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Fine-structure excitation of 0 + by charge transfer of 0 + in H at low energies
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A multistate molecular expansion is developed to describe the charge transfer of 0'+ ions with
neutral hydrogen atoms in which the individual Sne-structure levels of the initial 0 + ion and the
product 02+ states are taken into account. The coupled scattering equations are solved and cross
sections are obtained for charge transfer excitation at energies near 1 eV.

I. INTRODUCTION

Calculations' have been carried out of the low-energy
cross sections and thermal-rate coefficients for electron
capture into excited states of 0 + by 0 + ions colliding
with atomic hydrogen,

0'++H~O'++H+

with results that are consistent with the measurements of
the total cross sections. The charge transfer processes
were assumed to be driven by the nuclear radial coupling
between the adiabatic electronic states of the quasimolec-
ular ion formed during the collision. The electronic
states are specified by the total electron spin S and the
component A of electronic angular momentum along the
nuclear axis. Cross sections were calculated for capture
into specific spin and orbital angular momentum LS
states of 0 +, and the resulting emission spectrum was
obtained. ' The theoretical method does not distinguish
between the individual fine-structure levels of the initial
or of the product ions. Emission lines from the individu-
al fine-structure levels of excited states of 0 + have been
identified in astrophysical plasmas, but their interpreta-
tion is complicated by the existence of several excitation
mechanisms. Cross sections and rate coeScients for
electron capture from and into specific fine-structure lev-
els are needed to separate out the contributions from the
charge transfer processes.

The earlier studies' showed that, at thermal energies,
the major channels are capture into the (2p3s, 'P ),
(2p3p, 'P), (2p3s, P ), (2p3p, D), and (2p3p, S) LS
states of 0 +. We retain these channels in a more general
scattering theory which recognizes explicitly the fine-
structure levels in the initial and final states and takes
correct account of their energies. Each of the processes
may be represented by

I'0( +P2,
& 3~22)+H~02+( ' L,'j,')+H+ . (2)

II. SCATTERING THEORY

Heil et al. calculated the adiabatic electronic Born-
Oppenheimer eigenfunctions 1b(yAS

~
R ) of the singlet

k =2pE/fi

where p is the reduced mass.
The cross section for the charge transfer process

I

0 +( P)+H( S)~0 +( ' L,')+H+

is given by

(4)

(2 50 A)(2$+ 1)
tr(L, s, ;L,'s,') = AS s

As (2L, + 1 }(2s,+ 1 }(2sb+ 1)

and triplet X and H states of OH + at internuclear dis-
tances R, the label y distinguishing between different
molecular states of the same symmetry. They also calcu-
lated the adiabatic potential-energy curves V(yAS

~

R )

and the matrix elements

A (R ) = ( P(yiAS
~

R )
~

d /dR
~
P(y2AS

~

R )

of the nuclear radial momentum operator which couples
states of the same AS symmetry. Rotational couplings
were neglected. To set up the scattering theory, the adia-
batic basis was transformed to a diabatic representation.
In the diabatic representation, transitions are driven by
the off-diagonal elements V(yy'AS

~

R ) of the diabatic
potential matrix V(AS

~

R ) which couple states with the
same values of A and S. The diagonal elements of V are
the diabatic potential-energy curves.

The initial approach of the 0 +( P} state and the
H( S) state may occur in any one of the 'X+, 3X+, 'Il,
and II molecular states. The cross section for any par-
ticular symmetry may be written

crAs(y y' IE}= 2 X(2J+1}
I TAs(r }")

l

'
kr

where TAs is the transition matrix element connecting
the initial state (yAS) with the particular final state
(y'AS) produced by charge transfer, J is the total angu-
lar momentum quantum number, and k is the wave
number of the initial relative motion. In terms of the en-
ergy E of relative motion,
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where L, =l, s, =—,', sb
———,', and the total spin S=s,

+Sb =Sa ~

The generalization of the theory to take account of
electron capture into fine-structure levels is a straightfor-
ward extension of the theory of direct fine-structure exci-
tation. ' We employ the formulation of Chambaud et
aI."

