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Instabilities and chaos in a multimode, standing-wave, cw dye laser
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Experimental and theoretical investigations of a multimode, standing-wave, cw dye laser have
been carried out. The optical spectrum of the dye laser was found to evolve by discrete transitions
with increasing pump power, between spectra composed of three stable modes and spectra com-
posed of many modes whose amplitudes fluctuate strongly. The variation of the intensities versus
time of individual modes of the multimode laser was measured. For pump powers where the spec-
trum consisted of modes with strongly fluctuating amplitudes, we found that the intensities of indi-
vidual modes have a correlation time that decreases, and a variance that increases, with increasing
pump power. In addition, the fluctuations were found to be deterministically chaotic. This rules
out quantum noise as the origin of the fluctuations, a mechanism that had been assumed in many
previous studies. We also have carried out numerical simulations of this laser, using a semiclassical
model based on third-order, coupled-mode laser theory, which includes population oscillations,
four-wave mixing in the gain medium, spatial hole burning, and spontaneous-emission noise. The
behavior of the optical spectrum and the fluctuations of single-mode intensities are well modeled for
low pump powers. The modeling indicates that four-wave mixing and spatial hole burning are re-
sponsible for the discrete transitions in the optical spectrum, and that four-wave mixing drives the
strong fluctuations of the individual mode intensities.

I. INTRODUCTION

An understanding of the dynamics of a broadband,
standing-wave, cw dye laser is of intrinsic physical in-
terest in addition to having important practical applica-
tions. The central questions to be addressed are: Why
does this homogeneously broadened laser oscillate with
such a broad optical spectrum (depending on cavity
configuration up to 10000 longitudinal modes can appear
in the time-averaged spectrum), and why do the intensi-
ties of the individual modes undergo full-scale fluctua-
tions on time scales much longer than the cavity decay
time?

Many attempts to understand this behavior have been
made. ' ' A practical motivation is the desirability of
developing a quantitative understanding of a laser which
is commonly used in intracavity laser spectroscopy (ILS),
which is performed by placing a weak absorber inside the
laser cavity and observing the resulting absorption dip in
the laser emission spectrum. ' ' Multimode, homogene-
ously broadened lasers, with a spectral bandwidth that is
much broader than the absorption linewidth, have been
found to be extremely sensitive when used in ILS, with
sensitivities of the order of 10 cm '. This high sensi-
tivity arises from the homogeneous broadening combined
with the existence of many possible modes in which las-
ing can occur. The laser acts to maintain its total output
power at a constant value, while a small loss in one mode
can easily cause it to be quenched, with other modes un-
dergoing slight increases in power. An intrinsic limita-
tion to ILS sensitivity appears to be the finite time during
which a given mode will lase and thus be able to interact
continuously with the absorber. ' This mode "lifetime"
or, more properly, correlation time will be denoted v, A

simple model of ILS then says that the effective interac-
tion length is c~„orthe distance light travels in a corre-
lation time. This distance can be in the range
3)&10 -3)&10 m, thus making plausible the extreme
sensitivity of ILS. One must, therefore, understand the
origin of the mode intensity fluctuations in order to un-
derstand better the underlying physics of ILS.

Attempts have been made to describe theoretically the
origin of the mode intensity fluctuations as arising from
quantum noise, i.e., spontaneous emission from the lasing
medium. ' ' Indeed, in two-mode ring lasers very near
threshold, spontaneous emission is well established to be
a source of mode switching instabilities. ' A rigorous
treatment of this type for multimode lasers was carried
out by Hioe, who was able to solve analytically for the
mode intensity probability distribution and the mode in-
tensity correlation time, using third-order laser theory in
the free-running approximation, in which all four-wave
mixing terms are neglected. Other models have been
based on photon rate equations including stochastic noise
terms. ' All of these models result in large mode intensi-
ty fluctuations, seeming to lend them some credence.
The theory of Kovalenko predicts an increasing mode
intensity correlation time with increasing pump power.
However, all experiments to date show decreasing corre-
lation time with increasing power. ' ' In a recent paper
by Alvazyan et al. , this problem with the model of Ko-
valenko was partially overcome by including in the sto-
chastic photon rate equations a nonlinear coupling be-
tween modes by the effect of stimulated Brillouin scatter-
ing. '

Nevertheless, all of these previous models neglect
four-wave mixing among the modes. Such parametric in-
teractions arise naturally in a semiclassical treatment of
the laser, which properly accounts for the coherent dy-

38 820 1988 The American Physical Society



38 INSTABILITIES AND CHAOS IN A MULTIMODE, . . . 821

5 cm radius
mirror

Argon laser

Birefringent tuner
output coupler
0.95 ref.

l ~-
Dye laser

5 cm radius
folding mirror

FIG. 1. Schematic diagram of dye-laser cavity (not to scale).

namics of the modes of the electric field. ' We find in
the present work that for multimode dye lasers four-wave
mixing is the dominant contribution to the fluctuation
dynamics.

