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Couette-Taylor instability in viscoelastic fluids
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We study the Couette-Taylor instability for a large class of Maxwell models. We And that for a
wide range of parameters the basic equations do not have an axisymmetric Couette-like solution.
Furthermore, we show that from Maxwell-type models oscillatory instability is not to be expected at
threshold. We calculate the critical Reynolds number and the critical wave vector by integrating
the perturbation equations numerically for the cases of small and large gap.

I. INTRODUCTION

Many fluids made of large macromolecules exhibit
unusual properties as compared to fluids made of small
molecules. ' These fluids are commonly called the
viscoelastic fluids because they posses viscous properties
typical for fluids, next to some elastic properties typical
for solids. These fluids have many applications in poly-
mer processing and therefore it is important to study
their properties, in particular under flow conditions.

Among the unusual properties are the shear-
rate-dependent viscosity and the so-called Weissenberg
effect (the fiuid climbs a fast turning rod instead of be-
ing pushed away from it}. But perhaps the most charac-
teristic is the recoil effect. ' The fluid recoils partially to
its previous state. The memory of the previous state is
fading, however: the longer the fluid stays in its new
state, the less it recoils. This effect points to existence of
a characteristic time for memory. The simplest rheologi-
cal expression for stress tensor which captures both the
viscosity and elasticity is the so-called Maxwell model

X+r, =ri(5V+ VV ) .'at (1.1)

dii R, and R2 (R
~ &R2) of infinite length and rotating

with angular velocities 0& and 02, respectively. Let us
denote the velocity field in cylindrical coordinates by
V=( Vz, Ve, Vz) and the stress tensor by X. The flow of
the fluid is governed by the Navier-Stokes equation to-
gether with the incompressibility condition:

dv
p =div(X) —Vp,

dt
(2.1a)

div(V) =0, (2.1b)

X,
p2R 4103

(2.2)

where p is the density of the fluid and p is the hydrostatic
pressure. For the pressure tensor X we will use the con-
stitutive relation given in Eq. (1.2).

In order to reduce the number of parameters we put
Eqs. (1.2) and (2.1) into dimensionless form by the follow-

ing scaling rules:

zz=, $=tQi,
Ri

Here X is the stress tensor, VV+ VV is the rate of strain
tensor (V is the velocity field and VV denotes the
transposed of VV), to is the characteristic time for
memory, and g is the viscosity. Note that for to ——0, Eq.
(1.1) describes the usual Newtonian fluid. Equation (1.1)
forms a basis for many rheological equations of state for
the stress tensor existing in the literature.

The purpose of this work is to study the properties of a
large class of Maxwell models for viscoelastic fluids under
shear flow between rotating cylinders, the so-called stabil-
ity analysis of the steady state subject to perturbations of
the form of Taylor vortices. The results are given in Sec.
V and conclusions in Sec. VI.

II. THE SYSTEM

We consider the Taylor system consisting of viscoelas-
tic fluid contained between concentric cylinders with ra-

pR )0) R2
I =0 to, A=, a=

R)

1
2P

p

02
CO=

0)

Equations (1.2) and (2.1) now become

+ —,
' A [T (Vv+ Vv )+(Vv+ Vv t ).T]

div(v) =0,
=Vv+Vv

= —Vq +% ' div(T),
ds

T+. I +—'[T.(V'v —Vv ) —(Vv —Vv )-T]
d$

(2.3a}

(2.3b)

(2.3c)
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subject to the boundary conditions,

v„=v, =0 at r =1 and r =a,
v g

——1 at r = 1, and vg ——ma at r =a .

III. STEADY-STATE SOLUTION

For small enough angular velocities Eqs. (2.3) have an
axisymmetric steady-state solution depending only on the
distance to one of the cylinders. Therefore we seek veloc-
ity field, stress tensor, and pressure of the form:

v=(0, vz(r), 0), T=T (r), and q =q (r) .

d 2+ f

dvg Vg

df T =0.
dvg Vg

0 0

1+I'(1 —A ')
df

(3.1)

It can be checked that the solution of this equation has
the following form (for details see Appendix A):

It is shown in Appendix A that vg fulfills the following
differential equation:

3
0 Ar

T
2r&1 —A'

' 1/2
r4X2 —1 —I + I —A arctan

I (1—A)

