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Quantum analysis of intensity Auctuations in the nondegenerate parametric oscillator
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A quantum analysis of the intensity fluctuations is given for the nondegenerate parametric oscilla-
tor both above and below threshold. Theoretical analysis and experiments by Heidmann,
Horowicz, Reynaud, Giacobino, and Fabre [Phys. Rev. Lett. 59, 2555 (1987)] have shown that a
noise suppression below the vacuum level is possible in the difference of the intensities of the signal
and idler modes. The effect of nonequal cavity decay rates and intracavity losses is shown to modify
significantly the fluctuation spectra for the difference in the intensity of the signal and idler beams.
The results of exact nonlinear solutions for the internal cavity modes are discussed. We demon-

strate that a very sensitive absorption detector may be made by operating the oscillator near thresh-
old.

I. INTRODUCTION

The parametric amplifier has long been a prototype
system for the production of light with quantum Auctua-
tions less than those of coherent light. It was first point-
ed out by Takahashi' that the parametric amplifier will
amplify one quadrature of the signal radiation and at-
tenuate the other quadrature. The quantum fluctuations
associated with the quadrature that is attenuated are re-
duced below the level of vacuum fluctuations. In order to
increase the gain, the parametric medium may be placed
inside an optical cavity where it is coherently pumped
and becomes a parametric oscillator. An early quantum
analysis of the parametric oscillator was given by Gra-
ham and Haken. A fully nonlinear quantum analysis of
the degenerate parametric oscillator was given by Drum-
mond, McNeil, and Walls. Milburn and Walls" calculat-
ed the squeezing in the internal cavity mode below and
above threshold. A calculation of the squeezing spec-
trum in the output field for the degenerate parametric os-
cillator below threshold was given by Collett and Gar-
diner and Yurke. Above threshold, the squeezing spec-
trum for the degenerate parametric oscillator has been
calculated by Collett and Walls, and Savage and Walls.
Experimentally, squeezing amounting to a noise reduc-
tion of 62%%uo below the vacuum level has been achieved in
a near degenerate parametric oscillator operating below
threshold.

The quantum statistics of the nondegenerate paramet-
ric oscillator contain some interesting features not found
in the degenerate device, particularly above threshold. In
the nondegenerate parametric amplifier, one pump pho-
ton is destroyed and a signal and idler photon are simul-
taneously created. The simultaneous creation of the pho-
ton pairs has been demonstrated experimentally by Burn-
ham and Weinberg' and Friberg et al. " Experiments
which use the correlation between the signal and idler
photons to generate a photon number state have been

done by Jakeman and co-workers. ' '" Since the photons
are created in pairs, the fluctuations in the difference of
the signal and idler photocurrents will be greatly re-
duced. This property is exploited by Reynaud et al. ,

'

who show that perfect noise suppression is possible in the
difference between the intensities for the signal and idler
beams in the output of a parametric oscillator above
threshold.

Heidmann et al. ' have recently reported an experi-
mental measurement on the reduction of Auctuations
below the vacuum level in the difference intensity of the
signal and idler modes of a parametric oscillator. An ear-
lier experiment measuring Auctuations in the difference of
the quadrature phases of signal and idler beams in four-
wave mixing has been performed by Levenson et al. '

It was first shown by Graham and Haken that the
phases of the signal and idler modes in a nondegenerate
parametric amplifier are not stable but diffuse. In our
analysis we include this phase diffusion, unlike the work
of Reynaud et al. ,

' which assumed that the phases were
stable. We show that the results of Reynaud et al. ' for
the fluctuations in the difference of intensities of the two
modes remain valid. The squeezing, however, is sensitive
to the phase diffusion, and calculations on the squeezing
are presented elsewhere. '

In our calculations we include the possibility of
different cavity decay rates for the signal and idler modes.
For the case of equal cavity decay rates of the signal and
idler modes, the pump fluctuations do not enter and there
is complete noise suppression in the intensity difference
between the two modes. For different cavity decay rates,
while one still gets perfect noise suppression around zero
frequency, the spectral behavior may differ markedly, as
pump Auctuations now affect the system. We calculate
the noise spectrum for the intensity difference both above
and below threshold.