We consider the collision of an atom A with orbital,
spin, and total electronic angular momentum L„s„and
j„respectively, with an atom B with orbital, spin, and
total electronic angular momentum Lb, sb, and jb, respec-
tively. The total electronic angular momentum of the

collision system is j=j,+jb. Let l be the orbital angular
momentum of the relative nuclear motion, and write
J=j+I for the total angular momentum of the collision
system. The corresponding total angular momentum
eigenfunctions may be written

I y(L, s, )j, (Lbsb j}bjl I
JM ~

where y is a label identifying the specific atomic states
into which the system separates and M is the projection
of J onto the space-fixed z axis.

The cross section for the transition from (yj,jb} to
(yj,jb ) may be written

rr(ri.i b r'j'ib}=,g (2J+1}
I
T'(ri.ibl, r'i'ibl'}

I

'
(2j + 1)(2j b+1)k

where the transition matrix is obtained from the asymptotic solution of a set of coupled partial-wave equations. The
cross section for transitions from the initial LS terms (yL, s,Lbsb) to the final terms (y'L,'s,'Lbsb) is obtained by
averaging over the initial states (yj, yb ) and summing over the final states (yj,'j b ). Thus

cr(yL, s,Lbsb,'y'L,'s,'Lbsb) =
2L 1 2 1

g (2j, +1)(2jb+ )o'(yj,jb,'yj,'j b ) .
Ja Ja

(8)

The expansion of the total scattering wave function in
space-fixed eigenfunctions of total angular momentum J
with radial product wave functions f (yj,jbj! I

R ),
where R is the internuclear distance, yields the set of
close-coupled partial-wave scattering equations written in
atomic units,

where

V'(yj,j,l;yj','j,'l
I
R }

= g g""(yi.ibl, r'i.'ibl') v(r r'As
I

R } .
A, S

(10)

d
dR

xf (yj','j bj
'l'

I
R ) =0,

l(l + 1)
R

+k f (yJ.Jbjl IR)

—2p g V (rjajbl;y'j, 'jbl'
I
R )

In the case considered here, Lb=Lb ——0, so that jb ——sb

and jb ——sb. The coeScients g of the diabatic poten-
tials V(AS

I

R ) are obtained by expressing the space-
fixed functions in terms of the body-fixed functions with
which V(AS

I
R ) were determined. Standard vector-

coupling procedures ' lead to the relation

'Yja jbj &'V Ja jbJ = — i i~ja~j»jaJ ~ ~ J
ASJ( ~ l. ~ ~

l ) ( 1) o+ o+aa+ab+aa+ab+ S[S][~ ~

l ~ ~ l ]I/2 ~

a

where

Ja

S s
P

J

I
Sb

L,'
S

. g ASJ
JJ

L,
g ASJ

mI
[m( t=h a

a

O, X

S 'L, .

mi
a

S J I j' J I'
—0 0 0 —0 0 (12)

and [a,b ]= (2a+ 1)(2b+ 1).
The spin-orbit interactions between molecular states

separating to different spectral terms are weak and, in ad-
dition to the couplings of different (AS) diabatic states in
the representation (10), we included only the spin-orbit
interactions arising from the same spectral term. We as-
sumed that the spin-orbit interactions are independent of
internuclear distances and we obtained them directly

from the measured fine-structure energy-level separa-
tions. ' As was done in the earlier calculation in which
fine-structure was ignored, we neglected rotational cou-
plings between molecular states arising from different
spectral terms. The charge transfer of 0 + in H at
thermal energies is dominated by avoided crossings of
states of the same symmetry, but rotational couplings
might affect charge transfer in those channels for which
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TABLE I. Values of I for a given J in the different channels in the j-j coupling formulation

(yj,1/2jlJ ). The dashes indicate that there is no value of I corresponding to those values ofj and j,.
Parity TerTIl