There exists a large body of theoretical work con-
cerned with the instabilities of homogeneously
broadened, mulf imode lasers. ' The work of
Brunner et al. ' is the most relevant to our investiga-
tions. They found that the mode amplitudes of a homo-
geneously broadened, multimode laser did not fluctuate,
but that the mode amplitudes of an inhomogeneously
broadened laser could exhibit time-dependent fluctua-
tions. They studied gas lasers whose gain medium
effectively fills the cavity and thus eliminates the
influence of spatial hole burning. Spatial hole burning
will be discussed in greater detail in Sec. III. It cannot be
neglected when modeling the behavior of a laser with a
thin gain medium, such as in the present study. Also,
Brunner et al. ' neglected the effects of quantum noise in
their model, which may not be valid in view of work cited

above. We have included in our model the effects of spa-
tial hole burning and quantum noise.

In this paper we report the results of an experimental
and theoretical investigation that addresses several key
questions about the behavior of a broadband, standing-
wave, cw dye laser. The dye laser studied, shown in
Fig. 1, was composed of a three-mirror folded cavity, a
single-plate birefringent tuner, and a dye jet formed by a
sapphire nozzle. The dye laser was pumped by an
intensity-stabilized argon-ion laser. A primary concern is
how the optical spectrum varies with pump power. We
observed a series of instabilities consisting of abrupt
changes in the spectrum as the pump power was varied.
Discrete transitions occurred from spectra composed of
three stable modes to spectra composed of many modes
whose amplitudes fluctuate strongly. In Fig. 2(a) a scan-
ning Fabry-Perot-interferometer spectrum shows at low

pump power three stable modes separated by 2 6Hz.
The cavity mode spacing was about 300 MHz. When the
pump power is increased the frequency separation sud-
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FIG. 2. Dye-laser optical spectrum as a function of excess of pump power above threshold.
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denly jumps to 4 GHz [Fig. 2(b)]. Beyond a range of
power where the spectrum in unstable, i.e., the mode in-
tensities fluctuate [Fig. 2(c)], three stable modes again ap-
pear, now with spacing of 8 GHz [Fig. 2(d)]. Further in-
creases in power lead eventually to a quasicontinuous
spectrum, shown in Fig. 2(g), with a spectral width of
about 100 cavity mode spacings and strongly fluctuating
modes. We will discuss how the cavity configuration and
alignment affect this behavior. We will show that the be-
havior in Figs. 2(a) and 2(b) can be well modeled by nu-
merical simulations based on a third-order, coupled-mode
laser theory, including the effects of spatial hole burning
and an extremely weak etalon which arises spuriously
from backscatter from the folding mirror in the cavity.

A study to determine the origin of the mode-intensity
fluctuations in the unstable regions of Fig. 2 will be de-
scribed. Our theoretical simulations with four-wave mix-
ing and spatial hole-burning effects included show that
the mode-intensity fluctuations arise even without
spontaneous-emission noise present. Further, when
four-wave mixing is omitted and spontaneous-emission
noise is retained, no fluctuations are found. This leads us
to conclude that the observed fluctuations in the laser are
deterministic, and not driven by noise, either quantum or
external. In the case of the experiment, the fluctuations
are found to be deterministically chaotic, and hence are
not noise driven. This was established by measuring the
order-2 information dimension, which is found to be
nonintegral, and the order-2 Kolmogorov entropy, which
is found to be finite.

The correlation time of the mode intensity was mea-
sured and was found to decrease with increasing pump
power. This is consistent with an earlier indirect mea-
surement of the dependence of the mode "lifetime" on
pump power. ' The correlation time does not correspond
to any obvious time constant of the system, but is
correctly modeled by the numerical simulations. Our
theory correctly predicts a decrease in mode correlation
time with increasing pump power.

Finally, we will demonstrate that spatial hole burn-
ing in the gain medium cannot be neglected in a
correct model of the dynamics of the laser. Previous in-
vestigations have argued that spatial hole burning can be
neglected in modeling this type of laser. "'

II. EXPERIMENT

A. Laser

The configuration of the optical components of the dye
laser studied in this experiment is shown in Fig. 1. The
curved mirrors have standard dielectric, broadband,
high-reflectivity coatings with a center wavelength of 590
nm. The output coupler is a Littrow prism with a stan-
dard 95% reflecting dielectric coating on the inner sur-
face and no coating on the outer surface. This type of
output coupler reduces the amount of specularly reflected
light at the outer surface by virtue of its Brewster's angle
with the optical axis of the cavity, and prevents reflected
radiation from feeding back into the cavity. This design
was essential because a standard output coupler, with a
wedge angle of only a few minutes of arc, behaved as an

unwanted etalon. A single-plate birefringent tuner was
used in the cavity to limit the spectral width of the laser.
The tuner limited the bandwidth to a full width at half
maximum of 30 GHz (100 cavity modes) at a pump
power of 190% above threshold. The nominal threshold
pump power was 135 mW.