We also include the effect of intracavity 1osses in our
analysis. The basic effect of intracavity losses is to reduce
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the correlation between the signal and idler modes so that
the noise suppression is no longer perfect. This may be
made use of in the design of an absorption detector where
one places an absorber at the signal frequency inside the
optical cavity. The presence of the absorber is marked by
an increase in the noise, an effect which may be enhanced
by operating the device close to threshold.

o' I tg)0 t
H& ——iA(ee ao —apE*e ),
H2 ——ifiX(apa ~a2 —apa~a2),

2

H3 ——g a, I, +H. c. ,
i=p

(2.1)

where ap, a, , and a2 are the boson annihilation operators
for the pump, signal, and idler modes, respectively. We
assume that resonance cop=co, +co&. The pump mode is
driven by a coherent driving field with amplitude c and
frequency cop. J is the strength of the parametric interac-
tion. Fp, I &, and I 2 are the heat bath operators for the
cavity damping of the pump, signal, and idler modes, re-
spectively.

One may derive a master equation for the density
operator p of the three coupled modes in the form'"

p= [Hp+H~ +H2 p]+ g K ([a p a t]+[a pa ])
1

iA i=0
(2.2)

where K are the cavity mode damping rates. The mode
spacing has been assumed to be large compared to the
cavity linewidths and we have taken the bath to be at
zero temperature.

We may transform this operator master equation into a
Fokker-Planck equation using the generalized P represen-
tation, '

) f P([a], ]a'], t)
~ [a] )([a']*

~
dIa]dta ]

(2.3)

where [a] =(ao, a&, a2) and [a ] are independent com-
plex variables. The resulting Fokker-Planck equation has
the form'

BP
at

(1~pap —e —Xa,a~)+ (a,a, —Xa2ap)
hap Ba,

II. INTENSITY FLUCTUATIONS
ABOVE THRESHOLD

The nondegenerate parametric oscillator consists of
three interacting field modes: a pump, signal, and idler
within an optical cavity which is coherently driven at the
pump frequency. The Hamiltonian describing this in-
teraction is

3

H= gH
j=0

Hp ——g Rtp;a;a;,
i=p

This Fokker-Planck equation is equivalent to the follow-
ing set of stochastic differential equations:

ap = Kpap+ C —Pa ~a2

a& ———a&a&+Xaoa&+R &(t),

a2 ——
l2r—ap+Xap a)+R2(t) .

(2.5)

The noise terms R, and R2 have the following correla-
tions:

(R, (t)R, (t')) =X(ap)5(t t'),—

(R, (t)R,'(t') ) =X&ao) 5(t —t'), (2.6)

T) = 1'2 =0,

ro= Po
Kp

(2.8)

where e=
~

c,
]
e and P~ is the phase of the coherent
if'

pump. The threshold value of the pump c is

E(h =(Ko+lc)Kp)/X. Above threshold,

+ K)K2
fp= x 4o= —4p

(2.9)
f),T2= 0i+0z=0o

where

&&o&i&z
(E —1), E=

«hr

The interesting point in the above-threshold solution is
that only the sum of the phases P, +$2 is defined. No
steady state exists for the phase difference. The phase
difference (with zero eigenvalue for its equation) is free to
wander with noise fluctuations.

We linearize the equations of motion about their
steady-state values. We write the linearized equations in
terms of the variables

@=4i+4z

with all other correlations being zero.
The equations of motion are parallel to those of Gra-

ham and Haken, who derived the operator form of the
equations. The equations may be solved by linearization
techniques. However, care must be taken above thresh-
old because one of the eigenvalues is zero in that region.
This is best seen by moving into the amplitude-phase rep-
resentation. ' ' ' Define r, P,p, r/i by

aj(t) =r&[1+pj(t)]e
—i[4' +0 [&]]

(2.7)

where r, P~ are the steady-state solutions. Solving for the
steady state, we find, below threshold,

a ~
a'

+ (a2a2 —Xa~ap)+ Xap+c. c. P .
Baz Ba,Baz

(2.4)

Ps =P&, +P2

Pd —P& P2 .

(2.10)
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The equations read

pz = —(Ki —Kz )pd +(Ki+Kz)po+Rg(t)

pd = —(K&+Kz)pd +(Ki —K z) po+Rd( t),

po = ~0 po ico( 1 }p.

cP = —(x., +icz)(cubi —it|0)+Rt,(t),

Q=Ro(t),

$0—— ico(g—o+ (E —1)4),

(2.11}

The Lienard-Chipart stability criterion shows that the p
system is stable. We also find that the 4, $0 system is
stable. The 4 variable, however, has a zero eigenvalue
and moves about randomly under the influence of the sto-
chastic force.

