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Cooperative effects on squeezing in resonance fluorescence from a finite number N of atoms are
examined. Analytical expressions for the spectrum of squeezing and a quantity Q( T) related to the
photon-counting statistics of the squeezed states are presented for N =1 and 2. These expressions
are obtained by invoking the high-field approximation of the relevant master equation. The analyti-
cal results are supplemented by the numerical solutions of the exact master equation for N (10. It
is shown that for intense fields or large detunings, squeezing in resonance fluorescence is predom-
inantly due to the quantum nature of the sidebands of the Mollow triplet. As a manifestation of
cooperative effects, squeezing present in the total as well as the sideband radiation increases with

the number of atoms. This is further confirmed from the behavior of the photon-statistics function
Q(T).

I. INTRODUCTION

Recently there has been a great deal of theoretical'
and experimental interest ' in squeezing of radiation
fields. Squeezing is a purely quantum-mechanical effect
and is characterized by a field state in which the variance
of one of the two noncommuting observables is less than
one-half of the absolute value of their commutator. Be-
cause of this property of reducing the quantum noise in
one quadrature phase, squeezed states have potential ap-
plications in optical communication systems and in the
detection of gravitational waves. ' Squeezing has been
predicted in a number of quantum-mechanical systems
such as degenerate parametric oscillators, ' degen-
erate four-wave mixing, ' '" optical bistability, ' and
free-electron lasers. '

Squeezing in resonance fluorescence from a single
coherently driven two-level atom has been discussed in
some recent papers. ' In fact, this simple system al-
ready exhibits other quantum features like photon anti-
bunching and sub-Poissonian statistics both of which
have been observed experimentally. It has also been
shown that the resonance-fluorescence field radiated by
a collection of many motionless two-level atoms exhibits
squeezing. However, these studies have assumed that the
two-level atoms are independent and have thereby ig-
nored the collective effects. It is expected that inclusion
of collective effects will modify the squeezing characteris-
tics of resonance fluorescence considerably. Indeed
atomic cooperation is known to affect both the steady-
state behavior of the atomic observables ' and the tran-
sient behavior characterized by the fluorescent spectrum
and intensity-intensity correlations. More recently, it
has also been shown that collective effects modify the
squeezing behavior of the atomic observables in the
steady state ' and also in the transient regime. It is
therefore of interest to study in some detail how squeez-

ing characteristics are altered when cooperative emission
from many atoms is present.

In this paper, we focus our attention on the time-
dependent aspects of squeezing in cooperative resonance
fluorescence from a finite number N of atoms. Incidently,
squeezing is a phase-sensitive effect, and its detection in-
volves hornodyning of the signal with an external intense
coherent field. There are two quantities which are of
measurable interest in such an experiment. The first is
the spectrum of squeezing Ss(co) (Refs. 24 and 29) which
is related to a normal-ordered variance of the signal field.
The other quantity of interest is Q(T) introduced by
Mandel' which determines the photon statistics of the
superposed field. The negative values of S&(co) and Q(T)
over a certain regime of parameters imply squeezing. We
obtain in this paper analytical expressions for the spec-
trum of squeezing and the quantity Q ( T) for a two-atom
system in the intense-field limit and compare them with
those for a single atom. For more than two atoms, we
obtain the spectrum and Q(T) from the numerical solu-
tion of the relevant master equation. We also study the
squeezing behavior of the radiation emitted from a rnix-
ture of sidebands of the Mollow triplet. Under the condi-
tions of either intense field or large detunings, the squeez-
ing in resonance fluorescence is found to increase with in-
creasing number of atoms. Moreover, the squeezing be-
havior is predominantly due to the quantum nature of the
sidebands. This is reflected from the fact that squeezing
due to sideband radiation alone is of much higher magni-
tude than that in the total radiation and that it increases
with the number of atoms.