1/2
f A, —1 +p

I (1—A)
(3.2)

where we have chosen the branch of the solution corre-
sponding to the classical Couette flow for A =+1. The
two constants A, and p appearing in solution (3.2) are
chosen to verify the boundary conditions Ue(1)=1 and
Uz(a) =boa. These boundary conditions cannot always be
satisfied for any —1 & A & 1. Its existence region corre-
sponds to the range of values of A, I, and I, for which
the square roots appearing in solution (3.2) remain real.
The region of existence of v g for a =1.0526 and a =1.33
as a function of the relevant parameter r(1 —A )' is
shown in Fig. 1. In this figure one can see that the region
of existence opens up to very large values of U g in the lim-
it A ~+1 or I ~0. In both limits the steady flow be-
comes the classical Couette flow. Consequently, for a
large range of r(1 —A )' Eqs. (2.3) do not have a
steady axisymmetric solution.

In Appendix A we also calculate the elements of the
stress tensor for the steady state and obtain

dvg Vg
0 0

T„,= —I (1+A) — T„e,df T

veta)
(a)

0—

10

~e (Q)

I I I I I I I I I I I I i I I I I I I I I I I

0 0.1 0.2 0.3 0.4 0. 5

r/(i-A')

dUg Ug
0 0

T'„=r(1 —A)
dT T

(3.3)

0
Trg

dVg Vg

df T

0 0
dVg Vg

1+ I '(1 —A')
df T

0—

and

The experimentally important ratio N2/N& of secon-
dary to primary normal stress difference is in our case
defined by N2 ——T,„—T„and N& ——Tgg —T„„. This ratio
varies drastically as function of A. Using Eq. (3.3) it is
easy to see that for A = —1 (the upper convective deriva-

I I I I I I I I I I I I I I I 1I

0.2 0.4 0.6 0.8

re'(i —A')

FIG. 1. Region of existence of the axisymmetric solution of
the basic equations Uz for (a) a = 1.0526 and (b) a = 1.33.
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tive) N2 IN, =0, for A =0 (the fully corotational model)

N~/N, = —0.5, and for A =1 (the lower convective
derivative) X2/N& ———1. The range of Xz/X& observed
experimentally lies between 0 and —0.5, ' ' so we can
conclude for the physically realistic models that A will
have a value between —1 and 0.

We seek the values of % for which the steady state be-
comes unstable, that is, for Re(o )=0. We shall distin-
guish two cases, with Im(cr)=0 and with Im(cr)=+v,
corresponding to the onset of stationary and oscillatory
instability. In the case Im(o ) =0 we have also m =0 and
the critical value of A is found by minimizing it with
respect to the wave vector a:

IV. STABILITY ANALYSIS c (a„a,co, I, A ) =0 .
Ba

(4.4)

In this section we study the stability of the steady state
subject to perturbations of the form of Taylor vortices. It
can be shown using the symmetry arguments that the
perturbations around the stationary state will have the
following form: F(0,0,a„a,co,A„I, A ) =0, (4.4a)

In this case the function F defined by Eq. (4.3) is real and
the critical parameters R, and a, can be found by solv-

ing

v(r, 8,z)=v (r)+[u(r)e '+' +' '+c.c.],
T(r, 8,z)=T (r) + [ri(r)e ' +' +' '+c c ]., .

q(r, 8,z)=q (r)+[/(r)e '+' +' '+c c.],.

(4.1)

BF
(0,0,a„'a, co,A„I, A ) =0 . (4.4b)

In the case of oscillatory instability, i.e., Im(cr)=v we
have similar conditions for the R, :

where o. 6C, m EZ, aF R, and c.c. denotes the complex
conjugate.

Substituting the expressions (4.1) into Eqs. (2.3) and
linearizing in the perturbations we obtain a set of
differential equations for the components of u(r), ri(r),
and for itr(r) (for details see Appendix B). These equa-
tions have to be solved with the boundary conditions:

u„(1)=us(1) = u, (l) =0,
u„(a) =us(a) =u, (a) =0 .

BA~
(i v„m, a, ;a, co, I, A ) =0 . (4.5)

F(i v„m, a, ;a;co,A„I,A ) =0, (4.6a)

Re (iv„m, a„a,co,A„I,A)
BF

C

Here the function F is complex and R„a„and v, are
the solutions of the equations

As shown in Appendix 8 the differential equations can be
written in the following form:

(i v„m, a, ;a, co,%'„I,A ) =0,BF
t7

(4.6b)

u„
where the bar over the second derivative denotes the
complex conjugate.

dT gyp
=JR(r, cr, m, a, a, co,A, I, A )

Pro
(4.2) V. RESULTS

If cr, m, and a are such that F =0 then the functions u„,
ue, u„g„e, i)„„and P are eigenfunctions and cr is an ei-
genvalue. The differential equations (4.2) can then be
solved numerically using a fourth-order Runge-Kutta
method and the values of F can be calculated such that:

F(rr, m, a;a, ro, A, I, A)=0

using the Newton-Raphson method.