We wish to calculate the spectrum of fluctuations in
the intensity difterence between the signal and idler
modes. We assume a single ported cavity where the out-
put fields from the cavity at the signal and idler frequen-
cies, b, (t) and bz(t), are related to the cavity modes by
the boundary conditions

where the noise terms have the following correlations:
b, (t) =+2tc, a, (t)+b, ,„(t) . (2.13)

(R,(t)R„(t)) = (Rd(t}R,(t') ) =0,
(2.12)

The bj;„specify the fields that are input to the cavity
boundary. We are required to calculate two-time correla-
tion functions of the form

= —,'(ici —tcz)
K)K2

5(t —t') .
C

(R&(t)R&(t')) = —(R~(t)R~(t')) =, 5(t t'), —
C

(R „(t)R~(t') ) = (R ~(t)R &(t') )
( b, (r)bi(r), bk(0)bp(0) ),

where (a, b ) =(ab ) —(a ) (b ). Using the boundary
condition (2.13} for a vacuum input, we proceed as fol-
lows:

(2.14)

(2.15)

(bi (r}bj(r),bt, (0}bk(0})=4tcitck[(at, (0}aj(r}ai(r)ak(0) ) —(a (r}a&(r) ) (ak(0)ak(0) ) ]i+2+K Kk (a, (r)a„(0))5(r)5,k

=4icjic„(aj(r)ai(r), at, (0)a&(0)) +2xl (aj(0)a, (0))5(r)5JI,

=16KJKi, f&fk(pi(r))pk(0))+2K f&5ik5(r) .

The spectrum of the variance in the output intensity difference I& b, b, bzb——z is th—en (::denotes normal ordering)

Sd(co)= f dre ' '(Id(r},I&(0))=(b,b, )+(bzbz)+ f dre ' '(:Id(r), I&(0):)

=16 d« ' '
&&&)Pi «2~2P2 &1 191 2 2P2 0 +2 Kl 1+K2P2

We proceed by transforming to frequency space,

p (co)= — dre ' 'p (r) .i (2.16}

The noise correlations

(R, (t)R„(t') ) =D,„5(t t')—
become

(R, (co)R„(co')) =Dt, 5(co+co'),

(2.17)

(2.18)

and the cumulants (p, (r),pk(0)) have the stationary spectrum given by the (p, (co),pk(co')) cumulants with the
5(co+co') omitted. That is, for a stationary state,

5(co+co')f«e ' '(p, (r),pk(0)) =(p, (co),pk(co')) . (2.19)

So,

Sd(co) =2(icir i +iczrz )+2 2 16 2 2 2 t 2 I

5(co+co')
( Kir i pi(co) —Kzrzpz(co), Kir ipi(co ) —Kzrzpz(co ) ) (2.20)

Above threshold KjIj ——c, so that

'))
Sd(co) =4c 1+4c

5 co+co
=4c Sd(co) .

um or shot-noise level is Sz(co)=1 and perfect noise
suppression is Sd(co)=0. The solution of this system in

frequency space is an algebraic problem,

0= —I cop, —25pd +2Kpo+R, ,

(2.21)

We define Sd(co) as the normalized spectrum. The vacu-

0= —( 2K+ i co )pd +25pp+ Rg

0= —(Ko+ 1co}po Ko(E —1)p, ,

(2.22)
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where

K= —,'(K, +K2), 5=—,'(K, —K2),

with solution

Rd ( co ) +25lccp( co )

2/c+ E co

(K—p+i co)

Kp(E —1)
(2.23)

where

e I cp'[4+ Kp(E + 1)]—E )8=
[c,—co' (2+Kp)] +co' (2KpE —co' )

v=4(1 —5' )Kp(E —1),
and we have scaled the dampings and frequency by ~,
that is,

CO =CO/K~ Kp= Kp/K& 5 =5/K

—R, (cp)+ . Rd(cp)
2

2K+i CO

pp(cp) =
l CP(Kp+ l Cil )

Kp(E —1)
45

2K+ l CO

From this solution and the correlations of the noise terms
given by Eqs. (2.12) and (2.17), we obtain

2
cp' +45' (I+8)

Sd cp =4c,
2N +4

The case of equal signal and idler decay rates 5=0 has
been weil discussed by Reynaud et al. ' and is plotted in
Fig. 1. The spectrum is a simple inverted Lorentzian
with full width at half maximum (FWHM) 4K and max-
imum noise suppression at zero frequency. Thus

Sd(co) =1— 4

4+ co'
(2.25)

As pointed out by Reynaud et al. , the fluctuations in the
signal-idler intensity difference are reduced below the
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FIG. 1. (a) Plot of Sd(~) above threshold for high pump cavity damping. E=1.1, vo ——10, 5'=0 ( ), 5'=0.5 ( ———). (b)
Plot of Sd(co) above threshold for high pump cavity damping. 5'=0.6, ~0——10, E= 1.1 ( ), E=2 (——), E =5 ( ———).



