revealed the lack of rigorous results
for the theoretical predictions to compare with. Up to
now, the data available have been either plagued by too
great an inaccuracy, as in the case of the digital simula-
tion of Ref. 12, or forcibly limited to small barriers of the
bistable potential f(x). Both the analog simulation of
Ref. 13 and the numerical solution discussed in Ref. 18
explore the relaxation process of a particular bistable sys-
tem, namely, the quartic double-well potential, for
barrier-height-to-noise intensity ratios up to 1. A
significant comparison with theories (i)—(iii) would re-
quire, instead, an accurate numerical investigation for
bistable potential coupled to colored noise with very
small intensity.

This aim has been pursued in the present investigation.
Our results are arranged as follows. In Sec. II we intro-
duce a periodic version of the bistable potential and solve
numerically the eigenvalue problem associated with the
related FPE. Our numerical algorithm is outlined in the
Appendix. In Sec. III the results for P„(x;r) are report-
ed for a wide range of parameter values. Comparison
with the theoretical predictions (1.11)—(1.14) seems to
suggest that the unified theory is the best candidate for
reproducing the static properties of the system. In Sec.
IV the smallest nonvanishing eigenvalue A,

&
of the FPE

(1.7) and (1.8) is determined numerically. In the latter
case, the most favorable comparison is obtained with pre-
dictions which may be reduced to the decoupling ansatz.
In Sec. V it is proved that inverting the potential, i.e.,
f(x )~ f(x ), does modif—y the stationary probability
distribution but leaves the eigenvalue spectrum of the
FPE unchanged, even in the nontrivial case when ~&0.

II. MODEL

Jung and Risken' investigated the stochastic relaxa-
tion in bistable potentials driven by colored noise by ad-

which is valid in the regime of small D and both small
and very large values of r, provided that

y(x; r) = —[1+rf "(x)] && &D
~

f"If '
~

. (1.13)
T

This condition may be fulfilled for monostable potentials
uniformly in x, ~hereas for bistable potentials it may
break down in the instability region, f"(x ) & 0, for
moderate to strong noise color ~."

(iii) Decoupling ansatz (Ref. 13). Hanggi and co-
workers proposed an x-independent form of the diffusion
function which would be particularly suitable for describ-
ing relaxation of bistable oscillators in the limit of small
D (functional-derivative method),
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dressing the quartic double-well potential

f(x ) = —(dz/2)x +(d4/4)x (2.1)

Here ]P (e) are normalized Hermite functions and
0'o(e)%' (e) are the eigenfunctions of the bath operator

f(x ) = —a cos(x ) + b cos(2x ), (2.2)

with a, b & 0, a &4b. In Ref. 18 natural boundary condi-
tions are assumed, i.e.,

lim [P(x,e; t )]=0 .
x~+oo

For a periodic potential the periodicity condition

P(x+2m. , e;t ) =P(x, e;t ) (2.3)

is needed to normalize the probability distribution func-
tion to one particle per period. Potential (2.2) is plotted
in Fig. 1 for the one-period interval [ m, n].—(For a re-
cent application of the potential (2.2) in the context of
nonequilibrium phase transitions and biological ordering
phenomena, see, eg. , Ref. 20.)

The advantage of the present choice for f(x ) can be
appreciated when one looks at the main features of the
MCF algorithm. On making the ansatz

P(x, e; t ) =P(x, e)exp( A t ),—
the FPE (1.7) is turned into an eigenvalue problem,

XP(x, c)=—L];p(x, e)P(x, e), (2.4)

with A, )0. The symmetry L]„-p(x,e)=Lpp( x, —t) al-

lows us to separate P(x, e) into an odd and an even part,

P(x, e) =P'(x, e) +P'(x, e),
P'(x, e) =4'0(e) g [c2 sin(nx )%2 (e)

m, n)0

(2.5)

+c2 +]cos(nx )pp +1(&)1
(2.6)