The gain medium used was a (1X10 )M solution of
rhodamine 66 tetrafloroborate dissolved in ethylene
glycol, that flowed through the cavity in a jet. The jet
was formed by a sapphire nozzle whose exit dimensions
were 0.3 mm by 8.0 mm, and lacked much of the high-
frequency surface vibrations present in jets formed with
conventional nozzles. The dye solution was cooled to
maintain constant viscosity, important for jet stability.
Turbulence in the dye circulation system was minimized
so that the frequency of bubbles flowing in the dye was
less than one per second. The dye jet was pumped with a
Spectra Physics 2020-05 argon-ion laser running on a sin-
gle mode of the 514-nm line. We found that a multimode
pump laser could affect the dynamics of the dye laser out-
put. An acousto-optic modulator in a feedback circuit
with a bandwidth of 500 kHz was used to limit peak-to-
peak intensity noise in the pump laser to less than 2%.

A laminar flow of dry nitrogen gas was introduced into
a box that surrounded the dye laser. This aided in
suppressing mechanical vibrations of the dye jet and laser
cavity, due to turbulent air currents. It also eliminated
dust in the atmosphere in the laser cavity. In order to ob-
tain reproducible behavior it was essential to align care-
fully the laser to obtain pure TEMOO operation. Only
with this alignment could the stable spectra in Fig. 2 be
clearly observed.

B. Measurement apparatus

The output beam of the dye laser was allowed to prop-
agate approximately 1 m before it impinged on any opti-
cal elements, to reduce the amount of backscattered radi-
ation reaching the dye laser. To attenuate strongly any
laser radiation that was reflected back toward the laser,
the beam was first directed through a Faraday isolator.
The isolator design is described in Ref. 36. Two plane-
parallel Fabry-Perot interferometers in series followed
the isolator.

The first interferometer, operating in scanning mode,
was used to obtain the optical spectra in Fig. 2. To mea-
sure to the intensity of a single mode, both Fabry-Perots
were required. The free spectral range of the first inter-
ferometer was 70 GHz. Their combined finesse was 2100.
Since the cavity-mode spacing of the dye laser for this ex-
periment was about 300 MHz, a single mode could be
well resolved. The dye laser mode intensity that was
transmitted through both interferometers was measured
by a photodiode detector. For pump powers less than or
equal to 110% above threshold the signal from this detec-
tor was digitized by a 12-bit analog-to-digital (AD) con-
verter with a maximum digitization rate of 100 kHz. For
higher pump powers, where the fluctuations are faster, an
eight-bit transient digitizer with a maximum rate of
20MHz was used. Those time series recorded with the
AD converter were 10000 samples long, while those ob-
tained with the transient digitizer were limited to 4096
samples.
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C. Results

1. Optical spectra

The optical spectra shown in Fig. 2 were obtained in
the manner described in Sec. II B. The spectrum evolves
by abrupt transitions as the pump power is varied. The
three-peaked spectrum of Fig. 2(a), with a separation be-
tween adjacent peaks of 2 GHz, occurs at a pump power
of approximately l%%uo above threshold. We call this type
of spectrum "channeled, " and the behavior leading to it
"channeling. " Increases in pump power result in no
qualitative change in the spectrum, but simply a growth
of the intensity of the individual peaks, until a critical
power is reached at 2—5% above threshold. Then the
outside peaks suddenly jump out to a separation of 4
GHz from the central peak. The unstable spectra [Figs.
2(c) and 2(e)] are composed of strongly fluctuating tnodes.
In Fig. 2(g) the situation is similar, with the modes fluc-
tuating on a faster time scale, which for the Fabry-Perot
scanning rate used yields the quasicontinuous spectrum
shown. Increasing the pump power beyond approximate-
ly 110%of the threshold power results only in a broaden-
ing of this quasicontinuous spectrum. We found that the
channeling behavior did not depend on the cavity length
(cavity lengths from 38 to 70 cm were checked) or on the
location of the birefringent tuner in the long arm of the
cavity.

A 22-GHz radio-frequency (rf) spectrum analyzer was
used in conjunction with a 10-GHz-bandwidth photo-
diode to obtain the power spectrum of the total laser in-
tensity. This provided additional information about the
mode structure of the channeled spectra. When the opti-
cal spectrum was as shown in Fig. 2(a) the intensity
power spectrum of the dye laser consisted of two peaks,
one at 2.019 GHz and a smaller peak at 4.038 GHz. This
means that exactly three modes were lasing, separated by
a frequency equal to seven times the cavity mode spacing,
which was 288.5(+0.1) MHz. The intensity power spec-
trum of the dye laser corresponding to the optical spec-
trum of Fig. 2(b) was similar to that of Fig. 2(a), except
that the two peaks were at 4.038 and 8.076 GHz. The
modes of the channeled optical spectra in Figs. 2(a) and
2(b) are separated by the number of cavity modes closest
to a multiple of 2 GHz. Recall that this behavior was not
sensitive to changes of the cavity length. The intensities
of single modes in the channeled spectra were measured
and were found to be constant to within +3%. Hence
these channeled spectra are composed of stable modes.
Furthermore, the separation of peaks in all of the chan-
neled spectra is a multiple of 2 GHz that is closest to an
odd multiple of the spatial-hole-burning frequency
(SHBF), c/4z&, where z& is shown in Fig. 1. For exam-
ple, we did not observe a channeled spectrum with peak
separation of 6 GHz. The SHBF for the cavity is 1.5
GHz, and a more complete discussion of its role in the
laser's behavior will be given in Sec. III.