792 A. S. LANE, M. D. REID, AND D. F. WALLS 38

which simplifies, with symmetry arguments, to

~
(a]a]aza2)

~
((a a )+(a,a]) . (2.27)

The equality would imply maximum correlation between
signal and idler modes. This is equivalent to zero fluctua-
tion in the difference intensity, since

((a,a] —aza2) ) =2((a] a] )+(a]a] )

—&a]a]a2az ) ) )0, (2.28)

and implies that one can infer with total precision at a
distance the intensity of the signal by measuring the in-
tensity of the idler. Classical theory predicts the weak-
er inequality

~

&a,a]a,a, )
~

((at'a')
so that the fields with (a,a]a2a2) & (a, a, ) are quan-

shot- or quantum-noise level and are independent of the

pump fiuctuations (and hence independent of pump decay
rate Ko and pump power E). It is readily seen from Eqs.
(2.10) that, where K] =]rz, the signal-idler intensity-
difference variable pd decouples from the equations for
the signal-idler intensity sum p, and pump fluctuations

po, and the simple solution (2.25) follows directly. Thus,
although the individual signal and idler intensities show
significant fluctuations that are sensitive to pump param-
eters, the intensities are correlated so that the signal-idler
intensity-difference fluctuations are reduced according to
(2.25).

McNeil and Gardiner' and Graham have obtained
nonlinear solutions for the intensity correlations in the
internal cavity modes. Quantum mechanics predicts the
general Cauchy-Schwartz inequality

(2.26)

turn. ' This is equivalent to

((a]a]—a2a2) ) (2(a]a] ),2

that is, the intensity-difference fluctuations reduced below
the shot-noise level of 2(a]a] ) [or Sd(co) &1 in the spec-
tral variance]. Graham derived the following correlation
identity for the nondegenerate parametric oscillator (for
K] =K2):

(a]a]aza2) =(a] a] )+—,'(a, a] ) . (2.29)

This implies that ((a]a]—aza2) ) =(a,a] ), that is, fluc-

tuations in the difference intensity are at half the shot-
noise level. The identity refers to the correlation between
the internal cavity fields. Though above that allowed
classically, the correlation is not maximum because of the
vacuum fluctuations imposed by the loss of photons on a
time scale (2x. )

' through the cavity mirror. The result
of Reynaud et al. , however, for the spectrum of fluctua-
tions, indicates perfect correlation to be possible between
the external fields at zero frequency (for a single ported
cavity). This is assuming no additional losses. The zero-
frequency result refers to very long detection times where
signal and idler photons that are generated in the same
parametric process have certainly escaped to the field
external to the cavity. ' The fluctuations occurring on a
time scale (2K) ' due to the cavity loss will affect the
higher-frequency components of the spectrum.

Figures 1 —4 plot the intensity fiuctuation Sd(co) for
differing signal and idler and pump decay rates. The per-
fect noise suppression in the external signal and idler
difference intensity is obtained at zero frequency, regard-
less of the relative size of decay rates, since the zero-
frequency result is for detection times that are long com-
pared to both signal and idler cavity escape times. How-
ever, with nonequal signal and idler decay rates it is clear,
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FIG. 2. Plot of Sd(co) above threshold for low pump cavity damping. so=0. 3, a.,/a, =2, E=1.1 ( ), E=5(———).
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from Eqs. (2.10), that the fluctuations in the difference in-
tensity couple to the fluctuations in the pump and signal-
idler intensity sum. We see from (2.10) that the noise in
the signal-idler intensity sum fluctuation p, is increased
above the vacuum-noise level. The bandwidth of the
Sd(co) noise reduction is now sensitive to the ratios of de-
cay rates of the cavity modes and to the pump power.
For some parameter values, relatively large fluctuations
due to coupling of pd with the pump and p, give in-
creased noise levels in Sd(co) above the shot-noise limit,

and within the bandwidth indicated by the average
signal-idler decay rate.