P (x,E) =0 (0)eg [cp~cos(nx ) P2~ (e)
m, n)0

+c2 +, sin(nx}4z +](e)] .

f(x)

0—

which had been widely used in the literature. They also
employed a matrix contained-fraction (MCF) expansion
to solve the related FPE. The approach we followed in
our investigation is very similar, but for the choice of the
potential function. In our case,

1B DB
L]](e ) =— c+—

7 BE 7 BE
(2.7)

with eigenvalue m/~. Depending on the quantity we
want to determine, we only need to take into account ei-
ther the even or the odd part of P(x, e). Susbtituting Eq.
(2.6) into Eq. (2.4) accordingly and truncating the double
sum in P"at n =N and m =M yields a homogeneous tri-
diagonal vector recurrence relation '

Q+c + +Q c +Q c,=0, (2.8)

where Q+ = —Q +, and Q are the matrices which are
reported in the Appendix, and c = Ic" j denote the ex-
pansion coefficients of Eq. (2.6). On defining the ma-
trices K, K c—:Q+c +„Eq. (2.8) can be cast into
the form of a MCF (Refs. 3 and 19) with the initial condi-
tion that K~ ——0, which corresponds to setting c =0 for
m =M+1. Computation of the eigenvalue spectrum is
thus reduced to the solution of the determinantal equa-
tion

det[QO(A, )+Ko(A. )]=0 . (2.9)

The corresponding eigenfunctions can also be computed
by summing up the relevant series in Eq. (2.6}, its
coefficients being determined numerically through the
matrices K, see Ref. 21. A detailed account of the nu-
merical algorithm employed in the present investigation
is given in the Appendix.

Jung and Risken' expanded P(x, e) in a similar way.
The most convenient set of orthogonal x functions com-
patible with the natural boundary conditions in the quar-
tic double-well problem proved to be H„(x ) =
%o(x)%„(x} with ]p„(x) again representing the norrnal-
ized Hermite functions. As the Fourier series (2.6) con-
verges much faster than the expansion of Ref. 18, the
choice of a periodic potential, Eq. (2.2), enables us to ex-
plore the properties of stochastic relaxation in bistable
systems for a much larger range of the noise parameters
D and ~. Very recently, Jung and Hanggi modified the
biorthogonal expansion for the quartic double-well poten-
tial, thus improving on the convergence of the MCF.
Therefore, in Ref. 22 a quite remarkable extension of the
relevant parameter ranges, compared to those of Ref. 18,
was achieved.

It might be noted, however, that our choice of the po-
tential function can approximate fairly closely the struc-
ture of a characteristic double-well potential. In Fig. 1

the potential f(x ) exhibits two barriers, a higher one at
x =+~ and a lower one at x =0. The barrier heights are

a6f(~)=2b+a+
8b

~ ~ I I
1

l ~ ~ ~
1

I I I 0
1

I ~ ~ ~

-0.5 0 0.5 a
b f(0)=2b —a+

8b

(2.10)

FIG. 1. Solid curve, bistable periodic potential (2.2) with
a=0. 5 and b=1. Dotted curve, metastable periodic potential
(2.2) with a = —0.5 and b= —1.

respectively. If a and b are taken so that
Af(~) ~~6,f(0), the escape rate across the boundaries
x =+m. is negligible compared to the escape over the bar-
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rier at x =0. In view of the periodicity condition (2.3),
we have a periodic bistable potential. Furthermore, we
remark that the MFPT over high-potential barriers,
b,f(0)»D, is mostly determined ' by the ratio b f(0)/D
and the second derivatives of the potential function about
the minima +x and the barrier xM ——0, respectively. In
our case (a & 4b ),

2

f"(kx ) =4b—
(2.1 1)

~

f"(xM =0)
~

=4b —a .

