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A procedure is presented for the calculation of the intensity of light doubly scattered by a critical-

ly opalescent fluid. The procedure is valid for general scattering angles and fully incorporates the
effect of turbidity on the double-scattered light. The intensity and depolarization ratio of double-

scattered light is evaluated as a function of temperature, angle, and sample-ce11 dimensions for some

representative liquid mixtures near the critical point of mixing. A comparison with experimental
multiple-scattering data is also included.

I. INTRODUCTION

Light scattering provides an important tool for study-

ing critical fluctuations in fluids. ' The intensity of (sing-

ly) scattered light is directly proportional to the Fourier
transform of the order-parameter correlation function.
The primary limitation of the interpretation of such
light-scattering experiments is the appearance of double
and higher-order scattering close to the critical point.
As a consequence, light-scattering data collected by
modern multiangle photometers ' require an angle-
dependent correction for double scattering in critically
opalescent fluids.

Attempts have been made to minimize multiple
scattering. One approach, adopted in our laboratory,
is to select a mixture of liquids, such as 3-methylpentane
and nitroethane, whose refractive indices differ only
slightly, so that the coupling between dielectric-constant
and order-parameter fluctuations is weak. Another ap-
proach is to perform light-scattering experiments with a
very small sample volume as was done by Kopelman
et al. However, even in these special cases, corrections
due to double scattering must be applied within the ex-

perimentally accessible temperature range near the criti-
cal point.

Double-scattering effects in fluids near the critical
point have been considered by a number of investigators.
Oxtoby and Gelbart' ' " estimated the effect of double

scattering on the polarized and depolarized light-
scattering intensity from an order-parameter correlation
function which was assumed to be independent of the
wave number k, and neglecting any attenuation of the
light beam due to the turbidity of the sample. They
pointed out that the collision-induced contribution to the
depolarization ratio of a fluid may be small compared to
that of double scattering, and concluded that the depolar-
ization ratio varies linearly with the height of the volume
observed by the detector. ' For this purpose Oxtoby and
Gelbart considered a spherical scattering volume in a
spherical cell. This geometry is physically unrealizable
and Reith and Swinney' extended the analysis to the

more realistic cylindrical scattering geometry. A more
detailed analysis of the double-scattering effects in a cy-
lindrical sample cell was made by Bray and Chang' tak-
ing into account the k dependence of the order-parameter
correlation function. Like Reith and Swinney, Bray and
Chang restricted their analysis to 90' scattering and
neglected turbidity losses. Boots, et al. ' and Boots'
developed a systematic theory of multiple scattering valid
for all scattering angles; in practice they restricted them-
selves to the regime where turbidity and double-
scattering effects are small. The theory was used to make
a comparison with experimental depolarization ratios at
90' observed by Trappeniers and co-workers' ' for xe-
non and carbon dioxide near the vapor-liquid critical
point. Experimental studies of multiple-scattering effects
in binary-liquid mixtures near the consolute point have
been reported by Hamano et al. ' and by Schroeter
et al. The work of Schroeter et al. includes an assess-
ment of diffraction effects attendant to the use of small
apertures. Studies of double-scattering effects have also
been reported by several Russian investigators. '

Because of the complexity of the problem, a number of
restrictions or approximations are commonly introduced
in the analysis of double-scattering effects. Some of the
investigators have restricted the analysis to 90' scatter-
ing. ' ' ' ' The effect of turbidity on the double
scattering has either been neglected completely' ' ' or
approximations have been made so that the analysis is re-
stricted to conditions where turbidity losses in the cell are
sma1114$15j21722

In this paper we consider light scattered from a fluid in
a cylindrical cell. We shall present an improved analysis
valid for all scattering angles and fully incorporating the
effect of the turbidity on the double-scattering intensity.
In a fluid near the vapor-liquid critical point an added
complication arises due to the presence of density gra-
dients induced by gravity. In practice, therefore, we ap-
ply our analysis to binary liquids near the critical mixing
point, where the relaxation time for stratification is long
and measurements from homogeneous fluid samples can
be obtained. Throughout this paper we shall consider
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II. BASIC EQUATIONS FOR SINGLE
AND DOUBLE SCATTERING

The di6'erential cross section for light scattering or
Rayleigh ratio is given by

2

o (8,4)= V sin'4(
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~

')
X4

(2.1)

where A, is the vacuum wavelength of the light, V the
scattering volume, 4 the angle between the polarization
vector of the incident beam and the wave vector k, of the
scattered light, and (

~

b e( k }
~

) v the Fourier com-
ponent of the dielectric-constant fluctuations in the
volume V. The wave number k is related to that of the
incident light ko and the scattering angle 8 by

binary liquids whose composition is equal to the critical
composition.