To facilitate discussions, we rewrite the linearized
equations (2.10) for the amplitudes pj in terms of the in-

tensity fluctuations directly. We define

5I =a.a —r

5I, =a,5I, +Ir25I2,

5Id ——~,5I, —~26I2
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FIG. 4. Plot of Sd(cu) above threshold for comparable pump, signal, and idler cavity dampings. ~0——0.67, ~&I~& ——2, E=1.1

( ), E=2 (—-), E=10(———).
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to obtain the equations

5Ip
———ap5Ip 5—I, ,

5I, = —255Id +2KKp(E —1)5I p+F (r),

5Id —— 2~—5Id +25' p(E —1)5Ip+Fd(t),
where the nonzero noise correlations are

(2.30)

The final solution for the spectrum [Eq. (2.24) with

ap~0] will thus be of the form Sd(rp) =5 +L where the
eigenvalues A, , of the 6Ip, 5I, subsystem are

2

2 1/2
Kp Kp gK 62—+—1 — (E —1)+8(E—1)—
2 2 Kp K

(F,(r)F, (r') ) = —(Fd(r)Fd(t') )

=4m, x2c 5(t t') . —
We discuss firstly the limit where the pump cavity de-

cay rate Kp is much larger than the signal and idler decay
rates K& and K2. Then the pump may be adiabatically
eliminated to give the following intensity equations for
signal and idler:

5I, = 255Id—2'(E——1)5I,+F,(t),
(2.31)

5Id —— 2~5Id ——25(E —1)5I,+Fd(t) .

Thus the solution (2.24) for Sd(pi) in the limit of Kg~ 00

can be written in the form

Sd(co)=1 —KiK2j Cs gLi++Ds ~Li. (2.32)

Ay = —KE+a'[(E —2) +4(E —1 )5'2]'i2 (2.33)

Thus the spectrum is the sum of two Lorentzians both
centered at co=0 and with widths 2A, + and 2A, , respec-
tively. For the case of 5' quite small, such that
4(E —1)5' « (E —2), the eigenvalues become
A, +~ 2a(E —1) a—nd I, ~—2~ for E &2. Thus, near
to threshold E ) 1, we see [Fig. 1(a)] a narrow Lorentzian
component Li+ with width 4a(E —1) and a broader
component with width 4a. The height (or depth) of the
narrow component increases with increasing 5'. Figure
1(a) shows that for E=1.1, 5') 0.5, the bandwidth of
significant noise reduction is much smaller than 4K. On
moving further above threshold, the narrow line L&+
broadens [Fig. 1(b)] significantly. The effect of
sufficiently large 5' is still to reduce the bandwidth of
effective noise suppression.

One may also consider the limit where the pump decay
rate is much smaller than the sum of the signal and idler
decay rates, i.e., vp « 2' (ap~0). In this case the
intensity-difference variable 6Id may be adiabatically
eliminated to give

5zp F„(t}
5Id ( t)= (E —1)5Ip+

K 2K

and a coupled 6Ip, 6I, subsystem

where Li+ ———2A, +/(A, ++co ) and Li ———2A, /
(A, +co ), and Cs z and Ds E are coefficient functions of
6 and E. k+ and A, are the eigenvalues of the drift part
of Eqs. (2.31),

(2.36}

III. INTENSITY FLUCTUATIONS
BELOW THRESHOLD

Below threshold, we may neglect pump depletion and
set ap ——( ap & = s /Kp and so

a i
= —K ia i +d cx2+ R i

a2 ———K2a2+ d a, +R 2,
(3.1)

and L symbolizes the Lorentzian components associated
with the eigenvalues k& and A,2. Thus the solution is a flat

floor of noise 5 with noisy sidepeaks, for nonzero 5, due
to the coupling of signal and idler intensity-difference
fluctuations with the pump and intensity-sum fluctua-
tions. The flat perfect noise suppression for 5=0 is due
to the correlation of signal and idler intensities over the
(now infinite) bandwidth 4a. With tclirp large, the eigen-
values A.

&
are complex for sufficient E and hence we see

2

noisy sidepeaks. The peak separation increases with

pump power E. Figure 2 shows the true noise spectrum
(2.24) in the limit of vp very small. We note the initial

sharp increase in the height of the noise peaks with in-
creased E. The central frequencies between the noisy
peaks have reduced fluctuations with perfect reduction at
zero frequency. In essence then, for reasonable pump
powers E, the bandwidth of noise reduction is reduced
below 4K, especially at lower intensities near threshold.