The exact shape of the potential function for given values
of b f(0)/D, f"(x ), and

~

f"(0)
~

contributes to deter-
mining the MFPT at higher orders in D/b f(0). Small
corrections might also arise due to the presence of the
(higher) barrier located in x =+m. z'

For the sake of comparison with the quartic double-
well potential, ' we display in Fig. 2 the stationary distri-
bution P„(x;r) for our system. The potential parameters
a and b have been chosen in order to best reproduce the
shape of the quartic double-well potential studied by Jung
and Risken. ' In particular, the ratio hf(0)/D and the
curvature at the potential minima f"(x ) coincide exact-
ly in the two cases, whereas

i
f"(0)

~

takes the value 1.0
for their potential and 1.25 for ours. The stationary dis-
tributions for the two potentials are almost identical (see
Ref. 18, Fig. 2). Small deviations are mostly due to the
different boundary conditions. Further calculations show
that the corresponding first nonvanishing eigenvalue em-
ployed in Ref. 18, Fig. 6, compares also very well. How-
ever, it should be noted that in computing P„(x;r) we
easily achieved a good numerical convergence over the
whole x domain for values of b f(0)/D and r up to 3.0,
while the relevant upper bounds in Ref. 18 are 0.5 and
1.0, respectively.

III. STATIONARY DISTRIBUTION P„(x;~)

As discussed in Sec. I it is desirable to study numerical-
ly the steady state of the system under investigation in or-
der to sort out conflicting predictions reported in the
literature. Our results for P„(x;r) are displayed in Fig. 3
for different values of the parameters D and ~. We im-
mediately note the following.

a I ~ I I I I ~ I I I a l s I s a I

0.5—

~ I ~ f I I I ~ ~ I % I I ~
1

~ I ~0
-1 -0.5 0 0.5

x/m'

FIG. 2. Stationary distribution P„(x;v.) for the bistable
periodic potential (2.2) with a = —", and b = », i.e.,
hf(0) =0.25, tsf(rr)/hf(0) =16.

(i) P„(x;r) is a symmetric two-peaked function. Such
a peak structure is enhanced for large correlation times,
i.e., the peaks get narrower and higher.

(ii) The positions of the peak maxima x coincide
with the potential minima +x at ~=0. As ~ increases,
the peaks shift symmetrically to larger (absolute) values
of x, x )x . For very large ~ this trend is reversed and
the two peaks come close to the potential minima +x
again. The absolute value of the peak shift for the pa-
rameter values adopted in Fig. 3 is less than 1% and
therefore hard to detect by inspection. The dependence
of the quantity 5=x —x on ~ is illustrated in Fig. 4.

For the sake of comparison we report the analytical ex-
pressions of P„(x;r) as predicted by the three approxi-
mated theories outlined in Sec. I.

(i) r expansion (Refs. 7 and 10) (D and r small),

)&exp —(1/D) J „dyx f'(y )
(3.1)

(ii) Unified theory (Ref. 11) [D small and
y(x;r) »v'D

~

f"/f' ~, see Eq. (1.13)],

f (x)
)& exp f' (x) (3.2)

(iii) Decoupling ansatz (Ref. 13) (D small),

P„(x;r) =N exp [1+r(f"(x ) ) ]D
(3.3)

The average (f"(x)) is taken with respect to
P„(x;r=O), and N are suitable normalization constants.
In Fig. 3 our numerical data are plotted against the
theoretical predictions (3.1)—(3.3). The range of applica-
bility of the theoretical approaches is clearly illuminated
by these curves.