The principal source of the channelling can be traced
to a weak etalon formed by the two curved cavity mir-
rors, which are separated by 7.5 cm (see Fig. 1). Light is
backscattered toward the curved cavity end mirror from
imperfections in the surface of the folding mirror. The

effective reflectivity of the folding mirror in the backward
direction is determined by the amount of radiation that is
scattered back into the TEMOO cavity mode. An etalon of
this type will have almost unity transmission for all fre-
quencies, with a slight sinusoidal modulation. The fre-
quency separation between the maxima of this transmis-
sion function is given by c/2/ where l is the distance be-
tween the folding mirror and the curved end mirror.
This corresponds to a frequency of 2 GHz for this laser.

To verify that the separation of lasing modes in the
channeled spectra depends on the distance between these
mirrors, the 5-cm-radius end mirror was temporarily re-
placed with a 2.5-cm-radius mirror. The separation of
the two curved mirrors was then 5 cm, giving a free spec-
tral range of 3 GHz. The frequency separation between
the modes of the channeled spectrum of the laser with
this mirror was measured with the rf spectrum analyzer
and was verified to be 3 GHz. The 5-cm end mirror was
reinstalled for the remaining measurements of this study.
We conclude that there exists a weak etalon with length
equal to the distance between the two curved cavity mir-
rors. It may seem surprising that such a weak etalon can
have a strong effect on the laser spectrum; however, this
is to be expected since the high sensitivity of this type of
laser has been demonstrated by intracavity spectroscopy.
In Sec. III it will be shown that the channeling behavior
can be modeled by assuming the presence of a weak
etalon.

2. Autoeorrelation measurements of single modes

The intensities of single modes were measured, as de-
scribed above, for the range of pump powers with unsta-
ble spectra [Figs. 2(c), 2(e), and 2(g)]. The fluctuations of
the intensity of individual modes were found to be full
scale at all pump powers measured, even though the total
intensity was relatively constant. Figure 3 shows 1000
points of the intensity time series of individual modes of
the dye laser, for two different pump powers. Figure 4
shows autocorrelation functions of the intensity time
series corresponding to Fig. 3. The correlation time ~, of
an individual mode was obtained by measuring the half
width at half maximum of the central autocorrelation
spike after subtracting the dc level. The resulting corre-
lation times are plotted in Fig. 5. The trend of decreasing
correlation time with increasing pump power is easily
seen. This is related to two previously published results.
Atmanspacher et al. ' measured the effect of an absorber
on the optical spectrum of a three-mirror dye laser and
calculated the "mode lifetime" based on a simple model
of ILS. In a recent paper Alvazyan et al. ' recorded on
photographic film the intensity of a single mode from a
two-mirror dye laser. From this a characteristic "fluc-
tuation period" was inferred. Both groups reported a de-
crease of these characteristic time scales with pump
power.

Also shown in Fig. 5 is the normalized variance of the
fluctuations of the mode intensities. There is an inverse
relation of the variance with the correlation time. At
higher powers the mode intensity fluctuates more strong-
ly.
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FIG. 3. Intensity vs time of the first 1000 points of recorded
time series for the laser operating (a) in the region of Fig. 2(c),
and (b) in the region of Fig. 2(e).

3. Deterministic chaos

The time series of the single-mode intensities were ana-
lyzed with a Grassberger-Proccacia numerical algorithm
for determining the presence of deterministic chaos. A
description of this method can be found in Refs. 37—39
and it is briefly described in Appendix A. In addition,
Appendix A contains examples of how the algorithm was
used to analyze the time series collected in this experi-
ment. For all powers measured we found an estimate of
the order-2 information dimension D2 of 1.6+0. 1 (see
Fig. 10 and Appendix A). The order-2 Il olmogorov en-
tropy K2 was approximately 400 bits/sec at low power
and increased to 2X10 bits/sec at high power. The
product K2~, was approximately equal to unity at all
powers, where ~, is shown in Fig. 5. This result suggests
a fundamental relationship between E2 and ~, . To our
knowledge this has not been explored theoretically.

