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A mathematically rigorous treatment of the Weisskopf-Wigner model of atomic spontaneous
emission is presented. For the first time to the authors knowledge, it is shown that in the correct
asymptotic treatment with a cutoff frequency at which the dipole approximation breaks down, the
main contribution to the long-time deviation from the exponential decay is of the order of 1/(t ln't).
This contradicts the results of previous authors who have obtained a long-time behavior of the or-
der of 1/t by nonrigorous mathematical treatment of the same model in the dipole approximation.
However, we wil1 show that the result 1/t' can still be obtained if the retardation effects are taken
into account, i.e., if no dipole approximation is made.

I. INTRODUCTION

Khalfin' has pointed out for the first time that the de-
cay of an unstable quantum system whose energy spec-
trum is bounded from below cannot be purely exponen-
tial for large times (see also Ref. 2). By using a funda-
mental theorem on Fourier transforms due to Paley and
Wiener, Khalfin has shown that there is a long-time devi-
ation of the order of 1/t from the exponential form in the
decay probability amplitude of a quasistationary state.
By using different model systems other authors have also
calculated deviations from exponential decay (see, e.g. ,
Ref. 3).

Since in the Weisskopf-Wigner treatment of spontane-
ous emission from a two-level atom the probability ampli-
tude of the excited state decays exponentially, several at-
tempts have been made to get long-time deviations from
the exponential decay. ' The Weisskopf-Wigner method,
which implies the rotating-wave approximation (by way
of neglecting the antiresonant terms in the interaction
Hamiltonian) and the dipole approximation, yields an
integro-differential equation for the probability amplitude
associated with the excited state of a two-level atom.
This equation can be treated by taking the Laplace trans-
form and its inverse. However, in carrying out the in-

verse Laplace transformation mathematical diSculties
(i.e., logarithmic singularities) appear. Therefore various
approximation methods are applied. The approximation
used most frequently is the so-called Weisskopf-Wigner
pole approximation, which is identical to the Markov ap-
proximation ' where the memory effects in the equation
of motion for the probability ampitude are ignored. This
approximation leads to the formula for exponential de-
cay.

A rigorous mathematical treatment of the problem is

quite intricate and is usually avoided by physicists. To
our knowledge, only a small number of papers has been
published in which the problem has been treated ade-
quately. Knight and Milonni, for example, have ob-
tained an asymptotic correction to the exponential decay
formula of the probability amplitude in the order of mag-
nitude of 1/t; they accomplished this, without the use of
the Weisskopf-Wigner approximation, by making use of
other approximations and not taking into account loga-
rithmic singularities. In their final result the frequency
shift (Lamb shift) is also missing.

A mathematically adequate treatment of the problem
was initiated by Davidovich in his thesis. By applying
the resolvent-operator formalism he obtains, for the prob-
ability amplitude, an integral with logarithmic singulari-
ties. As will be shown in the present paper, the same re-
sult can be obtained by the use of the simpler method of
the Laplace transform and its inverse. In dealing with
such integrals, it is appropriate to interpret the Laplace
inversion as a complex integral and create an analytic
continuation of the integrand in the infinitely sheeted
Riemann surface. In this construction only two of the
infinitely many branches of the Riemann surface will be
used for further calculation, and the path of integration
will be deformed adequately. In this way Davidovich
proves the existence of two poles. One of them gives rise,
in a direct way, to the exponential Weisskopf-Wigner de-
cay. The asymptotic contribution of the other one is of

—io'
the order of magnitude of 10 ' and is essentially negli-
gible. Instead of carrying out an explicit calculation of
the Weisskopf-Wigner pole, Davidovich uses a "wave-
function renormalization constant" which, in our
opinion, does not lead to any advantage in the model
treated here. Furthermore, in his asymptotic treatment
of the probability amplitude, Davidovich only obtains a
term of the order of magnitude of 1/t (in agreement
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with Knight and Milonni ) without taking into account
one integral whose coefficient depends upon the cutoff
frequency. Inasmuch as the application of the dipole ap-
proximation requires the introduction of the cutoff fre-
quency, the latter is inherent in the model. For this
reason the asymptotic contribution of this term must not
be neglected. A second, even more substantial reason is
the fact, that the integral quoted here —whose proper es-
timation poses some technical difficulties —yields the
asymptotically slowest term of the expansion of the order
of magnitude of 1/( t ln t).