We see immediately that the r expansion (3.1) approxi-
mates adequately the reduced stationary distribution
P„(x;r) for small noise parameters D and very weak
noise color 7 [Fig. 3(a)]. However, the prefactor in Eq.
(3.1) determines the overshoot of the peaks in the corre-
sponding curves even for relatively small values of ~ and
small D [Fig. 3(b)]. The analytical form for P„(x;r) ob-
tained by means of the r expansion Eq. (3.1) diverges at
the points +x where the diffusion function vanishes, i.e.,
D(x, r) =0 For the perio.dic potential (2.2) this can only
occur when 1/r& f"(x )=4b —a /(4b). Under such
circumstances +x act as reflecting walls for the solution
of the bona /de FPE (1.10) and (1.11). The decoupling
ansatz, on the contrary, reproduces P„(x;r) fairly closely
for small values of D and moderate to large values of ~.
However, for increasing noise color ~ the peaks of the
stationary probability density are underestimated [Fig.
3(c)]. This trend and the absence of peak shifting is
confirmed for larger values of D [Figs. 3(e) and 3(f)]
which, anyway, lie well beyond the range of applicability
of the decoupling ansatz.
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The unified theory reproduces our numerical results
for P„(x;r) rather accurately for small-D values in the
whole range of noise color r considered [Figs. 3(a)—3(c)].
As a matter of fact, prediction (3.2) breaks down (as ex-
pected, see Ref. 11) in the instability region about the po-
tential barrier [Figs. 3(c) and 3(f)]. The inverting points
+x(r) which restrict the instability region about the two
barriers are defined by the equations D(x;r)= oo, with
D(x;r) given by Eqs. (1.12) and (1.13). Thus, there exist
no inverting points if f"(—x ) & 1 lr holds in the whole x
interval. The onset of the breakdown of prediction (3.2)
is determined by the lowest value off"(x ) in the interval,
for our potential f"(+rr)= 4b ——a= —4. 5. In other
words, the erst instability occurs about the higher barrier
for ~= —,'. When v exceeds this value the instability region

about the higher barrier grows, and for ~ g —', a second in-
stability region about the lower barrier appears. For
values of ~ large enough, the inverting points define dis-
tinct disconnected support domains for the distribution
(3.2). Under such circumstances the most favorable com-
parison with our numerical data has been achieved on
normalizing the distribution function symmetrically on
the allowed x intervals about the potential minima. In
the instability regions Pat(x; r ) has been set to zero [Figs.
3(c) and 3(f)].

In Fig. 4 we plotted the peak shift 5(r)=x (r) —x
versus ~ for di6'erent values of D. ' The log-log scale has
been chosen to exhibit the linear increase of 5(r), for
small values of ~, and its inverse proportional decrease
for large values of v.. As a matter of fact, neither the ~ ex-

0.6 ~ s a s I ~ ~ a s I a ~ a ~ I ~ s a

100 s s s a I s s s ~ I a a s ~ I a s a ~

1P 10 '-

10-2 10 2-

p pp2 s s 's ~
I

~ ~ s s
I

~ ~ s s
I

s ~

-1 -0.5 0 0.5
x f'vf

~l
10 s ~ s s I

~ s s ~
I

~ ~ s s
I

~

-1 -0 5 0 0.5 1

a s a I s a s a I a ~ ~ a I ~ s ~ ~ a ~ s ~ I ~ s s ~ I a a ~ a I ~ ~ ~ ~p

p ,
: (c)

1.5—

D=0.5

y=3 0
PSt 2.

1P

0.5—

s s s s
I

~ ~

-0.5
/L

I
~ ~ ~ a

I
\ s s a

0 0.5
x/m

5-
0..04 s s ~ ~

I a a ~ ~
I

s s s ~
I

s ~ ~

-1 -0.5 0 0.5
x/vt'

10' ~ s s s I a ~ s s I ~ s s s I s ~ s s

1P-'—

Pst
(&) 0=1.5

y=3.0

a s s ~ I a ~ ~ a I ~ a a a I a ~ ~ ~

10-2 0.5—

10 3

g=0.1

-0.5 0 0.5
x/m

~ s ~ I a s ~ ~
I

s s a a I a a s 0 ~ ~ a I ~

-0.5
~ s ~ ~ a a I s a ~ ~

0 0.5
x/Tf

FIG. 3. (a) —(f), stationary distribution P„(x;r) for the bistable periodic potential (2.2) with a=0. 5 and b=1, i.e., hf(0)=,z,
4f(tr)/Af(0)= —'. Solid curves, MCF result Dotted curv. es, unified theory. Dashed curves, r expansion. Dotted-dashed curves,
decoupling ansatz. (c) and (P, linear scale; others, logarithmic scale.
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pansion ' nor the decoupling ansatz' reproduces the
peak shift. However, the prediction of the unified theory
for x (r) can be easily derived by imposing the condition
that (8/Bx )P„(x;~) =0.

