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We study the spontaneous emission of atoms coupled to frequency-dependent photon-mode reser-

voirs, and find atomic emission spectra qualitatively different from those of free space. Frequency-
dependent photon-mode reservoirs are found in a variety of physical situations (e.g., in waveguides,
microcavities, dielectrics, systems with photonic spectral gaps, etc.), and are shown to lead to
nonexponential decay and concomitant complicated non-Lorentzian emission line shapes. By
studying Autler-Townes spectra in the presence of a frequency-dependent photon-mode density, we

present simple examples of dynamical modifications of spontaneous decay properties.

I. INTRODUCTION

It has been known for approximately 30 years' that the
spontaneous decay of atoms is not fully characterized by
intrinsic atomic properties. Indeed, this process depends
essentially on the statistical properties of the quantum
electromagnetic field surrounding the atom. Since the
vacuum electromagnetic field in cavities or waveguides
generally differs from that found in the free space, due to
the complicated mode structure of the field, so does the
spontaneous decay.

In the case when the atom-field coupling is relatively
weak and does not depend strongly on the photon fre-
quency in the regime of interest (i.e., close to the atomic
transition frequency co, ), the decay process may be de-
scribed in the framework of the Wigner-%eisskopf for-
rnalism. The atom decays then exponentially at the rate
y, . The spectrum of emitted photons has a Lorentzian
shape of the half width y„centered at the radiatively
shifted frequency co, +6co, . Both the spontaneous-
emission rate y, and the Lamb shift 5co, depend on the
density of modes in the photon reservoir.

In 1946 Purcell' predicted that the spontaneous-
emission rate of a cavity-contained atom becomes
enhanced in the case of atom —cavity resonance. Atoms
in the cavity may therefore radiate spontaneously faster
than in free space. Analogously, if atomic transitions are
far from any cavity resonance, the spontaneous-emission
process will be inhibited. The same kind of inhibition of
spontaneous emission takes place if atoms are located in a
waveguide and their transition frequency is below the
fundamental frequency of the waveguide. "

The paper of Kleppner "initiated, in fact, a series of
studies of the modification of spontaneous emission by
cavities and waveguides. ' ' First experiments have been
done in the microwave regime. ' Recently, modifications
of spontaneous emission have been observed in an optical

microcavity (i.e., in a cavity whose size is comparable to
that of a wavelength). Macroscopic optical cavities have
been used in experiments of Heinzen et al. , who were
first to demonstrate cavity-induced modifications of the
Lamb shift. 8

In our recent papers ' we have shown that
modifications of spontaneous emission can be induced by
dynamical means, i.e., by exposing atoms to a strong
driving field. These modifications exhibit themselves
through changes in the resonance fluorescence spectrum.
Namely, widths, heights, positions, and even shapes of
the peaks in the spectrum become dependent on the driv-
ing field intensity.

The current literature on decay processes has been de-
voted, to a great extent, to the study of situations when
the %igner-%'eisskopf approach breaks down, ' i.e., the
decay becomes nonexponential. One such situation
occurs when spontaneous emission takes place in a cavity
of width I, where I" is smaller than spontaneous-
emission rate y, . In such a case, before the spontaneous
emitted photon leaks out of the cavity, it may be reab-
sorbed by the atom. Eventually, this effect may result in
an oscillatory exchange of the energy between atomic and
photonic degrees of freedom, which in turn leads to a
splitting of the spontaneous-emission spectrum. Such a
splitting, termed the vacuum Rabi splitting, " has been
widely discussed from the theoretical point of
view ' ""and recently observed experimentally. ' ' '

Another case in which nonexponential decay is expect-
ed to occur corresponds to the situation when the density
of reservoir modes has a thresholdlike behavior, i.e., ex-
hibits a sudden jump or some weaker kind of singular,
nonanalytic behavior. If the frequency of the atomic
transition lies close to the threshold, the decay usually
tends to be algebraic. Such effects were discussed for the
first time in the context of bound —free transitions (photo-
detachment from a negative ion). ' '" Recently, we have
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indicated that the same effect occurs in spontaneous emis-
sion, ' provided that the density of photon modes exhib-
its a thresholdlike behavior (as is the case, for example, in
a waveguide close to its fundamental frequency). The
nonexponential character of the decay leads to strong
modifications in the shape of the spontaneous-emission
line, which becomes non-Lorentzian and may even exhib-
it additional peaks or holes.