In this paper we restrict ourselves to an analysis of the
double-scattering contributions to the polarized and
depolarized light-scattering intensities. The dynamical
features of the double-scattering spectrum of fluids near
the critical point have been discussed by Sorensen
et al. , ' Beysens and Zalczer, Ferrell and Bhattachar-
jee, and Romanov and Salikhov.

coeScient A can in practice be treated as a constant in-
dependent of temperature. The total cross section or tur-
bidity r is obtained' ' by integrating (2.4) over all solid
angles 0,

r= J dQo(8, 4)

=Am (1+a )ln
a+1
a —1

—2a (2.7)

We consider an experimental arrangement in which the
fluid is contained in a cylindrical sample cell with radius
R and with its cylindrical axis in the positive Z direction.
The incident beam is directed along the (negative} X axis
and polarized in the Z direction, while the detector for
the scattered light is located in the (X, Y) plane at a
scattering angle 8. The detector images the light emanat-
ing from an acceptance volume V, with width ha
(b,a &&R ) and height H. A top view of the arrangement
is schematically shown in Fig. 1. We neglect the finite di-
ameter of the incident beam relative to the height of the
acceptance volume so that the incident intensity can be
approximated by ID=I'o5(y)5(z), and we shall consider
the scattered intensity relative to the incident power Po.
The intensity of singly scattered light observed by the
detector is then proportional to

k =2kosin(8/2) = (4n n /A, )sin(8/2), Q.2) I"'(8,4)=o (8,4)e '"ba /sin8

(
~

bX(k)
~

) =N 'I t rg(kg), (2.3)

where N =p, V is the number of molecules in volume V,
1 is a system-dependent constant, t=(T T, )/T, —
/=got ", the correlation length, while y and v are
universal critical exponents, and g(kg} a universal scal-
ing function. For the purpose of this paper the scaling
function g(kg} is approximated by the Ornstein-Zernike
form g(kg)=(1+k g ) ', since any deviations from this
form are very small.

For our analysis we write the Rayleigh ratio in the
form

where n is the refractive index of the medium. Near the
critical point the dielectric-constant fluctuations are pri-
rnarily caused by fluctuations in the order parameter as-
sociated with the phase transition which, for a liquid rnix-
ture near the consolute point, is the concentration X. For
a system at the critical concentration and at temperatures
T close to the critical temperature T„ the concentration
fluctuations satisfy a scaled equation of the form' '

Hsing 2R Aa
ea —cos8 sin 8

(2 &)

where we have accounted for the attenuation of the light
beam over its path length 28 in the fluid.

The intensity of doubly scattered light observed by the
detector is obtained by integrating over all paths in which
the first scattering event with angles 8„4& is located at
r, =(x„0,0) on the X axis and the second scattering
event with angles 8z, @z at rz —(xz,yz, zz) in the accep-
tance volume V„

—~l(r&, r2)
+zt e

' o(8],@])o(8z,@z)I'z'(8) = d rz dx,—R 121

(2.9)

where rz, —
~

rz —r,
~

is the distance between the scatter-
ing events and I(r, , rz) the total path length of the light in

where
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A sin 4
a —cosO

Be ) I t

z. p 2(kog)

(2.4)

(2.5)
incident bea

X

1a= 1+
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detector

Since t r/g varies with temperature as t , the' FIG. 1. Top view of scattering geometry.
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the fluid. We find it convenient to rotate the axis in the
(X, Y) plane over an angle 8 i—r/2, so that the new Y'

axis is located in the acceptance volume in the direction
towards the detector. The volume element in (2.9) may
then be replaced with ha dye dz2dx'„ if we assume that
the variation of the integrand over the width of the ac-
ceptance volume, i.e., for —Aa/2 &xz & +ha/2, can be
neglected. In the sequel we shall denote x, by u, y2 by v,

z2 ——z2 by w, and r2, by p as indicated in Fig. 2, so that

2 2 2 2 2 2

(P =1—(, k ) = . (2.14d)
p(p —w )

The integrand G(u, v, w ) of the double-scattering integral
(2.12) can thus be written as

er(u+U —P)(g +g
G(u, v, w)= (2.15)

(ap —u —v cosO)(ap —u cosO —v )

with

2, ——p =u +v +w +2uv cosO,

l(r„rz)=2R+p —u —v .
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FIG. 2. A double-scattering trajectory.

Noting that dx', =sinO du and using (2.4), we write I' '(8)
as

I' '(8)=A b,a sinOe

X f+"du f+ dv f dw6(u, v, w), (2.12)—R —R —H/2

with

e ~"+' ~'sin 4 sin 4
G(u, v, w)= (2.13)

p (cx —cosO))(cx —cosOp)

Let us designate the wave vectors k and the polarization
directions p of the incident, singly scattered, and doubly
scattered light by (ko, po), (k„p)), and (k2, pz), respec-
tively. We note that

kp= —U& Pp=w& k2=v

p) = [po (po'k) )k) ]/sin%),

p2 ——[p, —(p, k2)k2]/»n42 .

