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Field-symmetry-induced phase transitions and analytic continuation in n
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We explicitly show that analytic continuations in the number n of components in n-component
cubic models usually break down at finite values of the field at low temperatures due to phase transi-
tions in n. We also consider the replica system and show that replica symmetry must be broken, not
only when n ~0, but also when n is a positive integer.

I. INTRODUCTION

Our understanding of critical phenomena in systems
with randomness or geometrical constraints is near a
state of maturity. Most of these results have been ob-
tained by the use of so-called analytic continuation in the
number n (or q) of degrees of freedom of the auxiliary
field to n =0, the most famous of these being the replica,
the polymer, and the percolation limits, among others. '

Formally, such an unphysical limit is very appealing, as it
provides an alternative method for obtaining results with
a great deal less work, and it has also provided new in-

sights. However, naive analytic continuation also leads
to problems at low temperatures (T & T, ),

' most of
which have not been fully resolved yet, even though at-
tempts have been made to clarify some of the issues in-
volved.

Our aim in the present paper is twofold. We wish (i) to
provide an explanation of various pathologies observed
below T, (Refs. 1 —3) in terms of a phase transition in n

and (ii) to justify our recent conjecture ' regarding a new
phase in the polymer problem and also to settle a contro-
versy about it. We accomplish our results by developing
a new method of analysis at a mean-field level that should
prove useful in other contexts. In the axis model, this
phase transition in n manifests itself only when n & 1 in
the form of a phase transition in the T-H plane below T„.
at finite values of the symmetry-breaking field given by
H =H, —

~

w ~, r=(T —T, )/T„A= —,', and is a
reflection of the fact that the zero-field ground state
changes its behavior at n =1. In the diagonal model, the
phase transition in n occurs at integer n and only affects
the phase below H, . Therefore, the analytic continuation
in n cannot be carried out to n =0, if we wish to cross
H =H, . A similar situation occurs in random Ising sys-
tem, ' ' as noted by de Almeida and Thouless, and in
the polymer problem. ' Continuation in n to n =0
above H, can be carried out without any problem, since
the phase transition in n does not affect this phase, as will
be demonstrated here.

For the sake of concreteness, we will mostly restrict
ourselves to cubic models, ' '" which have phase transi-
tions in the T-H plane due to a competition between
externally imposed ordering and the natural or spontane-
ous ordering of the system. We show that while the ana-

lytic continuation is straightforward in the case of axial
cubic symmetry, it is not so in the case of diagonal cubic
symmetry. In the latter case, "systems" with noninteger
numbers are different from their integral (n integer) coun-
terparts, a result which was quite unexpected. We also
consider the replica trick applied to the random Ising
model" and find that replica symmetry should be bro-
ken at small n.

The layout of the paper is as follows. We define the cu-
bic model in the next section. The cubic anisotropy term
corresponding to b, breaks the O(n) symmetry. For posi-
tive anisotropy (b & 0), the natural ordering in the model
is along one of the main diagonals. We will call this the
diagonal model. For negative anisotropy (b & 0), the nat-
ural ordering is along the axes. We will call this the axis
model. We consider the effect of an external magnetic
field whose symmetry can compete with the natural or-
dering of the model. The analysis of this section is at a
mean-field level. We include the effect of fluctuations in

Sec. III. The inclusion of fluctuations does not change
the mean-field results of Sec. II. Section IV deals with
the issue of the analytic continuation in n. This is the
most important section. This section is also very techni-
cal and somewhat abstract in nature and requires a cer-
tain amount of patience on the part of the reader. In the
next section (V), we discuss the nature of analytic con-
tinuation in the replica system for the random Ising mod-
el. To avoid complications, we restrict our present
analysis to the transition temperature, where r =0 (see
below). The concluding Sec. VI includes a short discus-
sion of the current controversy alluded to above and its
resolution, and a summary of our results.

II. CUBIC MODEL

We consider the n-component cubic model described
by

~.,.= ~
4'+

4,
(4')'+

4
O' H.0—

where 4 =g"
& P, P =g" &P, and the external field

is H =(H„/v' )(l, 1, . . . , 1,0, 0, . . . , 0) with v&n
nonzero but equal components. As usual, r is proportion-
al to ~ and will be considered negative here. Moreover,
the cubic anisotropy coefficient 6 is an irrelevant
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dangerous variable" and cannot be safely set equal to
zero below T, . The presence of this term in (1) breaks
the rotational invariance, i.e., the O(n) symmetry of the
interaction. For b, &0 (diagonal model) the spontaneous
magnetization (P) points along the main diagonal. For
6 &0 (axis model) (f) points along one of the 2n axes.
As we will see below, this is true as long as n ) 1, but not
when n &1. For 6=0, the spontaneous magnetization
can point in any direction, in accordance with the O(n)
invariance of the interaction.