The purpose of this paper is to present a detailed
theory of non-Lorentzian spontaneous-emission spectra
and discuss a number of examples in which they occur.
Our work is organized as follows. Section II contains a
description of a model describing near-threshold spon-
taneous emission. The model, essentially the same as the
one used in Ref. 14, corresponds to the case when an
atom is contained in a waveguide. The atomic transition
frequency is close to the fundamental frequency of the
waveguide. Using exact, analytic solutions we illustrate
here such phenomena as threshold shift, critical narrow-
ing, etc.

In Sec. III we discuss the problem of Autler-Townes'
splitting in the waveguide. A transition between two
atomic levels is strongly driven by an external laser field,
and spontaneous emission takes place from the upper
atomic level to some sidelevel. The frequency of the
spontaneous transition is assumed again to lie close to the
threshold frequency of a waveguide (or a microcavity).
The analytic results presented in Sec. III provide perhaps
the simplest possible example of dynamical modifications
of spontaneous emission. '

Section IV is devoted to the study of yet another physi-
cal possible situation in which the spontaneous-emission
frequency is close to a gap in the photonic spectrum.
Photon gaps' may occur in spatially periodic dielectric
media and effectively correspond to deep "holes" in the
density of photon modes. Similar deep minima of the
density of photon modes may be found also in homogene-
ous, linearly polarizable, resonant media which may be
described as systems of harmonic oscillators interacting
with an electromagnetic field. '

Finally, Sec. V contains a short summary of our re-
sults.

II. SPONTANEOUS EMISSION NEAR A THRESHOLD
IN THE VACUUM RESERVOIR

In this section we shall discuss in detail the model in-
troduced by us in Ref. 14, describing spontaneous emis-
sion near threshold. In order to study the interaction of
an atom with a frequency-dependent reservoir, we intro-
duce the Hamiltonian

H=co, ~l)(1~+f ~k ~c„c„dk+f ~k ~b/b„dk

+ g, k c~ 0 1 + 1 0 c& dk

+ f gb(k)(b/",
~

0)(1
~
+

~

1)(0
~

b/, )dk . (1)

In (1), co, denotes the atomic transition frequency, while

~

0) and
~

1) are the atomic ground and excited states,
respectively. We have included two kinds of photon
reservoirs in (1)."'' Creation (c/, ) and annihilation (c/, )

~ g, (k)
~

-8(k —c//, )
Q k —c//~

(4)

Formula (4) indicates that there are no propagating
modes in the waveguide for k below co, . The density of
modes has a weak (I/Qk —co, ) singularity for k ~co,
from above. As stressed by Kleppner, " in realistic
waveguides the singular behavior is always smoothed. In
Ref. 14 we used the following smoothed coupling func-
tion:

y, Qe(k —co, )

~ g, (k)
~

= 8(k —,),
77 k —co~ +e (5)

where 8( ) in Eqs. (4) and (5) is a unit step function. The
density of modes given by Eq. (5}is a continuous function
of k. However, it grows extremely fast for k close to, but
larger than co, . In fact, the function

~ g, (k)
~

is nonana-
lytic and its derivative tends to infinity when k ~~, from
above. In this sense, the function (5} approximates the
infinite jumplike behavior of ideal waveguides, described
by (4). The parameter e has the dimension of frequency
and serves as a smoothing" parameter. On a frequency
scale larger than c, the function (5) displays I/Qk —co,
behavior as in Eq. (4).