In Sec. II we present the basic master equation and its
high-field-limit approximation and also define the opera-
tors characterizing the sideband radiation. The analyti-
cal expressions for the spectrum of squeezing both for the
total and sideband radiation for N=1 and N=2 are
presented and discussed along with numerical results for
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higher values of N in Sec. III. In Sec. IV we discuss the
behavior of Q(T) based on analytical and numerical re-
sults. Finally, some concluding remarks are added in
Sec. V.

R, (t) =R,(0), (2.6b)

and hence give rise to the spectrum components at fre-

quencies col+2I and coL. We may therefore introduce
the operators

II. BASIC EQUATIONS
S+ ——aR++bR + (2.7)

A. Master equation

We consider a system of closely spaced identical N
two-level atoms of transition frequency coo interacting
with a coherent field of frequency coL. The master equa-
tion describing the collective decay of the system is
given by

dpldt = i Q[—S+ +S,p] —i 6[S„p]
—y(S+S p —2S pS+ +pS+S } . (2.1)

Here p is the reduced atomic density, 2II = —2(d E)/fi is
the Rabi frequency, h=coo —coL is the detuning of the
atomic transition frequency ~0 from the laser frequency,
while 2y is the Einstein A coefFicient. S+,S, are the col-
lective polarization and inversion operators obeying the
angular momentum commutation relations

[S+,S ]=2S„[S„Sg)=+S~. (2.2)

In deriving Eq. (2.1), the external field has been treated
classically while Born and Markov approximations have
been used to treat the interaction of atoms with the vacu-
um modes of the radiation field. Also the equation is
written in a frame rotating with the frequency coL of the
coherent field. Incidently the master equation conserves
S, the total spin of the N two-level atoms. It has a re-
markable feature that it admits an exact steady-state
solution which has already revealed some interesting
cooperative effects.

For discussing the squeezing behavior of the sideband
radiation, it is necessary to identify the operators which
give rise to these sidebands. For this purpose, we intro-
duce the transformation ':

p =D 'exp( —aR, ) (2.9)

and is found from the steady-state (dpldt =0) form of the
equation (2.8) while D is obtained by demanding that
Trp =1. Hence

a=In(a /b ) and D =Tr[exp( —aR, )] . (2.10)

The simplified master equation is valid for I »Ny and is
used for subsequent analytical calculations presented in
Secs. III and IV. We note that corrections to the results
obtained this way would be of the order of (Ny/I ) .
Also the solution (2.9) is used to compare the steady-state
averages of the operator products.

as representing a mixture of the sidebands.
In deriving analytical results for one- and two-atom

systems, we use the intense-field limit, where I »Ny
and a secular approximation to the master equation. We
insert the transformation (2.3) in Eq. (2.1) and observe
that the Liouville operator on the right breaks up into
two parts, viz. , the one containing slowly varying terms
and the other involving rapidly oscillating terms. The os-
cillatory terms are neglected, and we arrive at the master
equation '

dp/dt = —2t'I [R„p] yc (R—,p 2R,pR—, +pR, )

—ya (R+R p —2R —pR++pR+R )

yb (R—R+p 2R+pR—+pR R+ ) . (2.8)

Under resonance conditions (r=0), this equation reduces
to the one obtained by Agarwal et al. The master
equation (2.8) admits a steady-state solution of the form

S+ ——aR+ +bR +cR, ,

S,= —c (R++R —)/2+(a +b)R, ,

where

a = ( 1+&r ) l2, b = —( 1 —&r )l2,
c =&( I r)„r=b l4I (0(—r & 1),
I —[ IIi+(g /2)~] ~i

(2.3a)

(2.3b)

(2.4a)

(2.4b)

(2.4c)

B. Equations for one-time atomic-operator averages

(d/dt)(R+(t) ) =(2iI y, )(R+—(t) ),
(dldt)(R, (t)) = —y&(R, (t)) —y&r

(2.11)

(2.12)