The above Hamiltonian, provided it is stable, describes
cubic models when A, ~O. When A, &0 and b, g0, it de-
scribes weakly random systems. ' With the choice
A=nb, o and with any v&n, it is easily seen (see Fig. 1)
that the above Hamiltonian generates exactly the same
set of polymer diagrams as the Hamiltonian in the O(n)
model in the limit n ~0. For 50 &0, this is the mapping
proposed by Hilhorst' between polymers and the
discrete axis model. We have just extended this to the
diagonal model. With v=n, the diagrams like Fig. 1(c)
survive as n ~0 and give rise to tree graphs (graphs with
no loops). This shows that the cubic model (1) is different
from the O(n) model as n ~0. '

For v&n, we note that all diagrams with branchings
[Fig. 1(c)) disappear as n ~0. Since the only effect of the
cubic term involving 6, regardless of its sign, is to give
rise to branchings we conclude that the partition function
corresponding to the set of diagrams that survive the
n~O limit cannot depend on 60. In other words, the
corresponding free energy of the polymer system must be
independent of 50 in the limit n ~0, provided v&n We.
will have occasion to use this observation below.

Let us set H„=O in (1) and try the following solution:

(P) =M„=(M„/p' )(l, l, . . . , 1,0,0, . . . , 0) (2)

with p nonzero but equal components. Let F„denote the
local minimum of energy at M„. For physical n, we find
that

—r/4 2 r—
A, /6+ 5/p ' "

A, /6+ b, /p

In the following, we will assume that k&0. The analysis
can be easily extended to A, &0. The ordering of various
levels depends upon the sign of b, : I"„. « F2 & F& for

6&0 and F, &Fz « . . F„ for 6&0. In zero field, the
spontaneous magnetization must be M=M„(b, &0) or
M=M& (6 &0). In the presence of the external field H„,
M„changes from (2) to M„=(m, , m2, 0) where

m, =m, (1, 1, . . . , I) with n, components,
mz ——m2(1, 1, . . . , 1) with n2 components and the
remaining n (—n, +n2) components of M„are zero. For
p) v, n

&

——v and n2 ——p —v. For p & v, n, =p and
n2 ——v —p, . Minimization of (1) now yields

[h =H, /v' &0; Z„=r+k(n&m, +nzmz)/6]

h +m, [r+(l v/6+6, )m
~
]=0 for p=v; (4a)

h +bmim2(mi+m2)

Z„+b(m, +m&mz+mz)=0 for p, &v;

h —bm, (m f —m2 )=0,
Z„+b,m2 ——0 for p) v,

(4b)

(4c)

where the first part of (4b) is valid provided m~&m2.
These equations are easily analyzed graphically. ' Equa-
tions involving Z„describe ellipses and those involving h

describe open curves (Fig. 2), and the solutions of (4b}
and (4c) are given by their crossings. As h increases, the
open curves move outward and eventually lie outside the
ellipses. Therefore, the p&v levels cease to exist for large
h. Here, only the p= v level exists, for which M is paral-
lel to H„, with m, given by (4a).

At h =0, the stable solution at low temperatures corre-
sponds to either m, =m2 (p=n) for b, &0 or m2 ——0
(p = 1) for 6 & 0. These solutions correspond to the
points Do and Ao in Fig. 2, and are obtained from (4b)
and (4c). For h =0, the solution of (4a) is not physical,
i.e., stable. As h is raised, the solutions of (4b) and (4c)
eventually disappear and we must consider the only
remaining solution that is given by (4a). Therefore, at
large enough h, to be determined below, the stable solu-
tion corresponds to the one given by (4a).