In the present paper we make an effort to present a
rigorous yet mathematically simple approach to the
above-mentioned Weisskopf-Wigner model of spontane-
ous emission. Starting from the integro-differential equa-
tion for the probability amplitude associated with the ex-
cited atomic state, we calculate the Laplace transform
and its inverse. In this way we obtain an integral with
logarithmic singularities which requires analytic con-
tinuation into the Riemann surface in order to be able to
move the path of integration over singularities on the
zeroth and first Riemann sheet.

Without using a renormalization constant (as done by
Davidovich ), and by using Newton's method for finding
zeros and the argument principle, ' we give a rather ac-
curate estimate of the complex zero on the first Riemann
sheet. It turns out that its real part gives precisely the
Lamb shift ' (which is not explicitly calculated in the
works of Davidovich and Knight and Milonni ). Its
imaginary part corresponds to the Einstein coefficient for
spontaneous emission. At the second pole on the zeroth
Riemann sheet the integral is also evaluated by Newton's
method.

The asymptotic expansion of the probability amplitude
is presented in a rather complete fashion. As a new re-
sult, it is found that the main asymptotic contribution
(for large time t) is of the order of 1/(t ln t). For ex-
tremely small times we give a Taylor expansion which
shows significant deviations from exponential decay also.

Finally, we show that the result I /t can be obtained
only if no dipole approximation is used and the retarda-
tion effects are taken into account. This will be demon-
strated in the special case of the Lyman-a radiation emis-
sion in an hydrogenic atom. The calculations are similar
to those of Davidovich and Nussenzveig" but more sim-
ple and more explicit.

We would like to stress that to our knowledge, it will
be shown here for the first time that the dipole approxi-
mation used by many authors (see, e.g. , Refs. 4—8 and 12)
leads to a totally different asymptotic behavior than the
exact calculation including retardation effects.

The paper is organized as follows. In Sec. II we give a
description of the model treated here and derive an
integro-differential equation for the probability ampli-
tude. In Sec. III this equation is treated analytically and
asymptotic deviations from the Weisskopf-Wigner ex-
ponential decay as well as short-time corrections are ob-
tained. In Sec. IV we treat the model without dipole ap-
proximation. In Sec. V we draw a conclusion. In Appen-
dixes A —C we derive various mathematical expressions
which were used in preceding sections.

II. DESCRIPTION OF THE MODEL
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is the coupling constant with D&2 as the dipole matrix ele-
ment, ez, as the polarization vector (s is the polarization
index), and L as the volume of the field. Furthermore,
~o is the energy separation of the two atomic levels,
co=kc, and I„and Iz are the unit operators in the Hil-
bert spaces %„and %R of systems A and R.

At initial time t =0, we assume that the atom is in the
excited state and the radiation field in the vacuum state
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Since the rotating-wave approximation is made in the
Hamiltonian (2.1}, the time evolution of the system
A +R is restricted to the subspace spanned by the state
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where b&(t} is the probability amplitude for finding the
atom in the excited state (

~

1 ) ) and no photons in the ra-
diation field (

~
IOI ) ), and b2 ~, ~(t) is the probability for

finding the atom in the ground state (
~

2 ) } and one pho-
ton in the mode ks of the radiation field (

~ I lz, I ) ).
By inserting Eq. (2.3) into the Schrodinger equation we

obtain a set of coupled equations of motion for the proba-
bility amplitudes:

db, (t) l (coo—co)l
i =ib, (t)=g gq, e '

b~ (, l(t),
dt ks

k, s

"o-
ib~ (, )(t)=gq, e ' b, (t) .

(2.4)

(2.5)

By using Eq. (2.5) in Eq. (2.4) we get a closed integro-
differential equation for the probability amplitude b, (t),

The Hamiltonian for a single two-level atom (system
A) interacting with the radiation field in the rotating-
wave approximation (where the antiresonant terms are
neglected) and in the dipole approximation (where the
spatial extension of the atom is neglected for frequencies
co &&c /ao) is given by '

H =Ho+How



38 DEVIATIONS FROM EXPONENTIAL DECAY IN THE CASE OF. . . 835

b, (t)= —g ~g„, ~ f d~e ' b, (t r—) .
k, s 0

(2.6) III. ANALYTIC TREATMENT
OF EQUATION (2.7)

b~(t)= — f doozy' f dre b~(t r)—,
27Tc00 0 0

(2.7)

where y= —',
~
D, 2 ~

happ/c is the Einstein coefficient for
spontaneous emission, and tp=c/ap is the cutoff'frequen-

cy at which the dipole approximation inherent in the
Hamiltonian (2.1) breaks down.