D2 and K2 are measures of a phase-space attractor of a
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three to five measurements.
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dynamical system. D2 is a lower bound of the capacity
D, which is a geometric measure of the attractor. I(:2 is

a lower bound of the Kolmogorov entropy K, which is
a measure of the rate of loss of information about the
state of a dynamical system. ' A chaotic attractor will

have a value of D which is noninteger and a nonzero,
finite value of K. In addition, the intensity power spec-
trum of a chaotic signal is continuous. The intensity
power spectra of the single-mode intensities were calcu-
lated numerically using a fast-Fourier-transform algo-
rithm and were found to be continuous. This analysis
means that the Auctuations of the single-mode intensities
are deterministically chaotic. Atmanspacher et al. have
also found evidence of deterministic chaos in a similar
laser by measuring the sum intensity of many adjacent
modes. '

III. THEORY

A. Equations of motion

We have found that many features of this laser's behav-
ior can be described by semiclassical, third-order laser
theory. This theory includes the effects of population os-
cillations, four-wave mixing among the lasing modes, and
spatial hole burning due to the standing-wave nature of
the cavity. Since at all powers studied the optical and rf
spectra indicated narrow-band ( &200 kHz) frequency
components, a decomposition of the total field into spa-
tial modes, each with a well-defined temporal frequency
should be valid. The equations for the time-dependent
mode amplitudes AI(t) are

d 3gQ ga
dt

pl+—g —
I

Al(r)
I

— X I

A (r)
I

C I +
4y y+~~nI

n~l

A, (r)

g g A„(t)A,*(r)A, „+,(t) . +F,(r),

j &n n&I

and they are derived in Appendix B. In this set of cou-
pled equations, yI is the cavity decay rate of mode I and g
is the gain coefficient. The third term corresponds to
self-saturation. In this term a is determined by the dipole
matrix element of the assumed two-level hsing transition
and by the off-diagonal relaxation rate; y is the diagonal
relaxation rate. The fourth term corresponds to mode
competition, the fifth term represents four-wave mixing,
and F&(t) is a Langevin noise source. C„Iand C«~ are
coupling coefficients and are given by Eqs. (B13) and
(B16) in Appendix B; b, „& is the angular frequency
difference between modes n and l. The Langevin term
F&(t) is used to describe spontaneous emission and has the
correlation properties

and

(FI(t) ) =0 (2a)

16+
~Fi(t)F,'(t') ) = ficolyl5a'5(t t'), —

V
(2b)

where V is the effective cavity-mode volume, mw L,
where L is the cavity length and w is the radius of the
mode in the gain medium ( —10 pm).

The effects of spatial hole burning are contained in the
coupling coefficients. C„Iis a measure of the spatial over-
lap of the standing-wave modes n and I within the gain
medium. This coefficient has the property —,

' &C„l& —.
C„Iattains its minimum value when the two standing-
wave modes are spatially 90 out of phase with each other
inside the gain medium; thus the nodes of one mode over-
lap the antinodes of the other, and the two modes will not
compete strongly for gain. This occurs when the twa
modes are separated in frequency by an odd multiple of
c/4z, , the spatial-hole-burning frequency, where z& is the
distance from the gain medium to the closest cavity end
mirror, as illustrated in Fig. 1. This effect is not as im-

I

portant in lasers with a gain medium which takes up a
significant fraction of the cavity length, as the modes will

not maintain a constant phase relation throughout the
gain medium. ' In the laser we are studying, however,
the gain medium is very thin and spatial hole burning can
dramatically affect the laser dynamics.

B. Numerical solutions

We have numerically solved Eqs. (1) using parameters
that correspond to those of our laser. In our simulations
we have included 31 modes, which is sufficient to model
fully the behavior described in regions corresponding to
Figs. 2(a) and 2(b). We have used y=5&(10 sec
a =1.1X10 cm (ergsec) ', and g was varied, with a
value of 8.7&&10 sec ' at 1% above laser threshold. The
cavity parameters used in the simulations were z, =5 cm
(see Fig. 1), a cavity length L =52 cm, and a gain medi-
um thickness of 5z =400 pm. In Sec. II we discussed the
effects of backscattering of radiation from the cavity fold-
ing mirror, noting that it causes a weak etalon with a free
spectral range of 2 GHz. We have incorporated the
effects of this etalon into the individual cavity mode loss
rates yI. The minimum loss rate is yo ——8.6X10 sec
corresponding to the center mode, and we have taken the
relative modulation strength of the cavity-mode loss rates
to be 6X 10 . This strength is within an order of magni-
tude of an estimate of this effect, and was chosen to mod-
el properly the experimental observations. We have also
included the effects of the bandwidth-limiting
birefringent tuner into our estimate of the cavity-mode
lass rates. We took this tuner to impose a parabolic
shaped loss which increases with the frequency separa-
tion from the center mode. We have used a relative in-
crease of 3 X 10 for the two modes that are farthest
from the center mode. The initial conditions for our
simulations are obtained from a random number genera-
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tor, with a Gaussian distribution for the complex mode
amplitudes.

Optical spectrum

Numerical results for the laser operating l%%uo and 3%
above threshold are shown in Figs. 6(a) and 6(b), respec-
tively. For these solutions we have taken F&(t)=0. In-
tensities

~
A&(t)

~

of 15 of the 31 modes in the simulation

are plotted as a function of time. The 16 unplotted
modes behave much the same as those plotted modes
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FIG. 6. Solutions of Eqs. (1}for intensity vs time of 15 of the
31 calculated laser modes, with 5 of the modes identified by the
number of mode spacings from the center mode (mode 0). The
parameters correspond to a laser operating (a) l%%uo above thresh-
old {g=8.7 X 10 sec ') and (b) 3% above threshold
(g =8.9X10 sec ').

which are seen to die out after a few milliseconds. In Fig.
6(a} we see that the stationary solution consists of three
dominant modes. Mode 0 is the center mode, while
modes +7 are each spaced 2 GHz from the center mode
and are seen to have a slightly higher intensity. Thus we
see that the spectrum obtained from this solution
matches the experimental spectrum of Fig 2.(a) very well.
In Fig. 6(b}, we see that when the gain coefficient is in-
creased, modes +14 become the dominant side modes.
These modes are separated from the center mode by 4
GHz, and the center mode has the strongest intensity, so
the spectrum of this solution agrees with the experimen-
tally obtained spectrum shown in Fig. 2(b).