For the trigonometric functions in (2.13) we obtain

The double-scattered intensity I' '(8) is the sum of a po-
larized contribution I„', '(8) for which ( po p2)
=sin 4&/sin 42 ——1 and a depolarized contribution
I(2)(8)

From the expressions (2.12), (2.15), and (2.16) we can
draw the following conclusions. Since, as mentioned ear-
lier, the temperature dependence of the coeScient A is
negligibly small, the double-scattered intensity depends
on the temperature through the turbidity ~, which in-
creases rapidly as T~T„and through a, which ap-
proaches unity as T~T, . If ~R &1, the exponential
term in (2.12) will significantly attenuate the scattering in
all but the backscatter directions. In practical experi-
ments p yp w, so that g„„&gg,z. Furthermore, g„ is rela-
tively insensitive to the scattering angle 8, so that the an-
gular distribution of the polarized light is essentially fixed
by the exponential factor and the denominator in (2.15).
On the other hand, g,& is proportional to p, which in-

creases strongly as 0~~; thus I„'&' wi11 become large in
the backscatter directions. Finally the w factor in g,z il-

lustrates a general property of light multiply-scattered by
isotropic-scattering centers: the depolarized component
vanishes when the scattering process is restricted to the
w =0 plane,

III. TRANSFORMATION
OF DOUBLE-SCATTERING INTEGRAL

The double-scattering integral, as given by (2.12) and
(2.15), cannot be evaluated analytically. To simplify the
analysis, previous investigators have introduced a num-
ber of additional approximations. Bray and Chang' take
v=0 and O=n. /2, a simplification which enabled them to
perform two of the integrations analytically, leaving the
third to be evaluated numerically. Boots et al. ,

'

Boots, ' and Adzhemyan et al. ' neglect the exponen-
tial factor in (2.15) and consider the double scattering un-
der the assumption that kog &&2R /H. In this section we
shall demonstrate how the double-scattering integral can
be evaluated without any of these approximations.

As it stands, the three-dimensional double-scattering
integral (2.12) is not well suited for numerical analysis be-
cause the integrand (2.15) has a singularity at p=0.
However, it is possible to reduce the expression to a two-
dimensional integral with a nonsingular integrand by
changing coordinates. For this purpose we consider an
orthogonal coordinate system (u ', v', w' =w ) such that

p =u' +v' +w'. In this new coordinate system we
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then use polar coordinates with radius p, polar angle 6,
and azimuthal angle i)/. This goal is accomplished by the
following transformation:

O

4 2

The Jacobian of this transformation is

(3.2)

sin5
u =p . Cos(q+ 1jko),

sinO

sin6
v =p . sin(g —$0),

sinO

m =p cos5,

with

(3.1a)

(3.1b)

(3.1c)

8[ u, v, w I 2 sin5

&IP, 5, 1t]

and we obtain

I(2'(8)= A ba e "'fdp f d5 fd&F(p, 5, &),

where

(3.3)

(3.4)

[f„,(5)+f„),(5,$)]sin5 expI pr[c) (t())sin5 —1]I
F(p, 5, $)=

[a —c2(g)sin5][a —c3(g)sin5]
(3.&)

with

and

f„„(5)=sin 5,
f,h(5, $)=—,'sin (25)cos (g+P„),

c, (1()= [cos(1(+i)'jo)+sin(it —$0)]/sin8,

cz(g) = [cos(g / i)/0) +cos8 sin( g —go) ) /sin8,

c3(1()= [sin(1()—$0)+cos8 cos(p+ $0)]/sin8 .

(3.6)

(3.7a)

(3.7b)

(3.7c)
with

x f du f dv f dw G(u, v, w),
0 0 0

(3.&)

G(u, v, w)= —,'[G(u, v, w)+G( —u, v, w)+G(u, v, w)—

I

ly and the remaining two-dimensional integral can be
evaluated by standard numerical methods.

For computational efficiency it is advisable to take ad-
vantage of the symmetry of the integration limits in
(2.12), so that this integral can be written as

I( )(8)=8A2/) a e 2R~sin8

The singularity of the original integrand proportional to
p has been canceled by the factor p in the Jacobian
(3.3). The integration over p can now be done analytical-

I

+G( —u, —v, w)] .

In terms of the integration variables p, 5, i)(t we obtain

(3.9)

with

I maxI' '(8)=8A ba e "'f

deaf

d5 f dpF(p, 5,$),
[(m/2) —19]/2 0 0

(3.10)

F(p, 5, i)/) =p sin5 G(u (p, 5, $), v(p, 5, $), w(p, 5) } .

(3.11)

The evaluation of F(p, 5, $) is tedious, but straightforward, and is documented elsewhere. We obtain

4

F(p, 5,$)= g e ' [J„',"(5',$)+J't, '(5, it()], (3.12)

in terms of functions H;(5, p), J„'„"(5,$), and J„'I,'(5, 1(/), defined in the Appendix. Substitution of (3.12) into (3.10) yields
the final form of the double-scattering integral

I(2)(8) g A 2+a e
—2Rr y f +

dQ j d5 [J(i)(5 P)+J(i)(5 P)]
[(n/2) —()]/2 0 7H/(5, itj). (3.13)

(3.14)

The function p,„(5,$) is defined as follows. For a given i)'j, i.e., a given ratio u /v, the maximum value p (1(/) of p,

2 2
2 1/2

R sin8 H
sin [ ~ g (n. /4)

~
+ —,'8]—

occurs at

H5'( g) =arccos
2p'( i( )

(3.15)
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For general 5 and g, p,„(5,g) is then given by

P,„(5,1()= .