An interesting parameter regime of possible experi-
mental interest is where the signal (or idler) cavity decay
rate is much greater than that of the pump or idler. This
corresponds to large 5 and small imp in the solution (2.24).
Figure 3 shows such correlation spectra, demonstrating
the small ~p ("good pump") features discussed above in
the limit of larger 5. Comparison of Figs. 2 and 3 shows
that the effect of increasing 5' is to increase the base noise
level 5 that is prominent at outer frequencies over the
bandwidth 4K. There is little noise reduction for higher
frequencies beyond the sidepeaks.

Figure 4 shows the appearance of the intensity-sum
fluctuation sidepeaks in the noise spectrum in parameter
regimes of moderate Kp. The features discussed above are
apparent. The noisy sidepeaks are more apparent at high
intensities and low Kp values.

6Ip ———Kp5Ip —6I, ,

~ 265I, = — ap(E —1)+2xwp(E —1) 5Ip
K

+F,(r) —Fd(&) . —5

(2.35)
plus the conjugate equations where d =Xc./Kp.

The equations form two subsystems (a„a2) and
(a2, a, ), each having eigenvalues

(3.2)
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where
f g ~

'=
~

d
~

+&'=E (K —~ )+& (E =a~et ~

the effective below-threshold driving term. Now
0 & g & K with the maximum occurring at threshold and
also at K2lK] ~0 or ao; so the system is stable.

The equations are easily solved in frequency space with

1a (co)= — dre ' 'a (r) .
&2n.

tions using the Gaussian properties of the Wiener noise
processes for which

(x ] ( t ] ) xQ ( t p )x 3 ( t 3 )x&]( t4 ) )

= ] x](t] )x2(t2 ) ) (x3(t3 )xz(t~ })

+ (x](t2 )x3(t3 ) ) (x2(t2 )x4(t4 ) )

The solutions are

(K2+ico)R](co)+dR 2(co)
a, (co}=

(K]+]co)(K2+]co)—
I
d

I

d'R ](co)+(K]+ico)R2(co)

(K, +ico)(K2+ ]co)
~

d
~

(3.3)

+ (x](t] )x4(t~) ) (x2(t, )x, (t~) ) .

The spectrum of the intensity correlations

S k(co)= J e '"'(I (r),I„(0))

(3.6)

(3.7)

is then given by the convolution integrals of the frequen-

cy space correlations.

plus symmetric equations for the (a, , a2) pair. The
nonzero correlations are

S k(co) = f dco'[C + +(co')C (co —co')

(R](co)Rq(co') ) =d5(co+co'),

(R ](~}R&(~') ) =d' S(~+~ ) .
(3.4)

+C + (co')C +(co —co')],

(3.8)

=IJ"+2rjp (t), (3.5)

where I"=r cannot be used if r =0. Instead, the four-
time correlation is broken down into two-time correla-

l

We wish to calculate intensity correlations
(aj(t)aj(t), az(t')a], t')). However, the normal lineari-
zation procedure which relates amplitude and intensity
fluctuations by a linear factor

I,(t)=[r, +p, (t)]'=r,'+2r, p, (t)+p,'(t)

—K,I,(0))] (3.9)

are given by

where we define C„r(co) by (x(co)y(co') )
=C„r(co)5(co+co'). Thus the spectrum of the intensity-
difference fluctuations

Sd(co) = Jdr e ' '[25(r)(K]I](0)+K2I2(0))

+4(K]I](1 ) —K2I2( T)&K]I]('0)

Sd(co) =— dco'
f K]C t (co')+K2C t (co')+2K][C t t(co')C (co —co')+C t (co')C t(co —co)]

7r alai a2a2 l 1 l l

+2K~[C t t(co')C (co —co')+C t (co')C t(co —co')]
a2a2 2 2 a2a2

—2K]K2[C t t(co')C~ ~ (co —co')
1 2

+C t (co')C t(co co')+C—t t(co')C (co co')+C t —(co')C t(co —co')]I .
ala2 ala2 2 l 2 l a2al a2al

The correlations C may be calculated from Eqs. (3.3) and (3.4). The resultant expression for the spectrum is
j k

Sd(co)= —
I
d

I
'K]K2 J dco'f [K](co'}K2(co &

—
I
d

I
'][K] (co }K2(co &

—
I
d

[
']]

4K]K2
I
d

I

' —« f [ I
d

I

'+K] (~')K2(~ }]( I
d

I

'+K] (~—~' }K2(~
x 1+

[K](co—co )K2(co —co ) —
~

d
~

][K](co —co )K2 (co—co ) —
~

d
~ ]r r 2 Q I Q I 2

(3.10)

(3.12)

The poles do not touch each other or the real axis, pro-
vided that 0 &

~ g ~
& K. The result written in scaled form

(P =P /K) ]s

where K~(co) =Ki+ico
This integral can be solved by contour integration by

rewriting

—K](co)K2(co)= [co—]'(K+g) ][co—] (K—g)] .