For the time-dependent analysis we need the equations
of motion for one-time averages (R+(t)) and (R,(t)).
The equations of motion for these are derived from the
master equation (2.8) and solved. For the one-atom case,
we have

Ho ——Q(S+ +S )+b S, =2I"R, . (2.5)

Thus under the Hamiltonian 80, the new operators
evolve in time as

The new operators R+,R, represent a rotation of the
old ones and hence satisfy the same commutation rela-
tions as the old operators. The transformation (2.3)
reduces the interaction Hamiltonian Ho to a diagonal
form:

where

yi ——(3 r)y/2, y2
——(1+r)y . —

The solutions read as

(R+ (t) ) = (R+ (0) )exp[(2iI y, )t], —

(R,(t)) =[&r l(1+r)][exp( y2t) 1]——

+(R,(0))exp( y2t) . —

(2.13}

(2.14)

(2.15)

R+(t)=R+(0)exp(+2iI t), (2.6a) On the other hand, for a two-atoin system, the averages
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(R+(t)) and (R,(t}) get coupled to higher-order mo-

ments. The relevant equations read as

(dldt)(R (t)&=(2ir —y, )&R (t)&+yV'r (L(t)), where the operators L and M stand for
(2.19)

(dldt)(M(t)) =4y~~ (R,(t)) —3y2(M(t))+8y2,

(2.16)

(d/dt)(L (t) ) = 3y—i/r (R (t) ) +(2iI —y3)(L (t) ),
(2.17)

L =R+Rz+RzR

M =R+R +R R+,
y3 (7+——3r)y /2 .

(2.20)

(d/dt)(R, (t) ) = —y2(R, (t) ) y&r —(M(t) ), (2.18)

I

These equations can be solved in pairs. In particular, the
solutions for (R+(t)) and (R,(t})are given by

exp[(2iI —p3)t],

8yy2~r

P 4

where

P, 2=[(5+r)/2+(I r+r —)' )y,
p3 (3+r)y, p4 (3r + 1)y——

(y —P, ) &R, (0) &+yi/ &L (0) )
(R+(t})= exp[(2i I —P, }t]

2 i

(y —p )(R (0) &+ye' &L(0) &

+
(pi —p2)

[(3y2—p3)(R, (0) ) yv —r ((M (0) ) —8yz/p3)]
(Rz(t) ) = exp( —p3t)

4 3

[(3y,—p, )(R,(0) ) —y&r ((M(0) ) —8y, /p, )]
+ exp( P4t}—

3 4

(2.21)

(2.22)

(2.23)

(2.24)

These solutions will be used along with the quantum regression theorem to obtain the two-time expectation values nee
ed for computation of spectrum of squeezing and photon statistics discussed in the subsequent sections.

III. SPECTRUM OF SQUEEZING

Since squeezing is a phase-sensitive effect we express the slowly varying part of the radiated field at the detector as

Eg(t)= [E'+'(t)exp(i8)+E' '(t)exp( i8)]/—2, (3.1)

where 0 is a phase angle and E'—' are the positive and negative parts of the field. The spectrum of squeezing is related
to the normal-order variance:

I g(t +r, t) = (:bEg(t +r)AEg(t): )

=[exp(2i8)(bE'+'(t+r)bE'+'(t))+exp( —2i8)(EE' '(t)hE' '(t+~))
+(i3E' '(t+r)hE'+'(t))+(hE' '(t)bE'+'(t+r))]/4. (3.2)

Here hA = A —( A ) and the angular brackets denote the averages with respect to the atomic density operator p. In
the far-field limit and in the absence of a free field at the detector the radiated field E'+ '(t) can be eff'ectiveiy replaced by
pS (t), where p is a geometrical factor. Hence

I (g+tt}r=(
~

p~'/4)Iexp(2i8)[(S (t+r)S (t)) —(S (t+~))(S (t))]
+exp( —2i8)[(S+(t)S+(t +r})—(S+ (t) ) (S+(t +~) ) ]