Consider the zero-field stable solutions Do and Ao
(Fig. 2}. As h increases, they move towards D, and A„
respectively. At D„m2 ——0 and H, =H, =Av' m,

and (4a) and (4c) become identical. As a
matter of fact, it is easily seen that F„=F,, for all p&v at
D„where m2=0. Below H„p=n is the lowest level.

nA H. nhoH, nh 0 H. ~&

(a) (c)

FIG. 1. Various diagrams with their corresponding weights. Each cross ()& ) contributes H /v' and each diagram must be
summed over v components of H„.
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FIG. 2. Graphical solution for (a) 5 y 0, p y v and (b) 6 &0, p & v. For 6 &0, the axes of the ellipse, in general, do not coincide
with m

&

——+m&.

III. FLUCTUATIONS

Let us now include the effect of fluctuations. ' Express-
ing the ath component of M„by M +g, where g is the
fluctuating part, we find that the (n —v) transverse fluc-
tuations ( T) (a =v+ 1, . . . , n ) have the mass squared rr
given by

rr H/M, ——AM„/v .— (5a)

The rest of the components are conveniently described by
the following linear combinations: the longitudinal Auc-
tuation L=g", g and the (v —1) transverse fluctua-
tions (r), described by gk ——g",g —kgb, +, ,
k =1,2, . . . , v —1, with their masses given by'

rl r+ 3M „(A, /6+ b, /v )——
for the longitudinal fluctuation, and

r, =H jM +26M„/v

(5b)

(5c)

for the (v —1) transverse fluctuations. We observe that
for 6&0, the two transverse modes T and t have different
masses. We also note from (5) that with v=n, the trans-
verse modes remain massive as n ~0, provided 6 =n bo.
Therefore, v=n, n ~0 is different from v&n, n ~0, as
explained above [Fig. 1(c)]. For v=n, the T modes do
not exist, whereas the t modes cease to exist for v = 1.

Above H„p= v is the only surviving level and, therefore,
the stable level. There is a phase transition at H, be-
tween these two levels. For the axis model (5 &0), the
situation is somewhat complicated [Fig. 2(b)]. A detailed
analysis' sho~s that p = 1 is stable below some
H, —

~

r
~

~ whereas p=v is stable above it, with a phase
transition at H, between the two levels. This is not
surprising in view of Fig. 2(b). It should also be evident
that there are no phase transitions if v=1 for 6 &0 and
v=n for 6)0.

A similar graphical analysis shows that levels p~v
(5 & 0) give negative m 2 and levels p & v (6 & 0) give neg-
ative susceptibility Bm, /Bh, as h increases. Therefore,
these levels are unphysical for physical values of n and
need not be considered.

For b, ~ 0, the T modes become critical when r& ——0. For
6 g0, the t modes become unstable at some small fields.
Therefore, there must be some sort of phase transitions at
some field H„=H, . These phase transitions are in accor-
dance with the above analysis of (4). Moreover, (5) also
shows that no phase transition at nonzero field will occur
if the external field is compatible with the natural order-
ing: v=n for b pO; v=1 for 5 gO. For v=1, the axis
model has no phase transition, but the diagonal model
does, because rz- becomes negative at small H . Since the
two models are equivalent at n =0 above H„we are
forced to conclude that a phase transition must also
occur in the H-T plane for the axis model as n ~0 when
v= 1, as shown below.

That there must be some sort of phase transition as
h ~0 is also evident from the following simple argument.
The free energy in the ground state at h =0 is given by I'„
if 6 & 0 and I', if b &0 for physical n's. Therefore, in the
absence of any phase transition, Iio (b, & 0) and Fi (b, & 0)
will be the corresponding free energies as n ~0. For all
v&n, n ~0, the cubic model describes the same polymer
system whose free energy cannot depend upon 60 as was
discussed before [see the discussion just before (2)]. How-
ever, Fo certainly depends on bo and cannot describe the
polymer system. Moreover, Fo&F„which contradicts
our claim that as n —+0 (v&n) both models describe the
same polymer system and, therefore, must have the same
free energies. The only conclusion that can be drawn is
that the polymer analogy cannot work all the way down
to h =0.