R sinO
for 5'( i)'j) & 5 & vr /2

sin5 sin[ P (—vr/4)
~
+ —,'g]

—sec 5 for 0&5&5'(P) .
H
2

(3.16)

I (2)(g) 1(2)(g)/1(1)(g)

The depolarization ratio is defined as

1(2)(g)
g(2)( g) 1(1)(g)+1(2)(g)

(3.17)

(3.18)

IV. ANALYSIS OF DOUBLE-SCATTERING EFFECTS

With tractable expressions in hand for the double-
scattered intensity I ' ' and the depolarization ratio b, ' ',
we can readily investigate how these effects depend on ex-
perimental parameters such as the scattering angle O, the
temperature t=(T T, )/T, t—he size of the sample
volume, i.e., the radius R, and the height H of the aper-
ture. For this purpose we consider vertically polarized
He-Ne laser light with an incident vacuum wavelength
A, =0.6328 pm scattered through two representative
liquid mixtures of different character, namely, 3-
methylpentane+ nitroethane and methanol+ cyclo-
hexane. The 3-methylpentane + nitroethane mixture
is a weak scatterer, so that double-scattering effects will
be small. With this system it is possible to perform accu-
rate light-scattering experiments at temperatures very
close to the critical temperature. The intensity of scat-
tered light for this mixture has been measured in our lab-
oratory ' and also by Wiltzius and Cannell. ' The
methanol+ cyclohexane system is a strong scatterer, so
that double-scattering effects will be large. With this sys-
tem it is not possible to obtain reliable information very
close to the critical temperature unless one uses a sample
cell with an ultrashort path length as was done by Kopel-
man et al.

From (2.5) it follows that the coefficient A will vary
with temperature as

AoA=
2( kogo)

(4.1)

The two-dimensional double-scattering integral (3.13) can
be evaluated numerically with nested Gauss-Legendre
quadrature algorithms. An accuracy of a few percent is
achieved with a total of (32) =1024 integrand evalua-
tions.

In practice we are interested in the ratio of the double-
scattered intensity to the single-scattered intensity,

y =1.239, v=0. 63, (4.3)

TABLE I. Physical parameters for some binary-liquid mix-
tures.

3-methylpentane
+

nitroethane'

Methanol
+

cyclohexane

Diethylmalonate
+

polystyrene'

in good agreement with the current theoretical predic-
tions. In addition we need the critical temperature T„
the correlation length go, the incident wave number ko,
which depends on the refractive index n, and the scatter-
ing strength Ao ~ The values adopted for these system-
dependent quantities are presented in Table I. The physi-
cal parameters used for 3-methylpentane+ nitroethane
were deduced from the experimental data of Chang
et al. , and those for methanol+ cyclohexane from the
experimental data of Chu and of Schroeter et a/. It
should be noted that Kopelman et al. and Jacobs have
measured the turbidity of methanol + cyclohexane,
finding the slightly different values (0=0.39+0.1 nm,
A 0 ——(3.0+0.3) X 10 m ' and go =0.324+0.006 nm,
Ao ——(2.20+0.04) X 10 m ', respectively. In Table I we
have also included the corresponding quantities for
diethylmalonate+ polystyrene, to be discussed in Sec. V;
the physical parameters for this system were obtained
from the paper of Hamano et al. '

For a study of the double-scattering effects as a func-
tion of scattering angle and temperature we take R =0.50
cm and H=0.062 cm; these values correspond to the
light-scattering photometer of Hailer et al. In Fig. 3 we
show the double-scattered intensity I ' ' and the depolari-
zation ratio b ' ' for 3-methylpentane + nitroethane as a
function of the scattering angle O at various values of the
temperature difference b T= T T, . From F—ig. 3(a) we
note that the double-scattered intensity I ' ' for this sys-
tem at AT=10 mK is less than 1% at all scattering an-
gles. In Fig. 3(a) we have included a curve of I I ' at
6T=0.01 mK; this was done to indicate that nothing
surprising occurs even when ko(=160. From Fig. 3(b)
we note that the depolarization ratio 6' ' is extremely
small for a weak scatterer such as 3-methyl-
pentane + nitroethane.

where

2
2~r

0
g4p, Bx

(4.2)

is the scattering strength. For the critical exponents y
and v we adopt the values

T.
ko

ko

o

299.545 K
0.229 nm

1.367 & 10 m
4.11)& 10 m

'Reference 6.
References 20 and 37.

'Reference 19.