+[(S+(t+7)S (t)) —(S+(t+r))(S (t))]
+[(S+(t)S (t+i})—(S+(t))(S (t+r))]] . (3.3)

The steady-state spectrum of squeezing is then defined as

Sg(tg)=(y I
~ p ~

)J [exp(ice~)+exp( ico7.)] lim I'g—(t+r, t)d~ .
0 f~oo

(3.4)

Note the presence of anomalous correlators like (S (t+r)S (t)) in the expression (3.3) for I g(t+~, t). The 8
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dependence of the squeezed spectrum essentially arises from the anomalous correlators. In the intense-field limit we
have

lim I &(t+r, t)=(
~ p ~

l4)([(a +b )l2+ab cos(28)]
t~ oo

X I[(R (r)R, )+(R R (r))]+H.c. I

+iab sin(28)I[(R (r)R+ ) —(R+R (r))]—H. c. )

+[(a —b )/2]I [(R+R (7 ) ) —(R (r)R+ ) ]+H.c. I

+2c [1+cos(28)][(R,(r)R, ) —(R,(r) ) ( R, ) ]), (3.5)

where we have used the result that (R z ) =0 in the steady state.
The solutions (2.14) and (2.15) for N= 1 and (2.21) and (2.22) for N= 2 for (R+ (t) ) and ( R, ( t) ) and the quantum re-

gression theorem are used to obtain the two-time expectation values occurring in the expression (3.5). Analytical ex-
pression for the spectrum of squeezing then reads as

%=1,
Ss(co) =[y(1—r)/8(1+r)]I [(1—r) —(1+r)cos(28)]X,(co;y&) 2&r X2(co—;y&)sin(28)

N=2,
+[2(1 r) /(—I +r)][1+cos(28)]X3(co;yz) I, (3.6)

S&(co)= [y(1—r)/2(3r + 1)(r +3)]

X [ [(1—r) —(1+r)cos(28}][A, X,(co;p, )+ A zX, (co;p2}]—2&r [ A, X2(co;p, )+ A AX&(co;p2)]sin(28}

+ [4(1—r) ][1+cos(28)][rX3(co;P3)l(r +3)+X3(co;134)l(3r + 1)]],
where

X,(co;P) =lt3/[(co+2I )'+P2]+P/[(co —2I')2+P~],

X (co;P)=(co—21 )/[(co —2I )~+P ]—(co+2I )/[(co+2I ) +P j,
X3(co;P)=P/(co +P'),
A

& &
——(1+r)+(1+r )/[(1 r+r )]'~—

(3.7)

(3.8)

(3.9)

(3.10)

(3.11)

Note here that the spectrum of squeezing Ss(co) corresponding to the radiation from the sidebands is obtained by sim-

ply dropping the last term in the curly brackets of Eqs. (3.6) and (3.7). It is clear that this last term is positive for all
values of 8 (and r) while the first two terms representing the contribution from the sidebands may take negative values
for some values of 8 depending on r. It is the balance between these two types of terms that yields negative values of
Se(co) leading to squeezing in the total field radiated by the atoms. Also So(co)=Se( —co), which is a consequence of the
fact that the spectrum correlates frequencies from different sides of the reference laser frequency coL .

Further the total variance (:(EEs):) is given by

(:(EEo):)=(
i p i

/2ny) I So(co)dco .

Hence we have

N=1,
(:(dLEe):)=[

~ p ~

(1—r)/8(1+r)]{[1 r —(1+r)cos(28)]+[(—1 r) l(1+r)][1+c—os(28))I,

N=2,
(:(&E&)':)= t ~ p ~

'(1 —r)/[(3+r)(3r+1)])

X t [1 r —(1+—r)cos(28)](1+r)+((1—r) (3r +2r +3)/[(3r +1)(3+r)j)[1+cos(28)]I .