From Eq. (3.2) we obtain

D~f"'(x~) f—'(x )[1+elf"(x )]2=0 . (3.4)

For the sake of comparison with the MCF results, we
solved Eq. (3.4) numerically and displayed the corre-
sponding peak shift 5(~) in Fig. 4. Since, in our compu-
tations, 5 is very small compared to x, we may expand
each term on the left-hand side of Eq. (3.4) about +x
and solve with respect to 5 analytically,

D~f"'(+x )
5(r) = f' '(x )[I+sf' (x )] Drf—' '(x~)

(3.5)

f"'(+x )
5(r) =D~ „,rf"(x ) &&1

xm
(3.6)

and

f'"(+x )

5(r)=(D/r) 3, 7f"(x ) &) I .f" (x )
(3.7)

For the parameter values of Fig. 4, the analytical expres-
sion (3.5) and the exact numerical determination of 5(v. )

obtained from Eq. (3.4) coincide almost identically. In
our derivation of 5(r) we assumed that y(x;r) does not
change sign. This is a reasonable assumption everywhere
in the x domain apart from the region of instability. For
very large correlation times the stationary distribution
tends to peak about the potential minima, as shown in

10-'—
~ I II I I I II I ~ I Il I I ~ II I I a II I I I I

20 0=

10 2-

10 3-

W

3.0
1.5
0.75
0.5
0.3

l ~ I ~ Till 'I ~ I ~
1

0 ~ ~ fl I I ~ ~ I T I ~

10 2 10' 102

The compact notation f'"'(x) denotes the nth derivative
of f(x ) with respect to x. For our potential

fI3'(+x ) =+3a [1—(a /4b ) ] ~

7 2

f' '(x )= —16b 1—
64b

and f' (x ) is given in Eq. (2.11). In the asymptotic re-
gimes Eq. (3.5) simplifies as follows:

Figs. 2 and 3. The stationary distribution P„(x;r) is

therefore concentrated in two small intervals about +x
where f"(x) is positive definite. The lack of uniform
convergence for P„(x;~}in the instability region also ex-

plains why prediction (3.5) does not work too well for
very large values of D (Figs. 3 and 4).

Recently, Altares and Nicolis developed a large-~ per-
turbation approach in the dimensional order parameter
D /(b r ) (in our units}. In their scheme the peak shift is
given by

D~f "'(+x )

[1+2'�"(x )][1+ (~/2)f"(x )] f "(x )

(3.8)

Their result differs from Eq. (3.5) essentially in that the D
dependence in the denominator has been suppressed. As
a consequence, Eq. (3.8) does reproduce the limiting
cases of the unified theory, (3.6) and (3.7), but is not as ac-
curate as Eq. (3.5) for intermediate values of r and non-
vanishing noise intensity.

The good agreement between theory, Eq. (3.5), and nu-
merical determination of 5(r) is illustrated in Fig. 4 (see
also Ref. 23). Our results prove that the approximate
form (3.2} for P„(x;r) applies in the limit of very large
noise correlation time as well. Such a trend is also ap-
parent in Fig. 3 where, for ~=3 ~ 0, a favorable compar-
ison for P„(x;r) is restored in the stable regions about
the potential minima.