318.62 K
0.36 nm

1.370)& 10 m
3.7Q 10 m

283.82 K
1.00 nm

1.421 && 10 m

5.63X10-' m-'
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3-METHYLPENTANE + NITROETHANE
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0
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ET=10 mK
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Scattering Angle 8
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Oo 30' 60' 90' 120 150' 180

Scattering Angle 8

FIG. 3. Double-scattered intensity I' ' and depolarization
ratio 6' ' for 3-methylpentane + nitroethane as a function of the

scattering angle 0 at various values of hT=T —T, . (R =0.50
cm, H=0.062 cm. )

FIG. 4. Double-scattered intensity I "' and depolarization
ratio b, ' ' for methanol+ cyclohexane as a function of the
scattering angle 8 at various values of ET= T—T, . (R=0.50
cm, H=0.062 cm. )

In Fig. 4 we present the corresponding information for
methanol+ cyclohexane. In a strong scatterer such as
methanol+ cyclohexane the double-scattering intensity
I ' ' becomes very large and also the depolarization ratio
5' ' becomes appreciable. Of course, when the double-
scattered intensity becomes comparable to the single-
scattered intensity, we must expect significant additional
contributions from higher-order scattering. From Figs.
3(a) and 4(a) we note that I ' ' appears to be roughly sym-
metric about 90' except at ET=100 rnK. To explain this
behavior it is convenient to consider three regimes. First,
when keg && 1, both I'" and I' ' will be essentially isotro-
pic, so that I ' ' will be symmetric. When kog is of order
unity, I"' at 0=45' is about three times larger than I"'
at 0=135', while I' ' is still relatively isotropic. As a
consequence, I ' ' exhibits a distinct asymmetry, as is the
case at b, T=100 mK. Finally, when kog&&1, most of
the single-scattered light is thrown into a narrow cone
about 0=0', most of the observed double-scattered light
has been scattered into the detector from the intersection
of this cone with the acceptance volume, a volume sec-
tion nearly coincident with the center of the cell, i.e., the
location of the single-scattering events. Thus I' ' will be
roughly proportiona1 to I"', so that I' ' becomes again
symmetric.

The above considerations are no 1onger valid when the
turbidity losses through the cell are large. In Fig. 5 we
show I ' '(0) of methanol+ cyclohexane at b, T=10 mK
for different values of the sample radius R. As the radius
R ranges from values smaller than ~ ' to values larger

IOO

METHANOL + CYCLOHEXANE
I I

80

o& 60
N
CM

40

20

0
0 30 60 90 120 150 180

Scattering Angle 8

FIG. 5. Double-scattered intensity I ' ' for methanol

+ cyclohexane as a function of the scattering angle 0 at various
values of the radius R of the sample cell (T—T, =10 mK,
H=0.062 cm) ~

than ~ ', the distribution of the double-scattered light

changes in two distinct ways. I' ' at 0=90' increases
roughly as the square root of the radius R, while the
asymmetry about 8=90' increases as the attenuation of
the light doubly scattered into the backscatter directions
is much smaller than that suffered by the singly scattered
light collected at the same angle. Both effects are evident
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in Fig. 5. The figure reveals a second peak near 0=170'
when R =3.5 cm; in this pathological case R v=4, imply-
ing that the incident beam is attenuated 99.97% as it
traverses the cell. When the correlation length ( is small
and the turbidity r is much smaller than R ', we confirm
the findings of Boots et al. ' and of Adzhemyan et al.
that I ' ' varies as ln(R /H).

In Figs. 6 and 7 we show the double-scattered intensity
I ' ' and the depolarization ratio 6' ' for 3-
methylpentane+ nitroethane and methanol+ cyclo-
hexane, respectively, as a function of the temperature
hT= T—T, at various scattering angles. For very small

kpg i.e., far away from T„ the double-scattered intensity

I' ' varies with temperature as t r; for large kpg, i.e.,
very close to T„I ' ' varies less rapidly with temperature.
From Fig. 6(b) we note that the depolarization ratio b' '

for 3-methylpentane+ nitroethane is very small at all
temperatures. From Fig. 7(b) we see that the depolariza-
tion ratio 5' ' of a strong scatterer such as
methanol+ cyclohexane is not only large but also goes
through a maximum as a function of temperature. The
decrease of b, ' ' at temperatures closer to T, is due to the
rapid increase of I„'„' [cf. (3.18)]. As mentioned earlier, at
these temperatures higher-order scattering contributions
will also be significant. Comparing the curves in Figs. 6
and 7 for a backscattering angle of 150' with those for a
corresponding forward scattering angle of 30' illustrates
enhancement of the double-scattering effects in the back-

METHANOL + CYCLOHEXANE

I I I

IOO

~O0
IQ

CV

CM

(a)

O. I

0.6

I

IO-'
I

IO-'

0.2—
(b)

0.0
IO

I

IO' IO

ZT (K)
IO

FIG. 7. Double-scattered intensity I' ' and depolarization
ratio 5' ' for methanol + cyclohexane as a function of
LT= T—T, at various values of the scattering angle 0 (R =0.50
cm, H=0.062 cm).
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scattering directions. This enhancement is particularly
pronounced for the depolarization ratio 5' '.