(3.12)

(3.13)

(3.14)

Incidently, (:(EEo):)can be obtained analytically for arbitrary values of N since the steady-state solution for the
master equation (2.1) or (2.8) is available. ' In the high-field limit the following expression for (:(bE ):)can be de-
rived:

(:(bE&):)=(
~ p ~

/4)(I[1+r —(1—r)cos(28)]/2](M)+2&r (R, )+2(1—r)[1+cos(28)]((R, ) —(R, ) )),
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N

~= X l2(N &—)&+N]X' gx",
v=p

(3.16)

x1Q
2.0

N«, &= y ( —N/2)x-
v=p

gx"
v=p

(3.17}

v=p
(3.18)

X =[(1—&r )/(1+ &r )]2, (3.19)

Note that s ':~ & 0 tmphes squeezing.
contribution from the sidebandssi e an s to the variance

brackets
'

is represented by the first term
'

thrm in e curly
rackets in each of expressions (3.13) d (3
a is term may take negative values while the second

erm is positive for all values of 8 (and r) Th.
in in r

an r . us squeez-

tum na

'
g in resonance Auorescence is mainly d hy ue to t e quan-

it is
um nature of the sidebands. For subsor su sequent discussion

S
i is convenient to label the fields E d han t e spectra

t)(co) corresponding to 8=0 H=n. /2 d 8—
z, 3 and S, (co), S2(co), Ss(ru), respectively.

igure 1 shows a plot of the variance (:(hE, ):)
inset in Fig. 1 shows the sideband variance (:(hE, ):).
Clearly squeezing increases with N f 11or a nonzero values
o t e parameter r. This is consistent with the revio

e s. . iso, as expected the magnitude of
squeezing is more in the sideband radiation field than i
the total field of res

'n e t anin
o resonance fiuorescence in agreement

with the results of
EE2 3 ):) and (:(EE2 3 ):) are positive for all values

of r and N as is also seen from Eqs. (3.13) and (3.14).
We have also solved hd the exact time-dependent master

equation (2.1) numerically for some finite values of N.
The analytical results for N= 1 and N=2an = are consistent
wit the exact numerical results. Fi ure 2s. igure 2 shows the be-

avior o ((co) versus cu/y for several values of N and

-4.0.

4Q 60 100

for typical values of r=0.49 and I =40y. F th' 1y. or t is value
o r, t(ro) is expected to show squeezing for N= 1 ac-
cording to Eq. (3.6}. It is seen in Fig. 2 that there is a
range o co/y over which S, (ro) takes negative 1 five vaues or
a . he maximum squeezing is around co=2I for all
N which is consistent with the analytical f 1 f'ca ormu as or

an . e inset in Fig. 2 shows the corresponding
spectrum S,(ro ) for the sideband N hs. ote t at S, (ro) is

negative over the entire range of ru/ and e
co=21". Also theso t e magnitude of the squeezing increases
with N as in the case of S&(ru). This is indeed a manifes-

tation of the quantum nature of th 'd b de si e an radiation.
e mention here that S (ru) and S ( }z z co are positive

throughout the range of cu/y for all r~ 0. The curves in

ig. s ow the behavior of S3(ro) for the sam d t
ig. . ote that S3(c0) assumes negative values in a re-

gion beyond co=2I though the total field shows no
squeezing.
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. 2. The spectrum of squeezing S (co) a f
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queezing
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toN=1 2 5

vs r. urves A —F correspond
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ill/y

FIG. 3. The s ectrump of squeezing S3(co) as a function of
cu/y. Data and labeling as in Fig. 2.
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IV. PHOTON-COUNTING STATISTICS

Mandel' has suggested that the measurement of the
photon-counting distribution p(n) for a superposition of
a coherent field Ec and the radiation field E scattered by
two-level atoms leads to the detection of squeezing. In
particular, the quantity of interest here is Q ( T) related to
the second factorial moment ( n ) of the photon-
counting distribution p (n) by

The second factorial moment (n l) of the photon-
electron distribution is related to the intensity fiuctua-
tions of the light incident on the detector by

(n( )=2q I dr(T T—)
0

~ lim (( ( '(t)d '(t+r)

g(T)=[&n"') —(n )']/&n),
where T is the counting time.