It will be demonstrated below that the combined effects
of spatial hole burning and four-wave mixing are respon-
sible for this sudden jump in the laser spectrum. This be-
havior can be explained as follows. The observed separa-
tion of the lasing modes in the lower power region is
2.019 GHz, whereas it is 4.038 GHz in the higher power
region. Since the SHBF for this laser is 1.5 GHz, 4.038
GHz is closer to three times the SHBF than 2.019 is to
one times the SHBF. This means that the 4-GHz modes
are the preferred modes according to spatial-hole-burning
arguments. At low pump powers, the effect of' the
birefringent tuner is to suppress more strongly modes
that are farther from the center laser frequency. As the
laser power is raised, the third-order terms in Eqs. (1)
which correspond to spatial hole burning and four-wave
mixing become more important. Spatial hole burning
then allows the modes farther from line center to lase,
despite the fact that they have higher losses. Spatial hole
burning presents the necessary conditions that allow the
four-wave mixing interaction of the lasing modes to drive
the system to lase with larger frequency separation.
However, the effect of spatial hole burning is not strong
enough to overcome the effect of the backscattering
etalon, and that is why lasing occurs at multiples of the
etalon frequency.

Notice in Fig. 6(a) that the spectrum condenses to five
modes after 4 msec, whereas at the higher power in Fig.
6(b) this occurs after 6 msec. This trend continues to
higher powers. When the pump power is increased to
7% above threshold the solution shown in Fig. 7 is ob-
tained, where again we have taken F&(t)=0. The tran-
sient behavior persists for 32 msec before the spectrum
condenses. For clarity Fig. 7(a) shows only 5 of the 31
laser modes plotted as a function of time. In the tran-
sient region the other 26 modes have the same fluctuating
behavior and approximately the same average intensity as
the plotted modes. In the stationary region the unplotted
modes have no significant intensity. It is interesting to
note that the sum of the calculated mode intensities was
constant to within 0.02%%uo, even though the individual
modes were strongly fluctuating. Figure 7(b) shows the
time behavior of the center mode under the same condi-
tions as in Fig. 7(a). The percentage above threshold in
Fig. 7 corresponds roughly to the region of Fig. 2(c) in
our experimental study, and the full-scale mode-intensity
fluctuations that we see in the transient region, Fig. 7(b},
bear a remarkable resemblance to the fluctuations we see
experimentally at this power level, Fig. 3(a). Note that
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theory, including FWM, is successful in modeling a
variety of experimental observations, and that stochastic
photon rate equations do not correctly model the laser.
The full-scale fluctuations driven by FWM are found
theoretically to have correlation times that decrease with
increasing power, as has been well documented by our ex-
periment and others. ' ' Further, we found that the time
period for which the numerical solutions were strongly
fluctuating increases as the pump power is increased.
This may explain why at certain pump powers (for which
we cannot obtain numerical solutions of our full model) a
stationary state is not observed in the experiment. The
transient regime may be sufficiently long ( —1 sec) that
the laser is always perturbed before it can reach a station-
ary state. Why FWM can dominate additive quantum
noise in producing the fluctuations of the laser mode in-
tensities can be partially understood by the following
heuristic argument. SHB allows more than one mode to
lase simultaneously; this means that FWM will always be
present. Thus, as the pump power is increased above
threshold, the fifth term in Eqs. (1) will have a larger
magnitude than will the additive quantum noise.

From a practical perspective the channeling behavior
we observe is surprising; the spectral instabilities that
occur are more complicated than the laser behavior that
might be expected from the influence of a weak etalon.
From a theoretical perspective one may wonder why such
a laser displays a rich array of instabilities at pump
powers at very small (3%) excess above lasing threshold.
This is in contrast with the theoretically well-known
Lorenz instability, which was predicted by Haken in 1975
to occur in a single-mode, homogeneously broadened ring
laser at about nine times above threshold. The simple
answer is that in the multimode, standing-wave, homo-
geneously broadened laser the effect of spatial hole burn-
ing decouples the modes to a certain extent, creating
more independent degrees of freedom than are found in
the single-mode, homogeneously broadened, ring laser. It
is not surprising, but also not always true, that the system
with the larger number of degrees of freedom can display
instabilities at lower pump powers. This type of result

has also been observed in lasers with inhomogeneous
broadening of the gain transition. ' In this case, the
degrees of freedom correspond to different velocity
groups.