Finally, in Fig. 5 we display the stationary distribution
for the inverted potential f(x ). Th—e (absolute) values
of parameters a, b, D, and ~ are as in Fig. 3. The corre-
sponding theoretical predictions (3.1)—(3.3) are also plot-
ted for the sake of comparison. Due to the modified spa-
tial symmetry of the system, the peak shift investigated
above is now replaced by a shift of the relative minima of
the stationary distribution. In principle, our discussion
about the intrinsic limitations of the approximate predic-
tions (3.1)-(3.3) applies to the inverted potential too, as
illustrated in Fig. 5. However, the metastable nature of
the inverted potential —f(x) (see Fig. 1) seems to be
reflected by the fact that all predictions overestimate the
stationary distribution P„(x;~) at the potential maxima
and underestimate the probability density about the (ab-
solute) minima of the potential [Figs. 5(d) —5(f)]. Such a
situation may also be responsible for the appearance of
the bumps in Figs. 5(c) and 5(f) according to prediction
(3.2). It should be noted, however, that a more favorable
comparison of P„(x ) predicted by the unified theory (3.2)
may be achieved on employing a different normalization
procedure. If prediction (3.2}—in addition to the previ-
ously used normalization —is fitted to the numerically ex-
act peak height (MCF result) at x=~, the bumps at
x =0,2~ almost disappear. In conclusion, these plots
confirm that the range of applicability of the theoretical
predictions (3.1)—(3.3) is restricted to D «b f(0) even
for very small values of r [Fig. 5(d)].

FIG. 4. Peak shift 5(~) of the stationary distribution P„(x;r)
for the bistable periodic potential (2.2) with a =0.5 and b= l.
Solid curves, MCF result. Dotted curves, unified theory ap-
proximation.

IV. MEAN FIRST-PASSAGE TIME PROBLEM

The problem of MFPT in bistable potentials driven by
colored noise attracted the attention of several investiga-
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tors. ' ' ' ' ' The predictions proposed have been ob-
tained by employing the very same procedure. One starts
with one of the approximated bona fide FPE's given in
Sec. I and then applies the Stratonovich formula for the
MFPT in bistable potentials, T(r), which in the limit
D « bf(0) can be given the form'

(4.1)

T '(r) = T '(0)exp( —ar) . (4.2)

According to the ~ expansion of Refs. 7 and 8, ~ turns
out to depend only very weakly on D. For instance, the

Without going into many details (for a review of these
methods see Ref. 16) the various predictions for the
MFPT in bistable potentials may be summarized as fol-
lows:

first-order r correction to T '(0) calculated in Ref. 12
has been ad hoc exponentiated' to yield

=
&
[f"(x }+

I
f"(o)

I
l+O(Dr) . (4.3)

A similar result might be obtained by means of the
unified theory. ' On making use of the decoupling an-
satz, instead, Hanggi and co-workers' predict a strong D
dependence of ~,

f"(x~ )+O(Dr) .&f(0)
(4.4)

One should bear in mind that any estimate of T(r)
based on a combined use of a bona fide FPE for P(x; t; r}
and the Stratonovich formula (4.1) for the MFPT may be
illegitimate (see Refs. 21 and 25). The full FPE (1.7) and
(1.8}, indeed, describes a two-dimensional problem. The
two-variable distribution P„(x,e) cannot be factorized
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FIG. 5. (a)—(A, stationary distribution P„(x;~} for the metastable periodic potential (2.2) with a= —0.5 and b= —1, i.e.,
Af(0)= —',2, i) f(m. )lhf(0)= —,", . Solid curves, MCF result. Dotted curves, unified theory. Dashed curves, r expansion. Dotted-
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V. EIGENVALUE SPECTRUM
OF THE INVERTED POTENTIAL

with

L(x,e)= —a~a —(a } +a e+LB(e) . (5.7)
Let us now discuss an important property of the FPE