operators correspond to photons associated with the cavi-
ty or waveguide resonance. They provide a reservoir,
which has a frequency-dependent mode density. They
describe also partial losses in the system due to the im-
perfectness of waveguide walls (or cavity mirrors). The
creation (b/, ) and annihilation (b/, ) operators correspond
to modes unassociated with the resonance, later referred
to as the background modes. These modes describe phe-
nomenologically any other radiative loss mechanisms
present, and their density is assumed to depend weakly
on frequency. "

It should be stressed that the Hamiltonian (1) does not
necessarily describe radiative level shifts correctly for two
reasons: it does not contain all atomic levels and it is
written in the rotating-wave approximation. Results ob-
tained in the context of bound —free transitions' indicate,
however, that the Hamiltonian ('1) would describe the
Lamb shift as being quantitatively correct, if a proper re-
normalization of co, has been done. At the same time,
dynamics of the decay process are well described by (1).

The full characteristics of photon reservoirs are given
by specifying the frequency-dependent couplings
gb(k), g, (k). Since

~
gb(k) is only needed in the neigh-

borhood of the atomic frequency co, and characteristic
frequency of the waveguide co„we may assume

~
gb(k)

~

=const=yb/m. ,

so that the background reservoir's response is immediate,

f ~ g/, (k)
~

'e ' dk =yb&(r —r') .
0

The coupling ~g, (k)
~

is assumed to be singly peaked
(we neglect, for simplicity, the coupling to other
waveguide resonances} and exhibits a threshold behavior.
For an ideal waveguide close to its fundamental frequen-
cy the coupling

~ g, (k)
~

has a form '



810 LEWENSTEIN, ZAKRZEWSKI, AND MOSSBERG 38

It should be noticed that our model is very similar to
the one used in the photodetachment problem' for
bound —free transitions from an ionic p state to an s con-
tinuum. We shall use this analogy extensively in the fol-
lowing. Obviously the details of the dynamics of our
model do depend quantitatively on the analytic behavior
of (5) close to threshold (k =co, ). However, different

types of threshold singularities corresponding to
bound-free transitions between different angular momen-
tum states have been studied in the context of photode-
tachment. 's $uch transitions are characterized by cou-
plings which behave as (k —co, )'+'~ for k & co, (Ref. 19}
with 1=0, 1, etc. Results of these studies are in fact qual-
itatively quite independent of i. The same may be expect-
ed to occur in near-threshold spontaneous emission. %'e

may safely say that overall qualitative results of the mod-
el (5) do not depend essentially on the form of the func-
tion

I g, (k) I, provided that it has the following proper-
ties: (i) it grows algebraically or jumps for k close to, but
larger than co„and (ii) it saturates or even decreases
slowly for k large enough.

In this sense, results described below can also give
some insight into the problem of spontaneous emission in
the microcavity, in which the density of photon modes
behaves as

I g, (k)
I

-(k —co, )

for k close to, but larger than co, .
The Hamiltonian (1}determines the time evolution of

our model. We assume that initially the atom is in an ex-
cited state

I
1), while both photon reservoirs are in the

vacuum state. Spontaneous decay may then lead to a
creation of one and only one photon, due to the assumed
rotating-wave approximation. This statement follows
from the fact that for the Hamiltonian (1) the total num-
ber of atomic and photoionic excitations is a constant of
the motion. The solution of the Schrodinger equation
which fulfills the above-stated initial conditions can
therefore be written in the form

I
%(t)) =e ' a(t}

I
l, vac)+ fp(t, k)

I
0, 1kb )dk

+ fy(t, k)
I
0, 1k, )dk

The coefficients p(t, k) and y(t, k) represent probability
amplitudes of emitting one photon of the energy k, be-
longing to the background or waveguide reservoirs, re-
spectively.

The Schrodinger equation gives a set of coupled equa-
tions for the amplitudes a, p, and y,

a(t)= i (co, —co, )a(t—) i fgb(k)p(t, k)dk—

i fg, (k)y(t, k—)dk,

p(t, k) = i (k —co, )p(—t, k) igb'(k)a(t), —

y(t, k) = —i (k —co, )y{t, k) —ig,'(k)a(t),
with a(0)=1, p(D, k)=y(0, k)=0. Equations (8) are easi-
ly solved using the Laplace transform method. Denoting
the resolvent function

%(z)=z+i(co, —co, )+f . dkz+1 k —co

we obtain

f z+i(k —co, )

a(z) =1/&(z) .