It should be pointed out that the instabilities that we
observe are not related directly to those studied by Hill-
man et al. " ' In that case the laser cavity was a ring
and the optical field strength was so high that the Rabi
frequency was comparable to the homogeneous medium
linewidth. In our laser this was not the case.

Finally, we believe that the spectral channeling behav-
ior that we have observed is generic to three-mirror-
cavity lasers with thin, homogeneously broadened gain
media. This may adversely affect their application to in-
tracavity spectroscopy.
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APPENDIX A

In this appendix we describe the data analysis carried
out to estimate D2 and K2 of a chaotic attractor from a
time series of the single-mode intensity of the laser and
give examples of its application on two of the time series
analyzed.

We use an algorithm developed by Grassberger and
Procaccia that reconstructs the attractor in a d-
dimensional embedding space. This procedure is dis-
cussed in Refs. 37-39 and will only be briefly outlined
here. A time series [I(t, )], is obtained by digitizing the
single-mode intensity. From this time series, vectors with
components

[I(t; ),I(t;+mr), I(t;+2mr), I(t;+3m''), . . . , I(t, +dms)]

are formed. The time between samples is ~ and m is the
embedding delay. A correlation sum Cz(l) is obtained by
calculating the Euclidean norm of all possible pairs of
vectors of dimension d and counting the number of pairs
of vectors with norm less than l. Examples of 1n[Cd(1)]
versus 1n(l) are shown in Figs. 10(a) and (b). One looks
for a set of in[Cd(l)] with successive values of d which,
for a range of /, becomes a series of straight and parallel
lines with constant separation. For example, in Figs.
10(a) and 10(b) this occurs at around 1n(l)=5. Then an
estimate for D2 and K2 for a chaotic attractor can be ob-
tained from

in[Cd(l)] =D2 In(l) —dr@2+const .

D2 is the slope of the straight-line segments and ~K2 is

their separation. If a signal is dominated by noise, then
the slope and the separation of straight-line segments of
in[Cd(l)] increases with increasing values of d. Thus D2
and ~K2 scale with embedding dimension. For a periodic
signal, D2 is an integer and K2 is zero.

Figure 10(a) shows the in[Cd(l)] curves for a 10000-
point time series of the intensity fluctuations of single
mode of the dye laser at 7%%uo above threshold. The
1n[Cd(l)] curves for a 4096-point time series 186% above
threshold are shown in Fig. 10(b). The digitization sam-
pled time ~ was chosen to ensure that a typical oscillation
period was sampled by approximately 50 points [r= 10
sec and 2)&10 sec for Figs. 10(a) and (b) respectively].
The value of m was chosen to make m ~ approximately
equal to the delay time at which the autocorrelation func-
tion of the time series no longer decreases monotonically.
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This causes the vectors compared in the analysis to be
more nearly linearly independent than would be the case
for I =1. The maximum embedding dimension in the
calculation of C„(l)of Fig. 10(a) is 25 and m is taken to
be 100. These values resulted in a total of 7475 vector
comparisons. For Fig. 10(b) the maximum d was 20 andI =60, resulting in a 2876-vector comparison. In both
Figs. 10(a) and 10(b) the slope and the separation of the
straight-line segments of In[Cd(l)] saturate for d greater
than 12. We find a value for Dz of 1.6 for Fig. 10(a) and
1.5 for Fig. 10(b). In each case K2 goes to a finite value,
as discussed in the text.

APPENDIX B

In this appendix we will derive Eqs. (1) of the text. We
will use as a starting point the Maxwell-Bloch equations.
We assume that the lasing transition can be treated as a
two-level system with upper state

l
2), lower state

l
I ),

density operator p, and an energy difference between the
two levels of AB. The optical Bloch equations of motion
of the two-level system in the rotating frame are

—S (z, t) = PS(—z, t) E—(—z, t) W(z, t),d ld
dt

I,d
dt
—W(z, t) = —y( W(z, t) Wo)+— S"(s, t)E(z, t)

2A

(8 la)

ld
(z r)E+(z, r) s (Blb)

(, lpl2) exp( —'
(1

I pl '
tion inversion of the system, with equilibrium value 8'0
in the absence of lasing. In Eqs. (81) P is the dipole de-
phasing rate, y is the population decay rate of the upper
level, and d is the transition dipole moment. E (z, t) is the
amplitude of the positive-frequency component of the to-
tal electric field e, i.e., s= —,'E(z, t) exp( icot)+—c c.

In addition to the Bloch equations, we use the wave
equation

E(z, t)e ' '=
z 2

NodS(z, t)e
t)z c r)t rjt c

0
0

1

4

tn(t)

I I,. . ..j:".:,ujjju, , jjgjjj ""
.1(n

(b)

(82)
where No is the number density of active rnolecules in the
gain medium. Since we are interested in the behavior of
individual modes of the laser field, we will expand the
field in terms of the spatial modes u j(z) of the cavity
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FIG. 10. Plots of the natural logarithm of the correlation
sum jn[cd(l)] vs 1n(l) for (a) 10000-point time series of the
laser intensity at a pump power 7% above threshold, and (b)
4096-point time series of the laser intensity at a pump power
186% above threshold.

