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Natural linewidths of a laser with a saturable absorber and a dye laser
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The natural linewidths of a laser with a saturable absorber and of a dye laser have been calculated
using a Fokker-Planck approach.

I. INTRODUCTION

The photon statistics of a laser with a saturable ab-
sorber and of a dye laser have been studied extensive-
ly. ' Many interesting features of these systems have
been predicted. For instance, it is shown that these sys-
tems exhibit a first-order phase transition as opposed to
the second-order phase transition exhibited by an ordi-
nary single-mode laser. '

In this paper we evaluate the natural linewidth of a
laser with a saturable absorber and a dye laser. We start
with the equations of motion for the reduced density ma-
trix of the field that are obtained by suitably generalizing
the Scully-Lamb theory. These equations are
transformed into equivalent diffusion equations for the
coherent-state representation. The phase-diffusion con-
stant gives the natural linewidth. Our results indicate

that the absorber in the laser with a saturable absorber
contributes to an increase in the linewidth, whereas the
built-in nature of the absorber in dye molecules tends to
reduce the linewidth in a dye laser.

II. LASER WITH A SATURABLE ABSORBER

We consider the interaction between a quantized elec-
tromagnetic field and a collection of two-level atoms in-
side a laser cavity. In a laser with a saturable absorber
the atoms are of two different species; the first one (active
atoms) is pumped in the upper state

~

a ) at a rate r„and
the second one (absorber) is pumped in the lower state

~

d) at a rate rz, as shown in Fig. 1. The equation of
motion for the reduced density matrix for the field is
given by '
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where A and B are the gain and saturation parameters
for the active atoms, D and E are the absorption and sat-
uration parameters for the absorber, C is the cavity loss
parameter, and p
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elements of the reduced density matrix of the field. It fol-
lows from Eq. (1) that
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A steady-state solution (p„„=0)of the above equation is
obtained in a straightforward manner using the detailed
balance condition,

M„„.=—,'(n + n ')+ —(n —n')1 E
16 D

(2d) p(n) =p(o) g A/C

(1+(B/A )k ) 1+ 1+(E/D)k
The photon statistics in the steady state can be studied

by considering the equation of motion for the diagonal (4)
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If the distribution function peaks at n, then the quantity
in the very large parentheses approaches unity for k =n .
For a sufficiently large value of the mean number of pho-
tons ( n ), the distribution is symmetric about n, so that
( n ) =n~ T. he quantity ( n ) can then be evaluated from
the following equation:

A/C
(5)

(1+(8/A)(n ) ) 1+ D/C

p= P a a a d2a. (6)

Here
~
a) is a coherent state. We can translate Eq. (1)

for p„„ into the following equivalent equation for P(a).
The resulting equation is

We now derive the equation for the coherent-state rep-
resentation of the field P(a},which is defined by

a a, a' 8 a aP(a) = —— a+ a' —2 + a — a'
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In terms of new variables (r, 8) defined by a=r exp(i8),
Eqs. (7), (8a), and (8b) can be written as

T

A 1 8
p = — p'

2 r dp

For a laser operating far above threshold the changes
in P along the radial coordinate are restricted by the
steady-state operating conditions. Hence these changes
can be neglected. For (n ) »1 we can replace r by (n )
in Eqs. (9), (10a), and (10b). Since (8/A)«1 and
(E/D) «1, therefore we can ignore the (8 /A ) and
(E /D ) terms in Eqs. (9a) and (9b). After making these
approximations, Eqs. (9), (10a},and (10b) can be rewritten
in the following simple forms:

~ A 1 8 8 E 8P(8)=- + M+ — L, (11)
2 2(n ) 4A Qg~ 8 gg~

where

where P,1+ (n )—8
A

(12a)

)c} P.1+ (n )—
D

(12b)

lb)

Qn substituting for M and L from Eqs. (12a) and (12b)
into Eq. (11),we obtain

FIG. 1. Energy-level diagram of the active medium and the
saturable absorber.

BPP(e)=D,'ao' '

where we have the diffusion constant,

(13)
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8 1

4(n ) 8 [1+(B/A )(n )]+

8[1+(E/D)(n ) ]
(14)

De —— (A+C+D) .1

8 n
(15)

This expression clearly shows that the role of absorber
atoms is to enhance the laser linewidth for a given value

This expression for Dz can be simplified considerably by
using Eq. (5). After some straightforward calculations we
obtain

of (n ). All the gain and loss mechanism in a laser con-
tribute equally to the natural linewidth.

III. DYE LASER

The dye laser is also an interesting system to study.
Due to its energy-level structure, with singlet electronic
states and corresponding triplets, it behaves as if it has a
built-in absorber in each molecule. We consider a dye-
laser model as shown in Fig. 2. Molecules are injected in
level

~

a ) at a rate r, . The nonradiative decays from lev-
els a, b, c,f are denoted by y„y, yb, y„and yI, as
shown in Fig. 2. Lasing action takes place between levels

~

a ) and
~

b ).
For the dye laser we also start with the equation of

motion for the reduced density matrix for the field
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FIG. 2. Energy-level diagram of a dye molecule.



38 IMRANA ASHRAF AND M. S. ZUBAIRY 857

In Eqs. (17a)—(17d), gi and gz are the coupling constants
of the field with a ba-nd c f-transitions, respectively.

We derived an equation for & n ) in the case of a laser

with a saturable absorber in Sec. II. Proceeding along
the same lines, we can derive the following approximate
equation for & n ) in a dye laser:

(I+(&,/&, )& &)
C+ QQ Di

y. +y [1+(E,/D, )& &]
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The equation of motion for the coherent-state representation corresponding to Eq. (17) for the reduced density matrix
for the 6eld is given by

T
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Using the same conditions and approximations as those used in obtaining Eq. (14), the following expression for the
diffusion constant for the dye laser is obtained:
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This expression for D& is rather complicated. However, it simplifies considerably under the realistic assumptions that

y =yb ——y, =yf =y and y ~)y, . We then obtain

1 DI y,De=
&

)(Al+C)+ ( )

D2
+C(n)E yQ +yltf

D2
1

1

rg D ya1+ +E, &n) E... y. +y.

(22)

The first two terms give the usual contribution for an ordinary laser. The term

D, y. rg& )(y.+y. )

can be interpreted as being due to the absorber part of the dye molecules in a manner similar to the D term in Eq. (15),
provided that we define the pumping rate r, in Eq. (17c) for D, by rd r,——[y, l(y, +y )]. The term in brackets is due
to the built-in nature of the absorber and its effect is to reduce the natural linewidth as compared to the linewidth of a
laser with a saturable absorber.
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