(4. 1)
where q is a parameter related to the quantum efficiency
of the detector. Thus Q ( T) is given by

Q(T)=(2q/T) J dr(T —r) lim [(( ' '(t)C' '(t+r)8'+'(t+r)A'+'(t)) —(8( '(t)6'+'(t)) /(6' '(t)A'+'(t))] .
0 f~oo

(4.3)

In these expressions, ( ' +—'(t) stand for the total field

g(+)(t) E(+)+E(+) (4.4)

Assuming that the constant coherent field E& to be suSciently intense, then to second order in Ec we arrive at the re-
sult

Q(T)=(2q
~ p i

'/T) f d~(T r)—
0

X [exP(2i8)((S (r)S —(0) )——(S —) )+exP( 2i8—)((S (0)S (r) ) —(S )2)

+(S (0}S (r)) —2(S )(S )+(S (~)S (0)) j, (4.5)

where 0 is the phase of the coherent field.
The expression for Q(T) can be evaluated from the solution of Eq. (2.1) or Eq. (2.8) and the quantutn regression

theorem. The sub-Poissonian nature of the counting distribution implies the squeezing. Thus Q(T) &0 implies that the
radiation fieM is squeezed.

The expression (4.5) can be evaluated in the intense-field litnit by expressing S+ in terms of R + and R, according to
the transformation equation (2.3). The resulting two-time expectation values like (R+(r)R+ ) and (R,(r)R, ) are
evaluated as before from the one-time expectation values (R+(~)) and (R,(r)) by means of quantum regression
theorem. The final analytical expressions for Q( T) read as follows:

%=1,
Q(T)=[q(1 —r)

~ p ~

/T(1+r)][[1 r —(1 +r)c so( 82)—] (F Ty )—)2(/r si (2n8)G(T;1' ))

%=2,
+ [(1—r)2/(1+ r) )[1+cos(28) ]H ( T;y2) ], (4.6)

Q(t)=[4q(l —r)
~ p ~

/T(3r+1)(r+3)]
X I[1 r —(1+r)cos(28)][A—,F(T;p))+ A2F(T;p2)] 2Vr [A, G(T;p))+—A2G(T;p2)]sin(28)

+2(1—r)2[rH(T;p3)/(r +3)+H(T;p4)/(3r +1)][1+cos(28)]I .

Here the functions F, G, H have the form

exp( —Pt)[(P —4I )cos(2I t) —4PI sin(2I t)]+Pt(13 +4I ) —(P —4I )

(P2 41 2 )2

G(t; )= exp( (8t)[4PI—cos(21"t)+(P —4I )sin(21 t)]+21't (P +41 ) —4PI
(P2+41 2)2

H(t;P) = [exp( Pt)+Pt —1]/P' . —

(4.7)

(4.8)

(4.9)

(4.10)

It may be added here that Q ( T) corresponding to the
side-band radiation is obtained from (4.6} and (4.7) by
omitting the last term in the curly brackets. For subse-
quent discussion we write Q(T) corresponding to 8=0, Q ( T)=4qT(:(AEs):), (4.11)

1

8=m/2, and 8=m. /4 as Q„Q2, and Q3, respectively.
Note that for small values of T (2I T « 1).
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x10 x10 2

3

-5

0 0 0.1 0,2 0.3 0,4 0,5
-5

0.0 0.2 0.4 0.6 1.0
-7

0.0 0.2 0.4 0.6 0.8 '1.0

FIG. 4. A plot of Q&(T) (in units of q ~ p ~

') vs yT for
r=0.49 and I =40y. The inset in the figure shows plot of
Q, (T) vs y T. Curves 3 Frefer —to N= 1, 2, 3, 5, 7, and 10, re-

spectively.