Sd(co} 2 4g 2

Sd(co) = = 1+ (1+48 )
S(j co' +4 co' +4j'

(3.13)
where

co' (3—2(' }—4(2g' —7g' +1)
[co' +4(1—g') ][co' +4(l+g') ]
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2KE2( 1 5'2)2

(1—g')
i2 E2+5i2(1 E2)

So ——

and 5'=(1 —~z/~] )/(1+]~2/]~] ) is the scaled difference in

the signal and idler damping rates, and E=
~

E
~

/e, „, is

the scaled driving intensity. For equal damping K, =K2,

Sd(co)

~2+ 4K2
(3.14)

just as was obtained in the above-threshold calculation.
For ir]&]r2 (5&0), the effect of the other combinations

of the eigenvalues given by Eq. (3.2) comes into play. As
the effective driving term g increases to the threshold
value of a., the ]r—g eigenvalue drops to zero and the cen-
tral dip is pinched, while a broader curve is formed fur-
ther away from co=0 (see Fig. 5). In the limit of
]r2/x]~0 or ~ or

~

s ~s,h, the width of the central dip
falls to zero.

IV. EFFECT OF LOSSES

The relationship between the external intensities I; and
the internal intensities I; in the P representation is given

by the input and/or output formalism of Collett and Gar-
diner [see Eqs. (2.13) and (2.14)],

(I,(r),I„(0))=4@,) „(I,(r),I„(0))
+25,„5(r)y, (I,(0)) . (4.2)

We shall consider the effect of losses in the intracavity
medium. We shall denote the total losses (cavity plus
internal) by a and the cavity losses by y (y (aj ). The
internal equations remain unchanged, but the relation-
ship between the external modes I, (t) and the internal
ones is given by the y .

The spectrum of the difference current is

Sd(co)= f dre ' '(I](r)—Iz(r), I](0)—I2(0))„.
(4.1)

Sd(ci) )
lim

S0

a) +45
co +4K

0, co =0.
(3.15)

This may be written in the form

Sd(e}=SO+4J dre ""'(Id(r),Id(0))„,
where

(4.3)

This expression is also that obtained in this limit ap-
proaching from the above-threshold side. In this limit
the squeezing minimum is limited by the difference in
cavity damping

~

5'
~

= —,
'

~
a] —x.

z ~

/a. (apart from a point
discontinuity at co=0).

Below threshold, the scaled spectrum behavior is not
influenced by the cavity damping of the pump (which
serves only to change the pump threshold). This is in
contrast to the above-threshold result, whose behavior
could be significantly altered by reducing the pump
damping below that of the other modes. This gives

j~1,2 . (4.4}

SQ=2r] ](I]) +2r2 2(I2 )

I„(r)=r,~,I, (t) r,~,I,(t—),
and I =y j /Kj We consider the above-threshold regime
where the usual linearization procedure gives

2

I (t)=r [1+p (t)] =r [1+2@~(t)], r~
J

2.0-

1 ~ 5-

1.0-

0.5-

0.0

—10 10

FIG. 5. Plot of Sd(co) below threshold. K2/K& = 5 F. =0. 1 ( ), E=0.5 ( —-), E=0.& ( ———).
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So ——2c (I",+I ~),

I (~)=c'I2[r~p](~) —r~p(~)]+r] —r2I .

Rewriting,

Vi, z=-,'(V, +ed) .

We may write the difference current as

(4.5)

(4.6)

which enables us to write

(4.8)

1„(r)=c'[(r,+r, )p,„(r)+(r,—r, )[I',(r)+1]I . (4.7)

In the steady state

(x(a)),y(co))„=5(co+co')J dre '"'(x(r),y(0))„,

Sd(co) (pd(co)+g p, (co),p„(co')+gp, (co') )
S (~)= =1+r4c'

0 5 N+ci)
(4.9)

where

S,=4c'r, with

Z(co)
~

'= [E co'(—2»+»o)]'+~'(2»»()E co')—',

1r=-'(r, +r, ) =—
2 2 Ki

r2
K2

E =4(» —5 )»0(E —1),

1

2

Sd(~) ci7 +4» (1—I )+45'r r Y(co)

So Qj +4»
~

Z(co)
~

where

(4.10)

We note that the effect of losses is to scale down the spec-
tral change in fluctuations by the factor I & 1 and intro-
duce the extra terms gp, (co).