By replacing the summation over ks by an integral over
the continuum of modes, we obtain the final form of the
integro-dift'erential equation:

Basically we look for solutions of Eq. (2.7) which are
bounded by some real exponential function for t)0.
Thus one can calculate the Laplace transform and, for
b&(z) = fp"b, (t)e "dt, we obtain the algebraic equation

zb, (z) b, (—0)= — b, (z)f, A, =
2 tt p z —t (happ

—tp) cop

(3.1)

Equation (3.1}has the solution
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Here, Log}(z):—ln
~

z
~
+i Arg'(z) denotes that special

branch of logz which satisfies m/2 & Argt(z) & 5m/2 (the
cut is made vertically rather than horizontally). In Eq.
(3.2) we used the fact that

dc' =Log [z+i (tp —cop)] —Log (z imp)—
O' N —Np —lz

(3.3)

for Rez&0. Here, we use the convention logz for the
multiple-valued natural logarithm of a complex variable z
and Logz for the principal value of logz.

In order to be able to use the more common branch of
logz, we introduce a new variable u =iz+cup and a new
function

P—: =10, y—= cope, =10s

2'
We also use a complex function

N(u)—:u —a+Pu [log(u —6)—logu ],
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After simple calculations we find

(3.4) Re (z)

8, (u)=
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(a)

Using the Laplace inversion formula

b, (t}= f e"b, (z)dz,
27Tl C

(3.6}

Im (u)

where C is as in Fig. 1(a), we find

I
Egal

b, (t}= f e ""8,(u)du,
27Tl C

(3.7)

with C as in Fig. 1(b). In the following we shall make use
of the following constants:

0 Re (u)

6= 10', o,'—:cop — = 10'A,co

27
(3.g) FIG. 1. Path of integration (a) in Eq. (3.6) and (b) in Eq. (3.7).
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b, (t) =Pb, (0)e
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1
Ao =—exp

co —a
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FIG. 2. Two Riemann sheets of the infinitely branched
Riemann surface of log(u —co) —log(u). The branch points
have been removed for reasons of better visibility.

by Appendix A, lemma 2.
The pole uo is a consequence of introducing a cutoff

frequency co and its amplitude Ao is so small that it is not
of any physical relevance. Next using the lower sheet of
the zeroth leaf, namely, leaf number 1, we may deform
Co, the path of integration, again. Our new path of in-

NI(u) =N()(u)+2m li pu (3.10}

holds, where I =0, +1,+2
Our first deformation of C takes place on the zeroth

Riemann sheet, where S, (u), and therefore N(u), origi-
nally "lives. " We use a new path of integration Co (Fig.
3). However, in moving from C to Co. according to Ap-
pendix A, lemma 2, we cross a real zero:

which is the denominator of 8, (u). In order to be able to
discuss asymptotic properties of b, (t}we shall deform the
path of the integration in Eq. (3.7) suitably.

As will be explained in Appendix A, N is a multivalued
function of an infinitely sheeted Riemann surface. The
latter consists of planes having a cut (Fig. 2) which are
pasted together in a suitable way. Let N~(z) denote that
branch of N(z) which is defined on the Ith sheet. Then

Im(u)

~~i L
0
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t

I

t

I

I

Re(u)

t

I

t

l

t

t

uo=co 1+exp (3.11)

Using a suitable parametrization of Co and the residue
theorein —8i(u) has the simple pole uo —we find

Im(u)

Re(u)

FIG. 3. Path of integration Cp Used in Eq. (3.12).

FIG. 4. Paths of integration Ct and C2 in Eqs. (3.15) and
(3.16). The poles up and ut of Bt(u) are given by Eqs. (3.11)
and (3.14).
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tegration actually consists of two new paths C& and C2
which partially belong to leaf number 0 while the
remainder of each of them is on the lower sheet (Fig. 4).
According to Appendix A, lemma 2, we cross a zero of
N, (u},

A,S A~p co
u) =cop — — ln

27K 27T cop

A,cop—1
2

(3.14)

and

i &POD

I,(t)—: . f e ""B,(u}du, j =1,2
J

(3.16)

(3.17)

according to Appendix A, lemma 2.
The term —A, co/2n in Eq. (3.14) which diverges linear-

ly for co~ ~ will be discarded since it gives no contribu-
tion if the mass renormalization of the electron is carried
out or if counter-rotating terms are taken into account
(cf. Refs. 7,8). Moreover, the frequency shift
—A, /2n. ln(co/cdo) is just half of the Lamb shift (cf. Refs.
7,8) since it includes only the energy shift of the excited
state while that one of the ground state is missing.