where (, :(AEe):) is given by (3.13) and (3.14) for N= 1

and 2, respectively. Thus for small values of T, Q, &0.
Also, it can be shown that Q, (T) &0 for N= 1 and 2 as
T~~. However, Q, (T} remains negative over the en-

tire range of T.
Figure 4 shows the variation of Q, (T) with yT for

r=0.49 and I =40y. The curves in this figure are ob-
tained from the numerical solution of the high-field mas-
ter equation (2.8). The behavior of Q&(T) for N= 1 and 2

pre
'

dieted analytically is in agreement with numerica re-
i Nsuits. It is important to note here that with increasing

the region of time T over which Q&(T) remains negative
is extended. The inset in Fig. 4 shows the corresponding
quantity Q &

( T} for the sideband radiation. Here Q ~
( T) is

negative for all values of N over the entire range of T.
The increasing negative values assumed by Q, ( T) as N is

'hincreased confirms further that squeezing increases wit
N. Finally, in Fig. 5 we show the variation of Q3(T} with

y T for the same data as in Fig. 4. Note that Q3( T) takes
positive values initially over a small interval of time be-
fore becoming negative. For N=1 and 2 it assumes posi-
tive values subsequently in agreement with analytical re-

YT

FIG. 5. The behavior of Q, (T) as a function of yT. Data
and labeling as in Fig. 4.

suits. However, for N~3, Qs(T) continues to remam
negative. The behavior of Qs(T) is similar except that
after initial positive values, it continues to remain nega-
tive over the entire range of T for all values of N. We
may also add here that both Q2(T) and Q2(T} are posi-
tive for all values of T.

V. CONCLUSIONS

In the present paper we have examined collective
effects on squeezing in resonance fluorescence in the
intense-field limit. The analytical results for one and two
atoms for the spectrum of squeezing as well as the numer-
ical results for higher number N of atoms show that
squeezing increases with N. Moreover, the squeezing
arises essentially from the quantum nature of the side-
bands. Further analysis on the basis of photon-counting
statistics of the fluorescent radiation also confirms this.

ACKNOWLEDGMENT

The authors wish to express their gratitude to Dr. R.
R. Puri for some useful suggestions and for his keen in-
terest in this work.

~D. Stoler, Phys. Rev. D 1, 3217 {1970).
D. Stoler, Phys. Rev. Lett. 33, 1397 (1974).
H. P. Yuen, Phys. Rev. A 13, 2226 (1976).

4H. P. Yuen and J. M. Shapiro, IEEE Trans. Inf. Theory 24, 657
(1978);26, 78 (1980).

5C. M. Caves, Phys. Rev. D 23, 1693 (1981).
D. F. Walls and G. J. Milburn, in Quantum Optics, Gravitation,

and Measurement Theory, edited by P. Meystre and M. O.
Scully {Plenum, New York, 1984).

7G. Milburn and D. F. Walls, Opt. Commun. 39, 401 (1981).
L. A. Lugiato and G. Strini, Opt. Commun. 41, 67 (1982).
M. Wolshinsky and H. J. Carmichael, Opt. Commun. 55, 138

(1985).

' H. P. Yuen and J. M. Shapiro, Opt. Lett. 4, 334 (1979).
"G. J. Milburn, D. F. Walls, and M. D. Levenson, J. Opt. Soc.

Am. B1,390 (1984).
~2L. A. Lugiato and G. Strini, Opt. Commun. 41, 374 (1982); 41,

447 (1982).
W. Becker, M. O. Scully, and M. S. Zubairy, Phys. Rev. Lett.
48, 475 (1982).