(4.3)

where the components of matrix JR depend explicitly on r
but do not contain derivatives with respect to r. Using
arbitrary boundary conditions for ri„&, q, and P at r =1
it is possible to construct a solution satisfying

u„(1)=us(1)=u,(1)=0 and u„(a)=u, (a)=0 .

The value of u 0 at r =a defines a function F:

F(o,m, a;a, ro, A, I, A)=us(a) .

We have performed the stability analysis of the
steady-state solution in the case of a rotating inner
cylinder, i.e., co=0. In the case of corotating cylinders
(co &0) no qualitative changes with the co=0 case is to be
expected. For counterrotating cylinders (co&0), and co

sufficiently negative, there is an oscillatory instability at
threshold for Newtonian fluids. One could therefore ex-
pect an interaction between this time-dependent mode
and the oscillatory mode due to viscoelasticity in this re-
gion.

We have calculated the critical parameters for various
values of A and I in the region of existence of the steady
flow for two values of the gap: a = 1.0526 (small gap) and
for a =1.33 (large gap). In both cases the results are
qualitatively similar.

The results for %, as a function of the characteristic
time I for various values of A are summarized in Figs.
2(a) and 2(b). In these figures the solid lines correspond
to the stationary instability [Im(o ) =0 and m =0], while
the dashed lines correspond to the oscillatory instability
[Im(cr ) =v and m = 1]. The case A = —1 has been stud-
ied previously' ' ' in the small-gap approximation.
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and 3(b). Note, that in our case the wave vector is scaled
with R &. In order to compare the values given in Fig. 3
to the values scaled with the gap between the cylinders,
they should be multiplied by the factor 1 —a. In the
physically realistic range of A, i.e., —1 & A &0, the mod-
el predicts a critical wave vector to be smaller than the
one for Newtonian fluids. In some experiments no
difference with the Newtonian value of the wave vector
has been observed at threshold, ' ' while in other experi-
ments the wave vector decreases or increases slight-
ly. It should be pointed out however, that for small I,
where the a, is very close to the Newtonian value, the
difference in periodicity will not be easily seen in experi-
ment. In particular, in small aspect ratio cylinders the
side boundaries will have dominating influence on the
wavelength selection.

dv'
T„'„=—I T„',(1+A)

d7

0
Vg

(A 1)

dUg Vg
0 0

Tgg ——I T„g(1—A)
dT T

(A2)

dVg Ug
0 0

T„g+I
d7' T

0 A —1 0 A+1
rr 2

+ gg

dUg Vg
0 0

dT T
(A3)

Substitution of Eq. (Al) and (A2) into (A3) yields

Substituting these expressions into Hq. (2.3) we obtain

VI. CONCLUSIONS

We have solved the equations for the Couette-like flow
between concentric cylinders for a large class of Maxwell
models for viscoelastic fluids and have investigated its
stability. It turned out that the axisymmetric steady-
state solution of the basic equations does not exist for all
values of the parameters A and I . Similar break down of
the solution was already encountered in the studies of
models for visoelastic fluids. This breakdown of the
Couette-like solution can be a sign of an existence of a
different flow in this region, but most probably it points
to some intrinsic problems of the rheological models.

We have found that in the region of parameters where
the steady state exists, all models (except for the A very
close to —1) predict stabilization of the Couette flow for
small enough values for the characteristic time I . We
conclude that the physically realistic value of A lies in
the range —1& A &0, but more experimental data are
needed to make a more precise comparison. Moreover,
we have shown that in this realistic range of A there is no
oscillatory instability at threshold.
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T g—0

dVg Ug

dr r

dU'
1+I (1—A )

dT

2
UO

g

(A4)

(A5)

dT g"+—T'=0
dr T

(A6)

From Eq. (A6) it follows that

TO
rg (A7)

where A. is an arbitrary constant. Equation (A7) together
with Eq. (A4) gives the following differential equation for
VO.

go

The equations for the steady state can be written now as
follows:
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0 0
dVg UgI(l —A)
dT T

dvg Vg
0 0

—2ir — +1=0 .
dr r

(AS)

APPENDIX A

We look for a velocity field and a stress tensor depend-
ing only on the distance to one of the cylinders:

v=(0, vz(r), 0) and T=T(r) with T, =T, .