In Figs. 8 and 9 we show the depolarization ratio b' '

for the two liquid mixtures as a function of the aperture
height H at a given temperature hT=T —T, =1 mK.
Previous investigators' ' ' have shown that the depo-
larization ratio 6' ' will vary linearly with the aperture
height H when ~H && 1. Our results for 3-
methylpentane + nitroethane, for which ~ is very small,
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FIG. 6. Double-scattered intensity J ' ' and depolarization
ratio 6' ' for 3-methylpentane+ nitroethane as a function of
6T= T—T, at various values of the scattering angle 8 (R =0.50
cm, H=0.062 cm).
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FIG. 8. The depolarization ratio 6' ' for 3-methyl-
pentane + nitroethane as a function of the aperture height H at
various scattering angles 0 (T—T, = 1 mK, R =0.50 cm).
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length (go increases but v decreases) and also reduces the
apparent compressibility (and exponent y). Figure 10
shows that the effects of double scattering are difficult to
perceive as deviations from linearity in an OZ plot unless
one makes accurate measurements at very small and very
large scattering angles.

I.O— V. COMPARISON WITH EXPERIMENTS

0 I I I

0 0.2 0.4 0.6 0.8
Aperture Height H (cm)

l.O

FIG. 9. The depolarization ratio 6"' for methanol
+ cyclohexane as a function of the aperture height H at various

scattering angles 0 (T—T, = 1 mK, R =0.50 cm).
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FIG. 10. Inverse scattering intensity (in arbitrary units) as a
function of k =4kosin (0/2) for the micellar system C,2E, plus
water near the critical point. The dashed curve represents the
experimental light-scattering intensities as measured by Dietler
and Cannell (Ref. 39). The solid line represents the light-
scattering intensities corrrected for double-scattering contribu-
tions. The relevant physical parameters are g= 10 165 A,
~=1.816 crn ', R=0.15 crn, H=0.062 cm. The data points in-
dicated by the arrows correspond to a scattering angle of 90 .

confirm this linear relation. However, when the turbidity
becomes large, as is the case for methanol + cyclohexane,
5' ' has a weaker dependence on the aperture height H.

Near the critical point the inverse scattering intensity
I /I"'(9) will vary linearly with

k =4kosin (8/2) .

Such a plot is commonly referred to as an Ornstein-
Zernike (OZ) plot. In Fig. 10 we show the inverse
scattering intensity as a function of k for the micellar
system octaethyleneglycol monododecyl ether (C»Es)
plus water near the critical point. The dashed curve
represents the experimental data obtained by Dietler and
Cannell, while the solid line represents the data after
being corrected for double scattering. Their data are
completely consistent with our calculations, which imply
that double scattering reduces the apparent correlation

Attempts to investigate multiple scattering experimen-
tally have been made by Reith and Swinney' and by
Trappeniers and co-workers' ' for fluids near the
vapor-liquid critical point and by Adzhemyan et al. , '
Hamano et al. ,

' and Schroeter et al. for binary-liquid
mixtures near the consolute point. In particular, the ex-
periments of Hamano, Kuwahara, and Kaneko' appear
to be suitable for a quantitative comparison with our
theoretical analysis.

Hamano and co-workers measured light scattered from
the binary-liquid mixture diethylmalonate + polystyrene
as a function of temperature and scattering angle. Mea-
surements were made with a small capillary cell with a
radius R=0.025 cm and a larger cell with a radius
R =0.30 cm. Assuming that the double-scattering contri-
bution was negligible for the fluid in the smaller capillary
cell, they then obtained experimental values of the inten-
sity I' ' of multiply scattered light for the fluid in the
larger cell. It turns out that the original experimental
data for I' ' did not appear to go to zero as 0~0, as they
should. In consultation with Hamano this artifact was
attributed to a gain calibration error leading to a correc-
tion of 3.5%. From our theory we find that the double-
scattered intensity for the fluid in the smaller capillary
cell is small but not negligible. Hence we corrected the
experimental data for the estimated double scattering in
the smaller cell; this correction was small but increased
to a maximum value of 6%%uo at the temperature closest to
the critical temperature.

The experimental data for the relative intensityI' '=I' '/I"' of multiply scattered light as a function
of scattering angle are shown in Fig. 11. The curves in
this figure represent the double-scattered intensity I ' '

calculated from the equations in this paper with R =0.30
cm and H=0. 10 cm. The physical parameters for diethyl
malonate + polystyrene used in the calculation were ear-
lier presented in Table I.