The photons belonging to background and waveguide
reservoirs correspond to geometrically different modes.
It is therefore reasonable to introduce the spectra of
spontaneous emission into the background and
waveguide modes separately,

Wb(k)= lim
I
p(t, k)

I

f —00

W, (k)= lim
I y(t, k)

I

(1 la)

(1 lb)

In the limit t~~, only the free evolution pole at
z = i {k——co, }contributes to (11). Therefore

~b(k)
I
P{z k}

I z= —i(k —cu ) & (12a)

W (k)=
I
y(z k) (12b}

Explicit calculation yields

w (k)=
I g, (k)

I

2

i y, v'e
k —co~ +l yb +

i 6+k —'coq

(13)

where Qk —co, =i +co, —k for (k —co, ) & 0 and j =b, c
Formula (13) provides an exact analytic result for the
spontaneous-emission spectra in our model. Note that
the spectrum associated with the cavity (waveguide} reso-
nance vanishes for k &co„due to the threshold behavior
of

I g, (k)
I

. Obviously the spectrum associated with the
background modes extends into the regime of k & co, .

In Ref. 14, we have presented some numerical results
for the spectra (13) which were calculated for e compara-
ble with y, and yb ~gy, . These results illustrated the
following three major features.

(a) For co, & co, most of the energy is dissipated into the
background modes. A large (of the order of y, or e) ra-
diative red shift of the spectrum is observed. The radia-
tive shift is an analog of a dynamical threshold shift in
the photodetachment process' "which has been recently
observed in experiment.

(b) When co, is such that the shifted transition frequen-
cy is comparable to co„ the nonexponential character of
the decay becomes dominant and the spectrum becomes
non-Lorentzian.

(c) For larger co, most of the energy is dissipated into
the waveguide reservoir and the line shapes start to
resemble Lorentzians again. A nonexponential contribu-
tion to the decay is still present, however, and induces
new narrow features in the spectrum (such as additional
peaks and holes}.

In this work, we present results in a regime of small
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( g, (k)
~

'-8(k —co, )
k —co,

for k —co, large.
Once more we stress that the particular shape and

magnitude of the non-Lorentzian features in the spectra
do depend on the choice of the model (5). The qualitative
picture is model independent, however, because all of the
observed eff'ects do have a physical explanation. For ex-
ample, cusps and holes in the spectrum result from a tem-
poral interference between the exponential and nonex-
ponential contributions to the decay. The narrowness of
these structures (which is seen particularly well when the
radiatively shifted atomic frequency is close to the
threshold frequency co, ) refiects a critical slowing down
of the decay.

The results presented here and in Ref. 14 show how
stable the qualitative properties of the spectra are with
respect to changes of the coupling function (5). In fact,
we do not notice any appreciable differences within the
many orders of magnitude in e.

III. AUTLER-TOWNES SPLITTING
GF ATOMIC LEVELS IN A WAVEGUIDE

In this section we shall discuss the phenomenon of
Autler-Townes splitting' in cavities and waveguides.
The investigated phenomena provide the simplest exarn-
ple of dynamical (i.e., strong-field-induced} modifications
of spontaneous emission. '

In order to study the Autler-Townes effect, we intro-
duce a model three-level atom having energy levels ~0&,
~1 &, and ~2& of the energies 0, co„and co&, respectively.
The spontaneous-emission rate from ~1& to ~0& is as-
sumed to be small and we shall neglect it in the following.
The transition

~
0 & ~

~

1 & is driven by a strong, resonant

e «y, . For such a choice, the function
~ g, (k)

~

behaves much more singularly in the vicinity of k =co, .
%e may expect that non-Lorentzian features in the spec-
trum will be even more visible in this case.