IV. ANALYTIC CONTINUATION

We must now face the issue of the analytic continua-
tion in n, with axed v. We find that for all real n & v, the
ordering of the levels is given by (3), but with the follow-
ing important difference. Levels with p & n, which do not
exist for physical systems, appear under analytic con-
tinuation, as their multiplicities are given by the binomial
coefficients („")which vanish whenever n is an integer less
than p, but not when n is not an integer. Therefore, these
levels must be included in our analytic continuation, as
was done by Bray and Moore' and which allowed them
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to take the p~ ~ limit in their investigation of the Ising
spin glass. For 5 &0, these levels do not create any prob-
lem as they lie above the p=n level. In the following, we
will, therefore, ignore these levels in the axis model.
However, for 5&0, these levels lie below n and the
ground state corresponds to p~~. For integer n, the
phase transition is between the p= v and the p=n levels.
For noninteger n, it is between the p= v and the p~ ~
levels. These transitions occur at H, —

~
w~ and are

due to the competition between two diferent symmetries.
The analytic continuation in n is not possible because of
the nonanalyticity when n is integer, except above H„
where the system is always described by the p=v level.
This nonanalyticity is a reflection of different ground
states at integer and noninteger n's. This problem in ana-
lytic continuation in n would persist even if we choose
v=n.

Let us now consider the axis model. It is only the p = n

level that requires analytic continuation in n. For n & v,
M„=(m, , m3) where m, =m', In', mz ——m2/n' are
given by (4c). We have introduced m', and m3 for con-
venience as we will see below. At H, , =O, m ]

——m 2
——M„

given in (3) and remain finite and nonzero, even as n ~0.
This is one of the reasons for introducing the primed
quantities. As n is continued across n =v to n & v, let us
take the solutions of (4c) to define M„ for nonzero h. We
find that m ', and m 2 are given by

h —b'o 1( i m2

r +(X/6)[m 2+v(m i m 3 )In ]+kom 2 =0

where we have introduced the primed quantities in (4c).
From the above equations, it is easily seen that m',

satisfies the following equation:

3
n' h hkvrm)+ +Do m] — + =0 .

ea,n'"

As n~0, m] diverges as n ' for any h and the corre-
sponding free energy F„becomes unbounded from below
(except at H„=O). If we accept this analytic continua-
tion, the entire phase below T, (r & 0, h & 0) is determined
by the infinitely deep p =n level and there is no hope of
any polymer analogy below T, for any H„&0. Note that
the free energy for the polymer system must be bounded
from below. That something must be wrong with this
continuation is also evident when we note that (4c) does
not reduce to (4a) when n =v. Therefore, we need to ob-
tain another continuation. If we choose for M„, n & v,
the form M„=(m„m2, 0) valid for p & v, p=n, no prob-
lem arises. ' Here m& has p =n equal components
m', /n', rn2 has v —n equal components m2 and the
remaining n —v components are zero:

m, =(m', In'~ )(1, 1, . . . , 1),
m2 ——m2(1, 1, . . . , 1) .

The values of m i and m2 are given by (4b). For large
enough fields (H, &H, ) this level p=n does not exist,
and (4a) yields the stable solution (P ) =M„. This change
of form of the p=n level causes nonanalyticity at n =v

and amounts to a "phase transition" in n at n =v. It
does not affect the phase above H„which is determined
by the level p=v and not by the level p=n. Since the
level p=1 is the stable level below H„ this phase transi-
tion in n also does not affect the phase below H„as long
as n ) 1. Therefore, let us consider n &1, and set v=1
for simplicity. For n & 1, the ground state at H =0 must
have M=M„since F„&F]. There should be a phase
transition from M =M, at large fields to M =M„at very
small fields at some H, —

~

~ ~, b =—'„due to the com-

petition between two symmetries, similar to what hap-
pens for physical n's above. Of course, we could have an-
ticipated such a phase transition by noting that the
ground state at H, =O changes from p=1 to p=n as n

becomes less than unity. The above phase transition at
H, is a reflection of this fact. '

V. REPLICA SYSTEM

Let us now apply our method to the replica system
with the corresponding effective Hamiltonian"

&„=—Trg ——Trg ——Trg
4 6 8

4+
4 g Q.pg. s

—
12 g Q.p

a, P a, P

where we have used the notations of Bray and Moore. '

Let us try the following solutions in (6): Q=g~&~ with

Q p
——q, a&/3, a, P&p, and Q p

——0 otherwise The.
choice of p =n gives the usual mean-field solution used in
the literature. ' A simple algebra yields

F =—'p(p —1)q r ——'wq+ —
qp 4 3 2

valid for p & 2, and where w = w(p —2) and
u = u [ —,', —(du ——', ) ]. We will consider only those values

of p or n for which u is positive so that F„ is stable:
2. 5 —( —,', )'~ &p or n &2.5+( —,', )'~ . To simplify our
present argument, we consider only r =0. The minimum
of F„and the corresponding stable q„are given by

p(p, —l)(p, —2) w w
iJ

[ 7 (+ 5 )2]3u3

Now, it is easy to see that for n & 3, F„ is stable, whereas
F& is stable below n =3, with a phase transition in n at
n =3. Even though this result is obtained for %„ in (6),
we believe this to be a genuine feature of the theory. We
also suggest that this phase transition in n reflects itself in
the de Almeida —Thouless (A-T) line in the replica trick,
a situation similar to the polymer problem discussed
above.