S(z, r)= (85)

Combining Eqs. (Blb), (83), (84) and (85), we obtain
the differential equations for the mode amplitudes and
the inversion

E(z, t)= g Aj(t)uj(z)e (83)
l

where Aj(t) is the amplitude of the Ith cavity mode,
6I ——cot —B=lh, co& is the bare-cavity frequency of mode
I, and b =rrc/L with L being the laser cavity length. The
mode functions of the standing-wave cavity are
uj(z)= sin(kjz), where kj ——co)le.

It is found in a dye laser that the mode amplitudes
Aj(t) vary on a time scale that is much longer than co

Using this fact and the orthogonality of the mode func-
tions, we substitute Eq. (83) into Eq. (82) to find the
equations for the individual mode amplitudes A, (t),

t 2 Zl +5Z—Aj(t)=i2rrcoNode ' —f uj(z)S(z, t)dz . (84)
Z ]

In a dye laser operating at low powers, the dipole de-
phasing occurs on a much shorter time scale than any
other process in the system; thus we may adiabatically
eliminate the coherence S(z, t) from our problem. With
this approximation, S(z, t) is found from Eq. (8 la) to be

idE(z, r) W(z, r)—
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—r.~„,r zi+~.
A I(t)= —yI Ai(t)+b g A„(t)e "' ui(z)u„(z)W(z, t)dz,

dt
n

(86a)

—W(z, t)= —y[W(z, t) W—o]—aW(z, t) g AI(t)A„'(t)uI(z)u„(z)e
l, n

(86b)

In Eqs. (86), yl is the cavity decay rate of mode l,
5„I——(n l)b, —and a =(d )l(tent'P). The parameter b is
given by

4m Nocodb= (87)

The integration in Eqs. (86a) is over the cavity gain medi-
um, where zi is the distance from the gain medium to the
closest cavity end mirror and 5z is the thickness of the
medium.

Equations (86) will be written in third-order, perturba-
tive form by expanding the inversion around the equilib-
rium value. Assuming that the population oscillates at
the intermode beat frequencies, then

W(z, t)= W, + g W„(z,t)e'" ' (k =0,+1,+2, . . . ) .
k

(88)

We assume that the amplitudes of the Fourier coeScients
Wk(z, t) do not change much on a time scale of 5
This means that

W(z, t) = g ik b, Wk(z, t)e'" ' .
k

(89)

We want to substitute Eqs. (88) and (810) into (86a) to
get the differential equations for the mode amplitudes;
however, we must be self-consistent with the assumptions
that we have made so far. The assumption that the
Fourier coefficients Wk(z, t) vary little on a time scale of

' implies that the mode amplitudes A, (t) will also be
approximately constant over this time interval. There-
fore, when we substitute Eqs. (88) and (810) into (86a),
we must keep only those terms that are approximately
constant over a time 5 '. Doing this we obtain the equa-
tions

Substituting (88) and (89) into (86b) and assuming
Wo » Wl, (z, t), we equate coefficients of the different
Fourier components and find

aWo
Wk(z, t)= —. g A „(t)A'(t)u 1, (z)u (z) .

ikh+y

(810)

—Ai(t)=( —yi+g) AI(t) gg—A„(t)AJ'(t) A( „+)(t) . +Fr(t),dt 2 . „" "+ y+i5 l

where we have used the fact that for a gain medium that is many wavelengths thick

z, +sz 5zf ui(z)dz =
Z]

and we have made the definitions g = ( Wob5z )/2 and

(811)

(812)

4 z) +5z
C,„,= f u, (z)u„(z)u,(z)uI „+,(z)dz .

5z z&

(813)

In a dye laser the gain bandwidth is much broader than the laser bandwidth, so we may take g to be constant for all
modes. In Eqs. (Bl 1) we have added the Langevin noise term Fi(t), which when used to describe spontaneous emission
has the properties given in Eqs. (2). Equations (811)are in the form that is inost easily solved on a computer.

We will rewrite Eqs. (811) in a form that yields more physical insight. If we take out the n = l and j=n terms from
the double summation we obtain Eqs. (1) of the text:

AI(t)= rl+—g —
I

A—I(t)
I

— 2 I A. (t)
I C.I +d 3gQ g~ z

dt ' ' 4y 2 „"" y y+ih l

g g A„(t)A,'(r)A, „+,(t) "' +F,(t),
j&n n~l

(814)

where we have defined Cllj Cljj Clj i.e.,
z) +5Z

Ctj. —— f uI (z)u. (z)dz .
5Z z)

(815)
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In the usual case that the gain medium is many wavelengths thick C&I ——,', and

1
C( -1+

L
( I —j)5z

277 28
sin ( I —j)(z

&
+5z ) —sin ( I j—)z

&L L
(B16)

The physical interpretation of the various terms in Eqs. (B14) is given in the text. The form of these equations can
also be obtained from formulas given in Refs. 22 and 23, although we have derived them in a simpler form that is espe-
cially suited to the type of laser considered here.
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