In Fig. 1 we have plotted the spontaneous-emission
spectra for e =0.01y„yb

——0.1y„and for different

values of the atom-waveguide detuning A=co, —co, . As

we see, main characteristics of the spectra are indeed the
same as those in Ref. 14. The following points should be
stressed, however.

(i) Below the threshold [b, &0, Fig. 1(a}]the Lamb shift
is negative but its relative magnitude is smaller
5QPg ~ E ((g~.

(ii) For 6 close to zero, the nonexponential character of
the decay determines the line shape. The spectra are
non-Lorentzian and develop interesting additional nar-
row holes or cusps at k =co, [Figs. 1(b) and 1(c)]. The
non-Lorentzian character of the spectra is much more
apparent for small e and persists over a much larger re-

gime of detunings h.
(iii) For b, large and positive [Fig. 1(d)], spectra are

Lorentzian again with small additional cusps at k =co, .
Note, however, that for large 5 the background contribu-
tion again becomes dominant due to the slow, but essen-
tial decrease of the function (5),

laser field of the frequency ~z. The strength of the driv-

ing field is characterized by the Rabi frequency O. Spon-
taneous emission from the upper level ~1& may take
place, causing a transition to the level

~

2&. The frequen-

cy of this transition lies close to the resonance frequency
co, of a cavity or a waveguide mode. Photons may, how-

ever, also be emitted into background modes, unassociat-
ed with the cavity resonance.

The Hamiltonian of the system reads

H =co&
~

1&&1
~

+co&
~

2&&2
~
+ —e

~

0&&1
~

+H. c.
2

+ f ~

k
~
(b&b„+czech)dk

+ f [[g,(k)bz+g, (k)cz]
~

2&&1~ +H. c. ]dk .

(14)

Before solving the model defined by (14), let us discuss
some of its properties in the case of the resonant excita-
tion (cue ——co, ). The model has a constant of the motion
(for arbitrary cot )

& =
~

0 & & 0 [ +
~

1 & &1
~
+f (c~te„+ baby )dk . (15)

If the system was initially in the ground state ~0 & of the
atom, and the vacuum state of both reservoirs, it may
only emit one photon due to the transition

~

1 & ~
~

2 &.

The driving field induces the splitting of the upper
atomic level

~

1 & into two levels having the energies close
to co, +(Q/2). Therefore the frequency of the spontane-
ously emitted photon will be close to co, k(Q/2) —co2

rather than the bare transition frequency mi —m2. Obvi-

ously, the spectrum of the spontaneous emission will con-
sist of two lines, if the frequencies co, +(Q/2) —co& are
separated sufficiently. If both frequencies co, +(Q/2) —co&

lie in the region of high reservoir mode density, both lines
will have widths corresponding to this density of modes.
As soon as the splitting is large enough, so that either of
the frequencies co, k(Q/2) —co& shifts outside of the re-

gime of high reservoir mode density, a dramatic narrow-
ing of the corresponding line will occur. Such narrowing
indicates the effective closing of some decay channel and
a dramatic increase in the lifetime of the corresponding
atomic dressed state. %e call this effect dynamical
suppression of spontaneous emission. ' It should be
stressed, however, that close analogs of this effect have
been previously discussed in the context of bound —free
transitions. One such analogy has been referred to as the
confluence of coherence, which may occur in laser-
induced autoionization. ' Exactly the same kind of line
narrowing was predicted by Kuklinski and Rzyzewski,
who studied the transition from a bound state into a sym-
metric autoionizing resonance. In that case, the wings of
the resonance must, however, falloff faster than in the
case of the usual Lorentzian resonance. These authors
termed the effect a strong-field-induced modification of
Fermi's golden rule.