Using the solutions given by Eqs. (2.23) for p„pd, and

pp we find, for the intensity spectrum,

r2r=- +
2

Sd(~) co +4» (1—r)
So CO +4K

(4.11)

and So ——4c I . Let us first consider the case where the
dampings are symmetric between the signal and idler,
that is, y, =y2=y, ~] =]c2=~ 5=0, g =0. Then,

Y(co)=
45 a[co [4»+»0(E+1)]—e]

+g46Eco
co +4K

+g 4(» 5')[4(» —5') +co'](—»0+co'),

At co=0, Sd(0)=SO(1 —I )=SO(1—y/») with y(».
Thus the effect of losses is to reduce the correlation be-
tween the modes, and there is no longer perfect suppres-
sion of the noise (Fig. 6).

SZ( co )
2.0-

1.5-

1 ~ 0-

0.5-

0. 0

—10 10

FIG. 6. Effect of intracavity absorption, plot of Sd(cu). y, =y, =y, K, =K2 =K Ko= l, y/K=0. 7.
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sz( cu )
2. 0-

1.5-

1.0-

0.5-

0.0

—10

(d/K

10

FIG. 7. Effect of asymmetrical intracavity absorption; plot of Sd(co). K0=1 p]/K~=1 p2/K2 ——0.8, K2/K[ ——1.2S, E=1.05 (

E=2 ( ———).

We now consider the case where a.
,&a&. This could be

the case if an absorber at the idler frequency, say, was in-
troduced into the cavity. In this case, at su=0,

Sd(0) g~f=1—r+
So (E —1)

(4.12)

Sd (0),~o B+——1

(E —1)

1 18=1——
2

(4.13)
1

(1+q)[1+E/(1+ q) ]

(1+g+E)
(1+ri) [1+e/(1+g)]'

There is an extra noise term g I /(E —1),which is sensi-
tive to the difference (y, /a. , ) —(y2/x2). For equal cavity
damping rates y, =@2, this may be a very sensitive detec-
tion method for absorption. The sensitivity is enhanced
in near-threshold operation by the (E —1) factor, as is
evident in Fig. 7. In the region of threshold there are
critical fluctuations present which become manifest if
there is an imbalance in the absorption in the two arms.
The level of absorption may be measured by inserting a
calibrated variable absorber in the beam. The absorption
is then varied until a null in the noise is obtained. This
indicates that the absorption in both arms is equal. Let
us denote g, =~, —y, as the absorption to be measured,
and F12 a2 y2 as t——he k—nown (variable) absorber. Then
the small difference E=g, —gz (we take y, =yz ——y) be-
tween the absorber g& and the variable absorber gz pro-
vides a signal amplified by the E —1 factor, which is easi-
ly detectable above a low-background-noise level. The
power level with c, nonzero is

S(0), o ——1— 1

1+q
and where g~ g&y; this background noise is well below
the noise level Sd ——1 and is, in principle, zero. This low-

background level plus the amplification of the signal
brought about by the E —1 factor gives us a very high
signal-to-noise ratio (S„(0),~0/Sd(0), o), where E—1 is
small.

(4.14)

V. DISCUSSION

A detailed study of the intensity Auctuations in a non-
degenerate parametric oscillator is given. In the absence
of losses and for equal cavity damping in the signal and
idler modes, there has been shown to be a complete can-
cellation of noise in the spectrum of the difference
current at zero frequency. ' In existing experiments
these ideal conditions are not necessarily attained. We
have therefore calculated the characteristics of the output
of the parametric oscillator when losses are present and
the signal and idler have different cavity decay rates. The
effect of different cavity decay rates is to narrow and
change the shape of the spectrum of the difference
current. The exact details will depend on the decay rate
of the pump mode in the cavity. Both the above- and
below-threshold behavior of the oscillator is calculated.

In the case of intracavity losses the quantum correla-
tion between the modes is partially destroyed. There is
no longer a perfect suppression of the quantum noise at
zero frequency. This property may be made use of as an
absorption detector for absorption at levels below that of
the vacuum noise. The sensitivity of such a detector is
enhanced when the oscillator is operated close to thresh-
old.
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