'4B. Yurke, Phys. Rev. A 29, 408 (1984).
'5R. S. Bondurant, P. Kumar, J. M. Shapiro, and M. Maeda,

Phys. Rev. A 30, 343 (1984).
' M. D. Reid and D. F. Walls, Phys. Rev. A 28, 332 (1983).
'7M. D. Reid and D. F. Walls, Phys. Rev. A 31, 1622 (1985).
' D. F. Walls and P. Zoller, Phys. Rev. Lett. 47, 709 (1981).



38 SQUEEZING IN COOPERATIVE RESONANCE FLUORESCENCE 807

' L. Mandel, Phys. Rev. Lett. 49, 136 (1982).
H. F. Arnoldus and G. Nienhuis, Opt. Acta 30, 1573 (19&3).

2~D. F. Walls, Nature (London) 306, 141 (1983).
R. Loudon, Opt. Commun. 49, 24 (1984).
Z. Ficek, R. Tanas, and S. Kielich, Phys. Rev. A 29, 2004
(1984).
M. J. Collet, D. F. Walls, and P. Zoller, Opt. Commun. 52,
145 (1984).

P. A. Lakshmi and G. S. Agarwal, Opt. Commun. 51, 425
(1984); see also errata in Opt. Commun. 61, 438 (1987).

2sN. N. Bogolubov, Jr., A. S. Shumovsky, and Tran. Quang,
Phys. Lett. 116A, 175 (1986).
S. V. Lawande, R. R. Puri, and Q. V. Lawande, in Proceedings

of the Second Asia-Pacific Physics Conference, edited by S.
Chandrasekhar (World Scientific, Singapore, 1987), p. 962.
R. E. Slusher, L. %.Hollberg, B.Yurke, J.C. Mertz, and J.F.
Valley, Phys. Rev. Lett. 55, 2409 (1985).
L. A. Wu, H. J. Kimble, J. L. Hall, and H. Wu, Phys. Rev.
Lett. 57, 2520 (1986).
B. L. Schumaker, S. H. Perlmutter, R. M. Shelby, and M. D.
Levenson, Phys. Rev. Lett. 58, 357 (1987).
M. Maeda, P. Kumar, and J. Shapiro, Opt. Lett. 12, 161
(1987).

32H. J. Carmichael and D. F. Walls, J. Phys. B 9, 1199 (1976).

H. J. Kimble, M. Degenais, and L. Mandel, Phys. Rev. A 18,
201 (1978).
R. Short and L. Mandel, Phys. Rev. Lett. 51, 384 {1983).
A. Heidmann and S. Reynaud, J. Phys. (Paris) 46, 1937 (1985).
We might mention here that the problem of squeezing from an

ensemble of two-level atoms in a cavity has been treated by A.
Heidmann, J. M. Raimond, and S. Reynaud, Phys. Rev. Lett.
54, 326 (1985) and A. Heidmann, J. M. Raimond, S. Reynaud,
and N. Zagury, Opt. Commun. 54, 189 (1985). However, we

consider the collective behavior of atoms in free space in the
present paper.
R. R. Puri and S. V. Lawande, Phys. Lett. 72A, 200 (1979).

3SS. V. Lawande, R. R. Puri, and S. S. Hassan, J. Phys. B 14,
4171 (1981).
S. S. Hassan, G. P. Hildred, R. R. Puri, and S. V. Lawande, J.
Phys. B 15, 1029 (1982).

~G. S. Agarwal, in Quantum Optics, Vol. 70 of Springer Tracts
in Modern Physics, edited by G. Hohler (Springer-Verlag,
Berlin, 1974).

4~J. G. Cordes, J. Phys. B 15, 4349 (1982).
G. S. Agarwal, L. M. Narducci, D. H. Feng, and R. Gilmore,
Phys. Rev. Lett. 42, 1260 (1979).

43A. P. Kazantsev, V. S. Smirnov, and V. P. Sokolov, Opt. Com-

mun. 35, 209 (1980).