VI. CONCLUSIONS

The above analysis suggests very strongly that analytic
continuations in n must fail in general at some nonzero
H, below T, in the "ordered" phase due to a phase tran-
sition in n. At present, we do not know how to extend
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our method to the continuous O(n) model. (However,
see below. ) The locus of H, near T, is described by

H, —
~

r ~, and is similar in shape to the de
Almeida —Thouless (A-T) line in the Ising spin-glass or
the curve AC in the O(n) model. ' For the axis model,
the analytic continuation in n causes a problem only
below H, for n &1 because the p=n &1 level controls
the physics below H, but not above it. As a matter of
fact, it can be shown' in a mean-field calculation that the
phase below H, in the discrete version of the axis mod-
el ' has no polymer analogue, suggesting that the phase
below H, may have nothing to do with the original sys-
tem (polymers, random systems, etc.). It must be ob-
tained by some independent methods ' that deal directly
with the systems under consideration without any formal
limits.

Our results here should also settle the controversy
raised recently' ' about the new phase in the polymer
problem. ' It is not hard to understand the origin of the
controversy. These authors in Ref. 19 put too much faith
in the e-expansion calculation of the equation of state of
the O(n) model, a calculation believed to be certainly
correct for all n ) 1. However, there is no guarantee that
the analytic continuation to n &1 of this e-expansion
equation of state will be correct. As a matter of fact, it
certainly cannot be correct as it violates the constraint
x ) —1 on the scaling variable x =r/M'~~ (M is the mag-
netization) below some curve given by H =H, —

~

r
~

in
the scaling regime for all n &1. The fact that the e-
expansion calculation, which is believed to be under con-
trol for n & 1, is no longer under control for n & 1 when
H & H, is presumably an indication of a phase transition
in n at n =1. We must invoke new rules of calculation
for n & 1 to obtain sensible results. This suggests a phase
transition in n at n =1. This situation is similar to the
situation observed in the cubic model. This phase transi-
tion then manifests itself in the H-T plane as a phase
transition across H, as discussed above. There is another
serious problem with the analytic continuation of the @-

expansion calculation in Ref. 19. The continuation
violates a thermodynamic relation: this relation shows
that (BM/Br)H must uanish whenever the longitudinal

susceptibility vanishes. The equation of state in Ref. 19
violates this. The same is true of the counterexamples
given by Wheeler et al. ' to show that x & —1. In our
previous work, we have argued for a new phase below
H, due to various pathologies. It has become clear only
now that these pathologies are due to a phase transition
in n at n =1. It is this phase transition in n which mani-
fests itself in a new phase below H, in the H-T plane for
n & 1. The authors in Ref. 19 overlook the phase that ap-
pears below H, and claim that the continuation in n does
not break down. We have explicitly demonstrated here
and in Ref. 15 that this is not the case.

We can investigate what must happen under analytic
continuation in general, by considering all possible local
"minima" at low temperatures. A warning must be
offered at this point. It is possible that we have not
discovered all the local minima, which may be futile in
some cases. But this does not invalidate our explicit
demonstration here. In general, one must ensure that all
minima have been considered, before it can be argued
that the continuation does not break down.

In summary, we have explicitly demonstrated the oc-
currence of a phase transition in n under analytic con-
tinuation in n. This phase transition exhibits itself in the
form of a phase transition across H =H, —

~

r ~, b, =—
in the mean-field calculation, in the low-temperature
phase (r &0) only; it does not affect the high-temperature
phase. In the axis model, this phase transition in the H-T
plane occurs only for n &1. In the diagonal model, it
occurs at integer n. A similar phase transition is also ex-
pected in the replica system. Therefore, the theory can-
not by analytically continued to n =0 in the region below
H, . The theory can be continued to n =Oabove H, . The
polymer limit n =0 identifying magnetic systems with po-
lymers can be taken without any problem only above H„
but not below it, as shown here, due to the phase transi-
tion at H, .
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