(1.7). We wish to answer the question as to what happens
when the potential f(x) is inverted, f(x) = f(x—), in the
presence of colored noise W. e already know the answer
for the case of white noise. The eigenvalue spectrum of
the new FPE is essentially unchanged, the relevant eigen-
functions being analytically expressible in terms of the
eigenfunctions of the initial FPE. As explained in Ref. 3,
Sec. 5.8, the eigenvalues coincide exactly for periodic po-
tentials with periodic boundary conditions of the type of
Eq. (2.3). For a binding potential, where f(x) tends to
+ 00 at x ~+~, the inverted potential is a double-sided
metastable potential, i.e., it tends to —Dc at x ~+~. In
such a case the stationary-state eigenvalue is deleted by
inversion, while all of the other eigenvalues are un-

changed when proper boundary conditions for x~+Oc
are imposed. This means that we must assume reflecting
walls for the original potential and absorbing walls for
the metastable potential at x~+~. [In the derivation
of Ref. 3 it is tacitly assumed that f(x) goes to infinity
faster than

~

x ~, so that the eigenvalue spectrum is
discrete. ] Finally, for a single-sided potential where f(x )

tends to +00 (or —~) for x~+~ and to —~ (or
+ 00) for x~ —~, the FPE for the inverted potential
also restores the same eigenvalue spectrum.

In this section we want to prove that these results may
be extended to a wide class of FPE's describing stochastic
relaxation in one-dimensional potentials driven by
colored noise, provided that the boundary conditions de-
tailed above are imposed. The conjecture of isospectrali-
ty under potential inversion in the colored-noise case was
guessed first from the numerical determination of A, , for
the inverted periodic potential (2.2), see Fig. 1. Indeed,
the eigenvalues A.

&
for the bistable and monostable period-

ic potentials coincide to within the round-off errors over
the whole range of parameters a, b, D, and ~ explored.

The proof runs as follows. We first remark that the ei-
genvalue equation corresponding to Eqs. (1.7) and (1.8)
can be written in the form

—A4(x, e) =L(x,e)4(x, e), (5.1)

@( ,x)e=exp[f (x ) l(2D )]P(x,e) (5.3)

On introducing the creation and annihilation operators

= —&D +, a=&a
—a f(x) —a

Bx 2V'D Bx 2v'D

operator (5.2) can be cast into the form

L(x,e)= aa (a ) —+a e—+LB(e), (5.5)

where LB(e) denotes the bath operator (2.7). Analogous-
ly, for the inverted potential, Eq. (5.1) is replaced by

—A, C&(x, e)=L(x,e)4(x, e), (5.6)

where the operator L(x, e) and the eigenfunctions 4(x, e)
are given by

L(x,e) =exp[f(x ) l(2D )]L„~exp[ f(x ) l(2D )], —(5.2)

After inverting the potential in Eq. (5.4), we easily realize
that the creation and annihilation operators for the in-
verted problem can be expressed in terms of the corre-
sponding operators of the initial problem, according to

a= —a, a= —a (5.8)

Thus we may write (5.7) in the form

L(x,e)= —aa —a —ac+LB(e) .2 (5.9)

By comparing Eq. (5.9) with the x adjoint of operator
(5.5),

L (x,e)= —a a —a +ac+LB(e),2

we obtain the key relation

aL (x, —e}=L(x,e)a .

(5.10)

(5.1 1)

provided that a4 (x, —e) is not identically zero. For the
stationary eigenvalue A, =0 the adjoint eigenfunction
P„(x,e) is a constant and 4 (x, e) is proportional to
exp[f(x)/(2D)]. Thus, a4 vanishes and nothing can be
said about the eigenfunction of the inverted problem. Of
course, a stationary solution will always exist in the in-
verted potential problem with periodic boundary condi-
tions. On the contrary, the inverted problem of a binding
potential with natural boundary conditions cannot have a
stationary solution.

The proof above can be extended to any noise statistics
represented by a linear thermal bath operator

LB(e,el, . . . , eA ),
where e, e, , . . . , ez are N+1 auxiliary variables. Thus
all the properties of the white-noise FPE (1.3) stated in
the beginning of this section are also valid if the noise is
colored.