In order to discuss the comparison between theory and
experiment the following remarks should be made. The
experimental data for I' ' consist of the sum of the inten-
sity I' ' from doubly scattered light and the intensity I'"'
of higher-order scattered light. We expect I'"' to be
negligible far away from T, and to increase when T, is
approached more closely. Furthermore, we expect I'"'
to vary less strongly with the scattering angle 0 than ei-
ther I' " or I' '. Because of the anisotropy of I"', the
contribution I '"' =I' '/I' " would increase for large
scattering angles. Generally, the observed deviations be-
tween the experimental values of I ' ' and the theoretical
values I ' ' are consistent with this reasoning at least for
0&100'. At larger backscattering angles there are sys-
tematic deviations even at hT= T—T, =0.8344 K. The
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anisotropy in I'" and turbidity at this temperature are
too small to account for this behavior and we assert (in
agreement with Hamano } that this phenomenon is
probably due to contributions from stray light or
reflected light.

We conclude that the agreement between theory and
experiment is good for angles 0 up to about 100, with the
exception of the data obtained at AT=0.8344 K and
0.1240 K. Since lim& OI

' )(8) &~0 at b, T=0.8344 K, we
assume that the systematic mismatch at this temperature
is due to a residual gain mismatch between the experi-
rnents with the smaller and larger cell. The substantial
systematic deviations at AT=0. 124 K may be due in part
to higher-order scattering (2Rr=1.5 at this tempera-
ture), although the angular dependence of I ' ' for small
8 suggests that a residual gain mismatch may also be
present in the experiments at this temperature.

VI. DISCUSSION

In this paper we have developed a procedure for calcu-
lating the double-scattering contributions to the polar-
ized and depolarized light-scattering intensity as a func-
tion of the scattering angle 0, taking into account the
effect of the turbidity ~ on the double-scattering contribu-
tions. If we restrict ourselves to 0=m/2 and neglect the
turbidity by taking ~=0, our results for 3-
methylpentane+ nitroethane become identical to those
obtained by Bray and Chang, ' while for
methanol+ cyclohexane our results are consistent with
the values calculated by Schroeter et al. Furthermore,
for kog«1 and r=0 our result matches that of Boots
et al. ' for general angles. Thus our more complete
analysis is consistent with the theoretical results obtained
previously. As discussed in Sec. V our results agree
within experimental accuracy with the multiple-
scattering data of Hamano et al. ,

' as long as
2R ~(0.75.

The following assumptions have been made in devising
our basic equations for the double-scattered intensity: (a)
we have neglected the finite diameter of the incident
beam and the variation of the double-scattering integrand
across the aperture, and (b) we have assumed that the
aperture is large enough so that diffraction effects may be
neglected. Here we briefly discuss these approximations.

Roughly speaking, the finite diameter of the incident
beam may be neglected so long as it is much smaller than
the macroscopic dimensions of the scattering cell,
specifically, the radius R and the aperture height H.
Bray and Chang' estimated the correction due to a
nonzero bearnwidth Wb for 0=90' and ~=0 as a function
of the cell dimensions and kog. They find that the rela-
tive correction (5I( ')/I' ' to the double-scattered inten-
sity I' ' for H/2R «1 and kog«2R /H is given by"

E O. I— ($I(2) ) /I(2)

where

f(W(, /H)
ln(2R /H )+D(kog)

(6.1)
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FIG. 11. Comparison between the calculated double-
scattered intensity I' ' (solid curves) and the experimental
multiple-scattered intensities (circles) as measured by Hamano
et al. ' for diethylmalonate + polystyrene.

f(x}=—— ln(1+x)+ ln(1 —x), (6.2)
1 (1+x) (1 —x)
2 4x 4x

while D(y) is a function determined numerically. At
ko(=2, Eq. (6.1) yields a correction of —0.015%%uo for the
light-scattering apparatus of Hailer et al. and —0.086%
for the photometer of Hamano et al. ' These are small
corrections indeed. The relative correction to the depo-
larized intensity was found by Bray and Chang to be
smaller than (4/m )( Wb/2R ); for the light-scattering ap-
paratus of Hailer et al. with a beamwidth 8 b

——0. 1 mm
this correction is less than 0.013%.

Diffraction effects have been investigated by Schroeter
et al. They conclude that the geometric-optics approx-
imation, which has been employed in the present
analysis, is valid for A) =v'Hb, a )0.6 mm. This condi-
tion is satisfied for the instruments of Hailer et al. and
of Harnano et al. '

In practice, the accuracy of the calculated double-
scattering corrections is limited by the experimental un-
certainties in the scattering strength Ao and the dimen-
sions H and ha of the aperture.
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Our task is to coinpute the function G(u, v, w), i.e., the
projection of

e""+' e)[g„„(u,u, w)+g„h(u, u, w )]
G(u, u, w)=

(ap —u —v cosO)(ap —u —u cosO)
(A1)

onto the even eigenstate of the parity operator in u, U, m

space. We begin by decomposing the factors in G(u, u, w )

into parity eigenstates, for which purpose it is convenient
to define

r2—:p —w =u +U +2uU cosg (A2)
I
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co =
2
arcsln

2uv cosO

$
(A4)

so that

p =s ( sin(u+ cos(u ) . (A5)

We first consider the polarization factors g„, =p r
and g„s ——p u w sin 8 as defined by (2.16). We note
that

r !
'+'+'=(u +u ) +4u u cos 8

r
!