The shear rate (dvsldr) —(vs/r) is a solution of a
second-order equation. This equation has two solution
branches. Here we choose the branch corresponding to
the classical Couette flow for A =0 and obtain

In this case we have
0—Ug

0

d vg

dr T

' 1/2
Ar I (1—A )

1 — 1—
I (1—A ) Ar.

(A9)
dvg

Vv=
d7

0

0 0 0
Using the Macsyma system we find the primitive of the
right-hand term:
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A.f'

2r&i —A'
X2r4

1/2

—1 —I + I —A arctan
I (1—A)

g2 4
1/2

—1
I (1—A )

This solution depends on two arbitrary constants A. and p. From the last expression Eq. (3.2) for us easily follows.

APPENDIX B

Inserting expressions (4.1) into the constitutive equation, Eqs. (2.3a), and linearizing around the perturbations, one
obtains the following set of equations:

ri„„+I [(o +imv ejr)ri„„2v—et)„ttjr + ( t)„T„„)u„2T—,&u tt jr]
+I {(A +1)[(B„v&)t)„&+T„„t)„u,+ T zt)„uo]+( A —1)[ u t—tri„sjr + T„„t)„u„+T e(imu„—utt)lr] I =2t)„u„,

ri„8+I [(cr+imutt jr)ri„&+(rl,„rise—)v sjr+(d„T„&)u,+(T„,—Tett)uajr)

(81)

+ —,'I {( A +1)[(t)rue )rise ue—ri„„/r + T„„(imu, —u it)jr + T &(imu a+ u„)jr + T ttd„u„+ T&ed„u tt]

+( A —1)[(t3„vt)tl„„—uttristt jr + T ttt)„u„+ Tee(imu„ue)jr—+ T„„B„us+T s(imue+u„) lr] )

ri„, +I [(o +imuttr)rl —u ttri&, /r]+ —,'I {( A +1)[(B„vs)rie, + T„„iau„+ T ttiautt]

=(imu„—utt)lr +B,ue, (82)

+( A —1)[—u ttrie, Ir+ T,,t)„u, + T emu, Ir] I =i au„+d„u, ,

tlse+I [(o +imu e/r)ritts+2u ttri„&jr + (tJ„T&e )u„+2T„&u&/r]

+I {(A +1)[ uteri„sj—r+ T tt(imu„—ue)lr+ Ttttt(imutt+u„)jr]

(83)

+( A —1)[(B„vtt)ri„s+ T &t)„utt+ Tits(imutt+u„)jr]I =2(imue+u„)jr, (84)

ri&, +I [(o+imutt jr)7)e, +u&ri Ir]—,'I {(A +1)[ vttri /r+—T eiau„+Tttttiaue)

ri„+I (o+imutt jr)ri„=2iau, .

+( A —1)[(B, &u) ri+ T&d„u, + T&ttimu, /r) ) =iau&+imu, /r, (85)

(86)

Similarly the incompressibility condition, Eq. (2.3b),
takes the form

o u, + u ttt'm u, Ir +i aP

'[c)„ri„,+imris, /r+iari„+ri /r) . (810)
B„u„+u„/r +imutt jr +iau, =0 . (87)

'[3t„ri„o+im ritttt jr +i ago, +2ri,sjr], (89)

Finally the Navier-Stokes equation, Eq. (2.3c), gives,
after linearization,

ou„+u', (imu„2u, )/r+a„—y
'[ )„it,„+rimri„sjr+iari +(g„, ries)lr], —

(88)

o us+ u„(t)„+1 lr)v tt+ v ttt'mue/r +im /jr

Equations (Bl)—(810) do not contain the derivatives
with respect to r of g&&, g&„and g„. Consequently qz,
tie„and ri„can be calculated from Eqs. (84), (85), and
(86) and substituted in the remaining set of equations.
Similarly, ti„„can be calculated from Eq. (81). By taking
a derivative with respect to r of Eqs. (Bl) and (87) and
substituting for B„u,B,g„„can also be eliminated from Eq.
(88). In this way one finds a set of six linear equations for
u„, ue, u„g„o, ri, and g and its first derivatives with

respect to r. This set of equations can be readily put into
a form presented in Eq. (4.2).
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