As is pointed out in Appendix C, I] yields, as the main
asymptotic contribution for large t, the term

t cgot

I, (r)=, , +o(1/r'),
2mop t

(3.18)

where b i (0)= 1 was used and o ( 1/t ) denotes terms
which decrease faster than the main contribution. This is
in accordance with the results of Knight and Milonni and
Davidovich. Similarly, I2 yields the term

~ '(~o a))rI2(t)=, +o(1/t ln't)) .
tin t

(3.19)

Altogether we find out that Eq. (3.19) describes the main
asymptotic contribution of b, (t). Thus one may write

—lMit —iQO t I cootb, (t)= A, e ' + Aoe ' — —e
2@co t

i (coo —ru)I
277l e+ +o

tin t

1

t ln t
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The nondecaying term in Eq. (3.20) has a coefficient
—].o'

A p = 10 ' and physically does not play any role.
Therefore asymptotically only the term 1/(tin t) plays a
role.

For extremely small times t, we may use a Taylor ex-
pansion of

i b, (t)
i

around t =0, and we find that

i b, (r)
i

e""=—yr/2
A,c7) r2 +0 (r') .
8~ 4
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on the lower sheet, which, on the basis of the residue
theorem, gives rise to

b, (t)=I, (t)+I2(t)+( A, e ' + Roe ' )e

(3.15)
where

where 0 ( t ) denotes terms of the third order. Neglecting
terms of the third order we obtain

~
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=e

fort = ~ = ~=104m 4m
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This shows that the deviation of
i
b&(t)

~

from the ex-
ponential decay is significant for extremely small times
t (tp.

IV. RESULTS WITHOUT DIPOLE
APPROXIMATION

In order to compare our results obtained in the dipole
approximation (with a sharp cutoff frequency) with those
results where no dipole approximation is made, we spe-
cialize ourselves to the case of Lyman-a transition in a
hydrogenic atom. " For this special case Moses' has cal-
culated the exact matrix elements of the interaction
Hamiltonian by taking into account all the retardation
effects. Then the interaction Hamiltonian in Eq. (2.1)
takes the form

Hz& —— dao g co a a (3S++g* m a~ m (3) S
p

(4.1)

g(Cd) =
27Tcop

1/2
( —l )CO 3 C

[1+(~/0)']'' 2 o, ' (4.2)

and Eq. (2.7} reads as

b, (t)= — f dco f(co)f dre ' b, (t r), —
2' p p

(4.3)

with the natural smooth cutoff function

NQf (CO)=
(g2+ 2)4

(4.4)

bi(0)
b, (z}=

dCO f (CO)Z+
2m 0 z —i (cdo —co )

(4.5)

By substitution u =iz +~p we obtain a new function

b, (0)
B](u)= —ib]( iu+icoo) =-

A,
u —cd()+ I(u )2'

with

I( ) f ~ dCdf(CO)

p co —u

(4.6)

C&(u) C2(u)m
+ +f (u)( logu +in—Q+ivr),0

(4.7)

stemming from the coupling constant g (co) in Eq. (4.2).
Quite analogously to Sec. III we look for solutions of

Eq. (4.3) which are bounded by some real exponential
function for t )0. The application of the Laplace trans-
formation to Eq. (4.3) then gives
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C, (u)= (llew +180 u +90 u +2u )
12

Cz(u) = " (5Q —150 u —50 u —u ) .f (u)
160 u

(4.&)

(4.9)

We have not investigated the accuracy of the dipole ap-
proximation in finite time intervals, where, according to
the literature and existing experiments, this approxima-
tion should be applicable.