Finally, we note that the isospectrality of the inverted
Fokker-Planck potentials can be given a simple super-
symmetric interpretation. The Fokker-Planck operator
Lpp( x, e ) was associated with a non-Hermitian Hamil-
tonian operator L(x, e) which defines two complete sets
of orthogonal functions [@„]and [4&„]. Inverting the
potential in the FPE left the eigenvalue spectrum
unchanged —apart from possibly deleting the zero eigen-
value. This operation corresponds to transforming

[In the white-noise case L(x)=L (x) is an Hermitian
operator and Eq. (5.11) simplifies to aL=La. ] As al-
ready mentioned in Sec. I the eigenvalue spectrum cannot
depend on the sign of e. Since any operator and its ad-
joint are isospectral, Eq. (5.1) yields

—A,4 (x, e) =L —(x, —e)4 (x, —e) . (5.12)

Applying the annihilation operator a to both sides of Eq.
(5.12) and making use of Eq. (5.11) we prove that
a4 (x,e) is an eigenfunction of L [see Eq. (5.6)] with the
same eigenvalue A. , i.e.,

4(x, e)-ak (x, e), — (5.13)
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L(x,e) according to the generalized supersymmetric
description a~ —a and a ~ —a. The eigenfunctions of
the non-Hermitian supersymmetric partner L(x, e ) are
given by a4„. The similarity to ordinary supersymmetry
for Hamiltonian operators is apparent.

VI. CONCLUSIONS

It was our intention throughout the numerical investi-
gation reported above to discriminate among a number of
conflicting theoretical analyses elaborated by several
groups over the last ten years. The only conclusion we
feel able to draw at this stage of our understanding, how-
ever, is that most of those authors did grasp some impor-
tant features of the problem under study, but a satisfacto-
ry and exhaustive theory of bistability in the presence of
colored noise lies beyond the reach of the theoretical
tools employed to date.
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=( —1) &(D lr)(m +1 )n 5„„
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+bn(5„+~ „—5„~„)+(—1) 5„),

(A2)

APPENDIX: MATRIX CONTINUED FRACTION
ALGORITHM

The basic ingredients of the MCF algorithm have al-
ready been outlined in Sec. II. The eigenvalue problem
(2.4) is solved by expanding the stationary two-
dimensional distribution P„(x,e) into two suitable sets of
orthogonal functions of x and e, respectively. The expan-
sion sets are chosen in order to satisfy the natural bound-

[Qo( k ) +Ko(A. ) ]co——0 . (A3)

The matrix Ko(A. ) is expressed through a MCF expan-
sion

while for P'(x, F. ) the term ( —1) has to be replaced by
( —1) + '. On defining the matrices K, K c
=Q+c + „we solve Eq. (Al) for m =0,

Ko(A ) = —Qo+

Q, ( A, ) —Q+,
1

Q2(~) —Q2+
~ Q3

3

(A4)

det[Qo(A. )+Ko(A, ) ]=0 . (A5)

In the stationary case, A, =O, one immediately recognizes
that the determinant (A5) vanishes and the unique solu-

where each fraction line denotes a matrix inversion. (For
an alternative approach to colored-noise problems by
means of MCF's, see Ref. 30.)

From Eq. (A3) we can calculate the (discrete) eigenval-
ue spectrutn (see Fig. 6) by solving the determinantal
equation

tion co to the homogeneous equation (A3) determines the
one-dimensional stationary distribution P„(x;r) (after in-

tegration over the auxiliary variable e). The computation
of the two-dimensional eigenfunctions requires a greater
numerical effort. ' The accuracy of the MCF algorithm
has to be tested for a suitable choice of the matrix size N
and the iteration number M. All calculations reported
herein were done in double precision (see, e.g. , the quite
remarkable range of A, values covered in Fig. 6) with
50 & 50 matrices and 150 iterations of the MCF.
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