Ja
J
I
I

1/2
0 1

J J
J+1

'p, 2P'

3/2
1 2
J J J%2

J+1 J+1

0
0
J

2p3s, P

1

1

J
J+1

2
2

J,J+2
JX1

2p3s, P

1

1

J
J+1

Parity

( )J

( )J+1

Term

Ja
J
I
I

2p3p, 'P

1

1

J
J+1

1

1

J+1
J

2p3p, 3D

2
2

J+1
J,J+2

3
3

JR1,J+3
J,JE2

2p3p, s

1

1

J+1
J

the cross sections are small, particularly, capture into the
0 +('P ) and 0 +( P ) states.

We selected those states which give evidence of the ex-
istence of avoided crossings. ' There are 45 scattering
channels in Eq. (8) corresponding to capture into the 'P,
'P, Po, z, D, 2 s, and S states of 0 + by 0 +( Pt&2)
and 0 +( P3&z). They divide into two uncoupled blocks
of opposite overall parities, one with 22 channels of pari-
ty ( —1) and the other with 23 channels of parity
( —1) +'. The permitted values of I for a given J are list-

ed in Table I.
A space-fixed LS-coupled formulation may be obtained

from the j-j formulation by expressing the interaction po-
tential matrix (11) in the

~

LSj I ) representation. We ap-
ply the projection operator

& I «.s. V.sbj )(«.s. V.sbj I

to each side of the interaction matrix (10) with
Lb ——Lb.——0 to obtain

V (yL, s, 1;y'L,'s, !'
~

R )=(L,(s,sb)SjlJ
~

V
~
L,'(s,'sb)S'j '1'J)

= g (L,(s,sb)SJM
~
(L,s, )j,sbJM)((L, s, )j,sbj ~

V
~
(L,'s,')J,sbj )

o .I
Ja Ja

X ((L,'s,'j),'sbj 'M'
~
L,(s,'sb)Sj'M') .

Now

. L, Sg Jg
(L~(s~sb)SJM

I (Las~)Josbj M) =5JJ,5brbr. [J„S]' ( —)
'

sb j S

(13)

(14)

where I ) is a 6-j coefficient. Using the orthogonality properties of 6-j coefficients, we may simplify Eq. (13) to the

TABLE II. Values of I for a given J in the LS-coupling formulation [yL, (s,sb)SjlJ]. The dashes in-
dicate that there is no value of I corresponding to those values ofj and j, .

Parity Term

L,
Sa

Sb

5
J
1

I

1

J
J+1

1/2
1/2
0

0
J

2p 2PO

1

J
J+1

1/2
1/2

1

2
J,J+2
J+1

2p3s, P

1

1

0
1

1

J
J+1

2
J,J+2
J+1

2p3s, 'P

1

0
0
0
1

J
J+1

Parity Term 2p3p, 'P 2p3p, D 2p 3p, s

L,
Sa

Sb

S
J

( —)'
( —)'+' I

1

0
0
0
1

J
J+1

1

J+1
J

2
1

0
1

2
J+1

J,J+2

3
J+1,J+3
J,J+2

0
1

0
0
1

J+1
J
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2s +1
TABLE III. Cross sections in units of 10 ' cm for Q +( P]yp 3yp)+H~O +( ' L,' )+H+. (Numbers in square brackets

QJ

denote power of 10.)

E(K)

3500
10000
20000

35'

11.6
11.3
11.3

D3

11.2
12.0
12.3

D

7.4
7.4
8.0

Di

3.6
3.2
3.9

1p

2P 1 /2

1.6
2.0
2.5

1PO
1

1.8[—2]
6.4[—2]
1.7[—1]

3PO
2

5.3[—3]
1.0[—2]
1.9[—2]

3P',

3.1[—3]
4.2[—3]
9.5(—3)

3P

8.4[—4]
1.1[—3]
2.5[—3]