I ct)ot

b&(t)= . J e ""k,(u)du,
27Tl C

(4.10)

Further, analogously to Sec. III, the application of the
Laplace inversion formula leads to
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where C is as in Fig. 1(b). Similarly as in Sec. III, by us-
ing the fact that B~(u) is defined on the Riemann surface
of logu and applying the technique of deforming the path
of integration, and afterwards employing Abel's asymp-
totic, we obtain finally

APPENDIX A

We discuss the complex function

N(u) =u —a+Pu [log(u —co) —logtt], (Al)

whereby we used the argument principle (see Appendix
A) which tells us that there is only one relevant zero lying
on the lower Riemann sheet whose estimation follows by
iteration:

which is defined in the u plane, from which the positive
real axis has been removed. In order to be able to move
the path of integration for the purpose of deriving (3.12)
and (3.15) we would like to extend the domain of
definition of N.

In this way one is led to consider the Riemann surface
of

11K,cop
u i =cop+

5 A.COp

A.Q — ln
COp

COpA,

2

(4.12}

F(u) =log(u —to) —log(u) . (A2)

F(u) has branch points at u =0 and at u =to. If we
define Ft(u)—:F( )t+t2ttil, Ft can be seen to be continu-
ous for Re(u}geo and Re(u) &0. For 0&Re(u) &to one
easily finds that

V. CONCLUSION F((x +io) =F,+,(x io) . — (A3)

In the present paper we have tried to give a rigorous
mathematical treatment for the Weisskopf-Wigner model
of spontaneous emission from a two-level atom and to
throw some light on the long-time deviations from ex-
ponential decay. In the dipole approximation we have
explicitly calculated the Weisskopf-Wigner pole without
using Davidovich's complicated renormalization constant
procedure. This pole gives rise to the exponential decay.
By a simple method we were able to determine the second
pole on the real axis which gives rise to a rapidly oscillat-
ing extremely small nondecaying contribution to the
probability amplitude for finding the atom in the initial
state. This pole is a consequence of the cutoff frequency.

—&p'Its contribution is of the order of 10 ' and, physically,
deviations of this order do not play any role.

We have also shown, for the first time, that in a correct
asymptotic treatment of the Weisskopf-Wigner model
with a cutoff frequency at which the dipole approxima-
tion breaks down, the main contribution to the long-time
deviation from the exponential decay is of the order of
1/(t ln t), rather than 1/t, as is usually accepted in the
literature. For extremely small times deviations from ex-
ponential decay have also been calculated.

Furthermore, without making the dipole approxima-
tion by taking into account the retardation effects, we
have derived the asymptotic result 1/t . Thus we have
shown, to our knowledge for the first time, that there is a
significant difference in the asymptotic behavior between
the exact model and that in the dipole approximation.

Equation (A3) easily yields a picture of the Riemann sur-
face of F.

Take two Riemann surfaces of log(u) (Fig. 5) and let
one of them wind in the opposite sense of orientation. On
each of them cut away a half plane on the side of the slot.
Now move the two surfaces together and paste the edges
together. What we obtain is a surface which has some-
thing in common with a garage where one moves from
one level to the next one only in the slot between 0 and 9:
moving up coming from the south and down coming
from the north. It is this Riemann surface on which N

FIG. 5. Explanation for the construction of the Riemann sur-
face of log(u —co) —log(u).
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can be regarded as a single-valued complex analytic func-
tion with branch points at 0 and Q. We define

NI(u) =N(u)+2!Pniu (A4)

so that No(u)—=N(u) and! =0,+1,+2. . . . NI will be
referred to as the 1th branch of N and it is defined on the
1th sheet of the Riemann surface.

Lemma! N&. (u) has exactly one zero and no poles.
Proof. There are no poles, as can be seen from Eqs.

(Al) and (A4). In order to count the number of zeros we
use the argument principle in a region RI(p) lying be-
tween the curves L, and L2, where L2 is a circle with a
large radius p (Fig. 6). Let v&(p) denote the number of
zeros of Ni in RI(p); then by theorem 2.21, p. 48, in Ref.
10, we find that

oQ

FIG. 6. Contours used in Appendix A, lemma 1.