In the present work, we will discuss the interplay be-
tween the dynamical modifications of spontaneous emis-
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sion and the effects caused by the thresholdlike character
of the photonic density of modes. In order to do it, we
shall consider the case when the coupling constants

~ g„,(k)
~

have exactly the same form as that discussed
in Sec. II,

The Schrodinger equation then leads to

ao(t) =ice,ao(t) i——a, (t),

. 0a&(t)=i(co +coL —co&)a&(t) —i —ao(t)C 2

and

~
gb(k)

~

=const=yb/~

y, Qe(k —co, )

~g, (k)
~

= e(k —,) .
77 k —

CO~ +E

(16a)

(16b)

—i gb k t, kdk —i g, ky t, kdk,

(18)

P(t, k) = i (k——co, + n)2 coL—)P(t, k) —gb" (k)a, (t),

As we have mentioned, if the atom and reservoirs are ini-
tially in their ground and vacuum states, respectively, the
wave function can be written in the form

~%'(t))=e ' ao(t) ~O, v ca)+a, (t)
~

1,vac)

+ t k e 21k~ dk

y(t, k)= i (k ——co, +a)2 —coL )y(t, k) —ig,*(k)a,(t) .

1
ao(z) =

z ia),—+(Q /4)A '(z)
(19a)

The Lacplace transform technique allows one to solve
(18) exactly. We obtain

+ J y(t, k)e '
~
2, 1k, )dk (17)

. 0 1a, (z) = i-
(z i~, )—%(z)+Q /4

(19b)

I I I I

i
I I I I

i

I I I I

i

I I I I
I I I I

]

I I I I

)

I I I I

]

I I I I

W (k)
j

a — (a) 6/y = —]
C

W (L)

(b) ~/y =0

0-2
I I I I I I

0 1

(k 4l )/y

0-2 0

(4- )/y

I I I I

]
I I I I

i

I I I I

i

I I I I 1.50 I I I

(

I I I I

[
I I I I

(

I I I I

W (4)
(c) 2/y = 0.5 1.25

W (4)
1.00

6/y = 2

0.'75

0.50

0.25

0-2
~ ~ ~ I

(k- )/y

0.00 —1 0 1

(k- (u )/y

FIG. 1. Spontaneous emission in a waveguide for the atom-cavity detunings 6/y, = —1 (a), 0 (b), 0.5 (c), and 2 (d) and yb
——0. 1y„

a=0.01y, . Solid lines denote spectra of the background field, and dashed lines correspond to the spectra of the waveguide field.
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where

JW Z ) =2 + l ( CO
~
—~L —~, ) +y b

5= co~ —c02 —co~

and the atom-laser detuning as

(21)

y, V'e
+

i +e+Qiz +coL —co2

Denoting the atom-cavity detuning as

(20) EL =CO) —COL (22)

we obtain the following result for the spectra defined as in
Eq. (11):

0 I8'~(k)= )g (k)
~

2

(z i ss—s, )&(z) +0 /4, ;~1, „+„
which reduces to

(23)

QW(k)= ~g (k) (

1

iy, &e
co b+iyb+ . (co b+AL)——0 j4

l E+~CO

(23a)

W, {k)

(a)

s

I

s s s s

I
s s I

(I

(I

I

s ~ s s

I

r = 0.01 (b)
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s I s s

I& r = 0.05
I g
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1
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[
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[
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1.5 (c)
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1.0
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FIG. 2. Spontaneous emission in the presence of a driving field (Autler-Townes spectra) for r=0.01 (a), 0.05 (b), 0.15 (c), and 0.5 (d)
and in units of y„yb ——0.1, a=0.01, 5=0.5, and hL ——0. As before, solid and dashed lines denote the background and the waveguide
fields, respectively.
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with co=k —co, .
Numerical results are shown in Figs. 2 —4. To concen-

trate on the cavity-induced effects, we present results for
the exact atom-field resonance hL ——0 case only, although
(23a) gives an analytic expression for arbitrary b, &. All
parameters are expressed in units of y, . The laser-atom
coupling is pararnetrized by

0
4y2

r is proportional to the laser intensity and is dimension-
less.

In Fig. 2 the results are presented for fixed atom-cavity
detuning, small e, and for different laser intensities. For
small r=0 01 [F. ig. 2(a)], the spectrum consists of a single
line centered at k —co, =h. The width of the line is con-
trolled mainly by the intensity factor (power broadening).
For r=0.05 the Autler-Townes doublet is already visible.
The effective width of the peaks can be estimated as

p~v eN
Xe8' Yb + N+6 7 (24)

where co is evaluated at the position of the peak. Since the
density of modes (lib) has a maximum for to=e=0.01,
evidently the left peak of the doublet (corresponding to
smaller to) is wider and therefore smaller.