3500
10000
20000

7.6
8.7
9.0

13.0
10.4
11.1

9.1

8.0
8.1

5.5
5.7
5.4

2

2.0
2.8
3.5

2.7[—2]
7.8[—2]
2.0[—1]

5.9[—3]
5.9[—3]
1.7[—2]

3.6[—3]
7.3[—3]
1.4[—2]

1.5[—3]
2.8[—3]
5.6[—3]

form

VJ(y L,s, I;y'L,'s, I'
~

R ) = g g (jIL„j 'I'L,' ) V(y y'AS
~

R ),
A, S

where

ghsJ(jILj I L)()J+J'[j I ~ I ]l/2gA$J

The cross sections for charge transfer from (yL, s, sb ) to (y'L,'s,'s~ ) are given by

(15)

(16)

0 (yL, s,sb,'y'L,'s,'sb ) = g (2J+1)
~

T (yLSj;y'L'Sj')
~

( 2L& + 1 )(2$+ + 1 )( 2$b + 1 )k r j
(17)

V (yL, s, l;y'L,'s,'I'
i
R ) .

There are 45 scattering channels, divided as before into
two blocks of 22 and 23 channels. The permitted values
of I for the two parities are listed in Table II.

The solution of the LS-coupled equations is compara-
ble in diSculty to the solution of the j-j coupled equa-
tions, in which proper account may be taken of the fine-
structure energy levels. We obtained results with the
LS-coupled formulation, nevertheless, in order to com-
pare with the much simpler body-fixed LS-coupled for-

TABLE IV. Cross sections in units of 10 ' cm for
O +( P3/2 ) +H ~O +( P l q2 ) +H.

E(K)

3500
10000
20000

28.6
24.7
23.2

The transition matrix is obtained from the asymptotic
solutions of the coupled equations derived from the in-
teraction matrix

mulation (6), in which no mixing of molecular states with
different values of A was permitted.

1II. RESULTS

The close-coupling equations were solved numerically
using the logarithmic derivative method of Johnson. '

The cross sections were calculated for relative energies E
equivalent to temperatures of 3500, 10000, and 20000 K.
The charge transfer cross sections are shown in Table III,
and the direct fine-structure excitation cross sections are
shown in Table IV. The different magnitudes of the
charge transfer cross sections for capture into the various
LS states arise from the relative locations of the avoided
crossings of the adiabatic potential-energy curves. ' The
cross sections for capture into the fine-structure levels of
any LS state exhibit no discernible pattern. The cross-
section ratios depend on the initial fine-structure states of
0 + and vary with energy. The ratios are not very
different from the ratios of the statistical weights, though
the cross sections for the highest j level both in the D
and P states are less than the statistical weight would
suggest.

We compare, in Table V, the cross sections obtained
from Eq. (8) at an energy equivalent to 10000 K with
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2s +1
TABLE V. Charge transfer cross sections for 0'+( P)+H~0 +( ' L,')+H in units of 10 ' cm

at an energy corresponding to 10000 K. (Numbers in square brackets denote power of 10.)

2s +1
Formulation ' L,'

J-J
Space-fixed LS
Body-fixed LS

3S

10.0
10.5
10.2

D

24. 1

23.1

22.0

Ip

2.0
2.2
2.2

]pO

2.5[—1]
6.7[—2]
7.0[—2]

3pO

2.3[—2]
2.1[—2]
1.6[—2]'

'The values differ slightly from those of Heil and co-workers (Ref. 1) because of a different choice of
asymptotic energy values.

those obtained from the body-fixed LS approximation of
Heil and co-workers, for which no mixing of different A
states was allowed, and with the coupled space-fixed LS
approximation of Eq. (17), in which the mixing of
different A states of the same asymptotic configuration is
included. The agreement between the results of the
different calculations is excellent. The differences in the
cross sections for capture into the P and P terms arise
because small cross sections are more sensitive to the
fine-structure-level splittings neglected in both of the LS

approximations and to the A couplings neglected in the
body-fixed approximation.
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