1
vi(p)= [hc. Arg[NI(u)] bL Arg—[NI(u)]l . (A5)

As is pointed out in Ref. 10 on p. 48,

bL Arg[NI(u)]
1

is precisely the winding number of the normalized vector
NI ( u )I

~
N~ ( u )

~

while the variable point u describes the
closed curve Lz . If p is large enough, N, (u) =u +o (u),
where o (u ) denotes terms which can be neglected in com-
parison with u. Then it follows easily that
bL Arg[NI(u)]=bL Argu =2m.. For the calculation of

2p 2p

EL Arg[N&(u)] we used the fact that

NI(x +io+ ) =x —a+Px In + (21+1)ni

(A6)

NI(x io+)=x —a—+Px ln +(2!—1)mi
X

(A7)

[Here, x is real, satisfies 0&x &c0, and parametrizes L,
(Fig. 6).] An elementary discussion finally gives us
bL ArgNI(u)=0 and therefore vi(p)=l for p large

enough. Ifp tends to infinity the result follows. Q.E.D.
Lemma 2. Np has a single zero,

co —a
up =co 1+exp

No(co) = —00 and No(co+1) &0, respectively, No(x) must

have a real zero in the open interval (co,co+1). In order
to find it we put x =co(1+e") and P(p)
=No[co(1+e")]/co Mo. re concretely, we have

P(p)=1+e"——+P(1+e")[p—ln(1+e")] . (A8)

We make use of a Newton iteration

}M„+~

——p„P(ic„)/P'(—p„) (A9)

up =9 1+exp

holds and

co —a
Ao ——1/No(uo) =exp — /P

CO

follows as well. In order to find the second zero u, we

start a Newton-iteration procedure with (t(u)=N, (u)
and go=—a. Then the first step gives us

giving successive approximations of the zero p. It is con-
ceivable to use po=[ —(co —a)/Pco] as a starting point.

An elementary estimate shows that
~
ju, —po ~

&2e ', so
that in fact the next correction term of pp= —10 is of

—ip'the order of 10 ', which is small enough to be neglect-
ed. So, finally,

and the residue of 1/No(u) at the pole uo is

P exp

g, =a —aP I ln[(co —a) la]+ in ]

1+P [in[(co —a)/a]+in]—

(A 10)

N& has a single zero,

A,677

u ) cop-
2m

A.COp

ln
2'fT ct?p

—l A,cop/2
Ac@ ~~p co

ui =gi=~o — — ln
27T 2K cop

COpA,—l
2

(A 1 1)

which is an accurate approximation because

~ $2 —g, ~

&10. Thus we obtain

and the residue of 1/N, (u) at the pole u, is A, = l.
Proof Since No(x) is re.al, for real x &co, and since It should be mentioned that in all error estimations we
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have used the constants of Eq. (3.8). The calculation of
A, works in the same way as the one for Ao. Q.E.D.

APPENDIX B

APPENDIX C

We proceed to discuss the integrals I
&

and I2 defined in
Eqs. (3.15) and (3.16), respectively. Using suitable param-
etrizations of C, and C2, respectively, we find that

We show that

e GBJ(r)=
(lns +ik)

1 1+0
t ln t t ln t

(Bl)

I, (t)=
—b, (0)e 1

e "ds
No( i—s) N, ( is—)

(C 1)

T

se "ds &e 'ds
+

(lns) & (lns)
(B2)

holds for real k &0 and t 1 ~. Here, o(1/t ln t) denotes
a term which decreases to zero faster than 1/t ln t as t
tends to infinity, i.e., 1/t 1n t is the main contribution of
the integral.

Defining J(t)=J,(t)+J2(t), where J~(t)= foe "/
(lns +ik) ds with 5 & e ", one easily obtains

and

I,(t)=
—b, (0)e

xf
N~ (co—is) No(co is)—

L

e "ds .

(C2}

Using lemma 3 of Ref. 14, p. 12, we find

f ~ e "ds 1 1+0
(lns)' t In't t ln't

(B3)

Since the integrands in I~(t) and Iz(t) are bounded for
s (5 & 0, a standard argument allows us to replace the in-
tegrals fc through f o for a small 5. Now a Taylor ex-

pansion around s =0 yields

by standard arguments. So we have

J, (t)= I(/t In't)+o
tin t and

1 1 2 bergs

2
+o(s)

No( is) N—
~

( is)— (C3}

Finally, a standard estimate yields

~
J,(r)

~&,&, e "ds=
~

lns+ik
~

' k' s rk'

(B5)

N~ (co —is) No(co is)—
27Tl

3l 'IT

Pco lns+

1-2+0
3

~

(lns)
(C4)

Therefore, J(2t)=o(1 t/ln t) since e '/t decreases to 0
for tl m faster than /I(t ln t). Thus (B4) and (B5) to-
gether give (Bl).

Finally, using f "se "ds =( I/t ) and (Bl), we deduce
Eqs. (3.18) and (3.19), respectively.
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