The presence of the threshold at co=0 induces a very
slow, nonexponential contribution to the decay process.
This contribution leads to the appearance of a narrow
non-Lorentzian cusp in the background spectrum. The
role of the non-Lorentzian features increases even more,
as the lower frequency Autler-Townes component moves
towards the critical region of to =0 [Fig. 2(c)].

Finally, for r=O S[F.ig. 2(d)] the left peak of the dou-
blet lies entirely below the threshold region. Its effective
width is roughly determined by the density of back-
ground modes and is smaller than the width of the right
peak. The width of the latter is still well estimated by the

I I f I

I

I I I I
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formula (24). The nonexponential part of the decay
causes a cusp-shaped hole in the background spectrum.

Another set of data is presented in Fig. 3. This time
we have plotted the spectra for fixed r=0.5 and for
different values of the atom-cavity detuning h. In Fig.
3(a) the right peak of the doublet lies below, but close to
the threshold. Due to the critical slowing down, it has a
narrow, non-Lorentzian shape. For 6= —0.3 in Fig.
3(b), the different widths of the peaks result from the
dynamical modification of the spontaneous emission and
can be estimated from Eq. (24). The nonexponential part
of the decay induces narrow cusps in both spectra for
co=0. All these effects (critical slowing down, non-
Lorentzian line shapes, intensity-dependent widths and
shifts} are also seen in Fig. 3(c}and 3(d).

The results for e comparable to y, are shown in Fig. 4.
Spontaneous-emission spectra in the absence of the laser
field have been studied for this case in Ref. 14. For such
values of e, large radiative shifts of the atomic levels have
been observed. In the present case, radiative shifts may

become intensity dependent and describe the shifts of the
dressed atomic states.

In fact, in Fig. 4(a), the bare atomic level
~
1), which in

a zero applied field is Lamb shifted to the vicinity of
co=0, is seen to be dynamically shifted up in frequency by
0.15 units and split into two components at co= —0.2, 0.5
by a weak r=0.03 driving field. The splitting is visible
only in the background spectrum Wb(k). The widths of
the peaks are partially controlled by the local density of
modes [Eq. (24)], but some effects of power broadening
are still present [compare Figs. 4(a) and (b)].

For larger values of the driving field intensity [Figs.
4(c) and (d)] the widths of the peaks become fully deter-
mined by the generalized Fermi rule [Eq. (24)]. The left
peak, which lies below the threshold, is therefore nar-
rower and its width is of the order of yb The .right peak,
which lies above the threshold, is broadened by the
waveguide and background modes.

The results presented above indicate that Autler-
Townes-type splitting in waveguides possesses a rich
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process in such cases. We shall assume that an impurity
atom is located within a medium, possessing gaps in its
photonic density of modes. The transition frequency of
the probe atom is assumed to lie close to one such gap.
Again, our aim will be to discuss effects which go beyond
the validity of the Wigner-Weisshopf approximation.

In the present problem, instead of introducing two
separate reservoirs, we shall consider only one, character-
ized by an appropriate density of modes.

The Hamiltonian will therefore be

H =co,
~

I ) & 1
~
+f ~

k
~

btb„dk

+ fg, (k)(b,'[0)&1[+(1&&0]b„)dk . (2S)

It is just the same Hamiltonian as (1), except that we put
g, (k) =0. The model is fully determined by the
specification of the coupling

~
g&(k)

~

. Since we are only
interested here in the qualitative effects, we shall intro-
duce a phenomenological model of gb(k), which accounts
for the presence of a dip in an otherwise uniform photon-

ic density of modes. Our model is defined by

~
gg(k)

~

'= 1 —A
r +(k —co, )

(26)