' ' '=4(u +u )uvcosO,

4!(++) s +4Q v cos 84 2 2 2

(s 40 —u cos 8)

4 [ ]
—4$ uU cos6

(s —4u u cos 8)

where the superscripts indicate the eigen values for
reflection through the u and U axes, respectively. We
only need to consider g„',+'+',g„', ' ' and g„'I+ +',g,'&
for which we obtain

(+, +)
(

—4! (+, +))(r4! (+,+))+( —4! ( —,—))(r4! ( —,—))

(s +4u v cos 8)[(u +u ) +4u u cos 8]—16s (u +u )u u cos 8
(s —4u u cos 8)

4uvw cos8[(u +u ) +w (u +u ) —4u u cos 8]
(s —4u v cos 8)

(+ +) u w sin 8(s +4u v cos 8)
(s —4u v cos 8)

—4s u vm cos8sin 8
(s —40 v cos 8)

(Aga)

(A8b)

(A9a)

(A9b)

The decomposition of the remaining factors in (2.15}
proceeds in a like manner, although the presence of
even-odd and odd-even terms make the manipulations
more tedious. Defining

The Ornstein-Zernike factor in (2.15) separates as

1

(ap —u —u cosO)(ap —u —u cosO)

0=sinco —cosco, (A10) =D+ ++D +D+ +D +, (A13)

the exponential term in (2.15) may be expressed as

(A11}

where the terms D+ + are defined by the following set of
equations:

E+ + = —,
' [e ')'cosh[r(u+u )]+e""cosh[r(0 —v )]I,

E = —,'Ie ')'cosh[r(0+u)] —e" cosh[r(0 —v)]I,
(A12)

E+ ——
—,
'

[ e '~sinh[r( u + u ) ]—e" sinh[r( u —u )]),
E + ———,'[e '~sinh[r(0+u)]+e" sinh[r(u —u)]) .

8+ +
——a s +(u +u )cosO,

8 =uu(1+2a cosO+cos 8),
8+ ———as(u sin(u+u cos(o)(1+cosO),

8 + ———as(u cos(o+ v sin(v)(1+cosO),

C+ =2(8+ +8+ 88 + ), —

(A14)

(A15)
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B+ +C+ + —B+ C+
D +s+ C2 C2+s+ +s

D+
B+,—C+, + —B+,+ C+, —

C+ + —C+

B +C+ —B C+ +

C+ + —C+
(A16)

I

D
B C+ —B +C+ +

C+ + —C+

For G(u, v, tv) =G'+'+'(u, v, w) we then obtain

G(u, v, tv)= ,'e"—"+"p'(g+ ~+g )(D+ ++D +D+ +D + )

(A17)

with
' 1/2

4uu cos8
2

P
(A18)

J'"(5 q)=-'sin5(g'+ +'+g' ' ')

X(D +D, +D, +D, )p

(A22)
The functions g+ +,g in (A17) should be identified
with g„„+g„& for calculating the total double-scattering
intensity and with g„„and g„I, separately for calculating
the polarized and depolarized components. The function
G(u, v, w) carries the unit of I and is proportional to
p in the new coordinates.

Finally, the integrand

J„'„'(5,g) = —,'sin5(g'+ +'+g' ')

X (D+ + +D D+ —D+ )p—

J(2)(5 y) 1 sjn5(g(+ + )+g( ))

X (D+ + +D —D+ —D + )p',
J(3)(5 q) I sin5{gt+, +) g( —,—))

F(p, 5, $)=p sin5G(u(p, 5,$),v(p, 5, $),m(p, 5)) (A19)

of the double-scattering integral is written in the form

(A20)

X(D~ + D D—~ +D—
+ )p

J 3 (5 Q)= 1sln5(g +r+ —g )

X(D+ + D D+—+D —
+ )p2,

where the functions H;(5, $), J„",5,$), and J„'J,'(5, $) are
defined by J„'„'(5,tt )=—,'sin5(g„'„+ + ' —g„'„')

(A23)

H, (5,$)= . [cos(P+Pp)+sin(P —Pp)] —1,sin5
sin8

sin5
Hz(5, $)= . [—cos(/+1(p) sin(f —1ttp)] —1,

sin8
(A21)

sin5
H3(5, $)= . [cos(1(+Pp)—sin(f —1(p]—b, ,

sin8

sin5H (5,g) = . [—cos(p+ pp)+ sin(g —gp)] —&
sin8

J"'(5 g) =—'sin5(g'+'+'+g' ' ')

X(D +D +D, +D, )p

X(D+ + —D +D+ D+ )p—
J,'„"(5,tel) = —,'sin5(g„'„+"—g„'„- —')

X (D+ + D+D+ —D)p2 . —
Since as mentioned earlier, the functions D+ + are in-
versely proportional to p, we evaluate the integrand in
practice by taking

D~ +(u(p, 5,$),v(p, 5,$),m(p, 5))p

=D+ +(u(1, $5), (v1, $5), (u1t, )5) .
(A24)
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