The "gap" (or the "hole" ) is located at the frequency co, .
It has a Lorentzian shape and the parameter ~ describes
its width. It should be noted that other shapes (such as,
for example, powers of a Lorentzian) which may be more
suitable for modeling real solids also lead to analytic, al-
beit slightly more complicated results. The parameter A

changes from 0 to 1 and measures the depth of the gap.
No minimum in

~
g&(k)

~

is present for A =0. For A =1
the density of modes (26) is exactly equal to zero at
k =co, . Our model of the photonic continuum is a close
analog of the electronic continuum in autoionization —it
corresponds to a Fano profile with the asymmetry param-
eter q =0.'4

Assuming that initially the atom was excited and the
field was in the vacuum state, the solution of the model is
easily obtained using the same techniques as those in Sec.
II. As a result, we obtain
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zi t 221a{t)=A, e +aze

with

zi 2
——— +—,'[(yb —r) +4Ayb r]

Xb+~ 2 1/2

(28)

(29}

for 5=0.
In Fig. 5 we show the resulting spontaneous-emission

spectra for y&
——~, assuming perfect resonance between

atomic frequency co, and the center of the gap co, for
different values of the gap's depth A. For A=O, the
spectrum has a usual Lorentzian shape. For A large, it
consists of the sum of two Lorentzians of the widths
determined by Eq. (29). An appearance of the narrow
component in the spectrum refiects the existence of the
photon mode density minimum at co =0.

Figure 6 shows the spectrum for different values of the
atom-gap detuning. As 5 increases the spectrum
broadens, since the resonance shifts away from the re-
gime of small density of photon modes. The spectrum be-
comes asymmetric and develops a minimum at co=0 [see
Fig. 6(c)]. Its shape is analogous to that of the Fano
profile of an autoionizing resonance.

Similar results are plotted in Fig. 7, for a "narrow
gap": ~=0. 1yb and A=0.9. The presence of the narrow

gap introduces a slow component into the decay process.
The spectrum results from a quantum-mechanical tem-
poral interface between the gap-induced and usual ex-
ponential terms. Because of this interference, interesting
dispersionlike shapes are observed in the spectrum for
frequencies close to co=0. The shape of these interfer-
ence features depends on the detuning b, .

yb co +(1—A)H

[co(co b,—) y—b r(1 —A )] + [co(yb+ &)—&&]

(27)

where co=k —co„while b =co, —co, . For our choice of
~
gb(k)

~
(26}, it is also easy to find the time-dependent

solutions. The probability amplitude of the excited atom-
ic state decays as

V. CONCLUSIONS

It has been known for many years that the
spontaneous-emission process in cavities and waveguides
differs from that in free space. In particular, the
spontaneous-emission rate, evaluated in the framework of
the Wigner-Weisshopf approximation, depends crucially
on the density of the photon modes.

If the photonic density of modes changes on a frequen-

cy scale comparable to the spontaneous-emission rate (es-

timated on the basis of the local photon mode density}
new phenomena may occur. The Wigner-Weisshopf ap-
proach can no longer be used, and the decay necessarily
becomes nonexponential. As we have shown in this pa-
per and in Ref. 14, a variety of novel, physical effects are
then expected to occur. We have discussed some of these
effects here by studying explicitly the processes of spon-
taneous emission and Autler-Townes splitting in a
waveguide near the threshold and spontaneous emission
in the presence of the photon gaps.

All these effects may in principle be observable experi-
mentally. The only condition which has to be fulfilled is
that the characteristic width of the frequency-dependent
reservoir should be comparable to the spontaneous-
emission rate. Such a condition can easily be fulfilled in
cavities, both in the optical and in the microwave re-
gimes, and should also be realizable in high-Q
waveguides. Systems with photon gaps have not yet been
observed experimentally. No fundamental reasons ex-
clude, however, the possibility that suSciently narrow
gaps (or holes) in the photonic spectrum will exist to give
rise to effects such as those discussed here. In any case,
by a proper choice of impurity atoms (with large dipole
matrix elements) one should also be able to approach the
regime in which the required conditions are fulfilled.
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