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Correlated-emission laser: Phase noise quenching via coherent pumping
and the efFect of atomic motion
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We show that in a three-level system, if the atoms are initially prepared in a coherent superposi-
tion of the two upper states, as in Hanle experiments, the spontaneous-emission events from these
two states to the lowest one can, under certain conditions, be strongly correlated, with a vanishing
diffusion constant for the relative phase. The conditions under which correlated spontaneous emis-
sion occurs in a Hanle laser remain essentially unchanged if atomic motion is included.

I. INTRODUCTION

The idea of correlated spontaneous emission' has gen-
erated a great deal of interest because of its potential ap-
plications to problems involving high-precision inter-
ferometry where measurements of ultrasmall phase shifts
are important. The typical examples include laser gyro-
scopes and laser gravity wave detectors. It is also in-
teresting from a spectroscopic viewpoint because of its
capability of producing continuous-wave quantum beats.
The central idea is to eliminate the quantum noise,
caused by independent spontaneous-emission events,
from the relative phase of two laser modes generated
from three-level atoms inside a doubly resonant cavity,

In the Ref. 1 it was shown that if one prepares the
three-level atoms in a coherent superposition of the two
upper levels a and b by a strong external resonant signal,
then the spontaneous-emission events from these two lev-
els are, indeed, strongly correlated. In a subsequent,
more detailed, work on the quantum-beat laser, it was
shown that if one considers a strong classical driving field
that coherently couples the upper two levels then, under
certain detuning and power conditions, one may achieve
a zero diffusion coefficient for the relative phase of the
two laser signals.

In recent works (Ref. 5, henceforth referred to as I, and
Ref. 6, henceforth referred to as II) we have generalized
the linear theory outlined in Ref. 4 and worked out the
nonlinear theory of the correlated-emission quantum-beat
laser (I) and micromaser (II). In particular, we have
shown that correlated-emission laser (CEL) operation
persists, i.e., noise quenching occurs in a steady state
above threshold and this operation is stable.

In the present work we take a different approach. As
was pointed out in Ref. 1, CEL operation might also be
expected if one does not have a strong microwave field
coherently coupling the upper two levels as in the CEL
quantum-beam laser but, instead, prepares an initial
coherent superposition of these two levels via, e.g. , the
Hanle effect. The purpose of the present paper is to
bring the theory of the CEL Hanle laser to the same level
of sophistication as that for the quantum-beat laser. In
particular, we want to find the physical conditions under

which CEL operation occurs. We address another im-
portant issue as well. In the above theoretical works,
only homogeneously broadened systems were considered
and, consequently, the effects of atomic motion have not
been dealt with. Here, following the lines of Ref. 8, we
develop a quantum theory of the CEL Hanle laser which
includes the effect of atomic motion (Doppler broaden-
ing) and we show that the CEL effect persists in inhomo-
geneously broadened systems.

The paper is organized as follows. In Sec. II we
present a Hamiltonian model of the system and develop a
linear theory of the Hanle laser. We show that, in con-
trast with the quantum-beam laser, this is essentially an
initial-condition problem. From the requirement of the
vanishing diffusion constant we find the conditions for
pumping, coupling, and detu ning under which CEL
operation is possible. In Sec. III we derive the diffusion
constant for the relative phase and show that the condi-
tion for CEL operation remains essentially unchanged.

II. PHASE NOISE QUENCHING
IN A THREE-LEVEL SYSTEM %PITH COHERENT

PUMPING

We consider the model Hamiltonian for the problem to
be

H =Pi(Ho+ V),

where

Ho= g to l'&&'
I +viaiai+vzaza2

i =a, b, c

and

V=g, a,
~

a &&c ~+g,a,
~
b&&c

~
+g, a,

~

a &&b ~+H. c.

(3)

Here
~
a) and

~

b) are the upper levels (e.g., Zeeman
sublevels of a degenerate upper state) and

~

c ) is the
ground state. g, , g2, and g3 are the coupling constants
for the transitions

~

a)~
~
c),

~

b)~
~
c), and

~

a ) ~
~

b ), respectively. a i, a2, and a3 (a, , a z, and a 3 )

denote absorption (emission) operators for photons in the
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—i53t
g3a 3e

i62t
g2a2e (4)

modes 1, 2, and 3. Note that without an applied magnet-
ic field co, -cob, and thus the fields emitted by the atom in
the

~

a )-
~

c ) and
~

b )-
~

c ) transitions will differ in po-
larization, but their frequencies are essentially the same
(v]=v2). If one goes into the interaction picture, it is
straightforward to show that the interaction Hamiltoni-
an, in an obvious matrix representation, is given by

i 53t i Altg3a3e g]a~e

The interaction Hamiltonian, as given by Eq. (4),
represents our starting point. When compared to previ-
ous theoretical treatments of the CEL it is easy to see
that Eq. (4) is a slight generalization of the model ela-
borated upon in most detail in I, inasmuch as all these
fields are treated on an equal footing, in a quantum-
mechanical manner, and with perturbation theory.

The density operator p of the coupled system (three-
level atoms plus three-mode field) satisfies the following
Liouville equation:

—ih)t —ih2t p= —i [V,p], (6)

where

52= Cvb —N —V2,

A3 =CO~ —COb —V

stand for the detunings of the corresponding transitions.

where the bracket stands for the commutator, and V is
given by (4). The reduced density operator pf, for the
field only, is defined as the trace of p over the atoms

pf ——Tr,p

Now, starting from Liouville's equation, we perform a
second-order expansion in the coupling constants and
take the trace over the atomic states, leading to

pf —— r f dr ye—r'f dt' f dt"Tr, [V(t'), [V (t"),p, (t)pf (t)]]+X,
0 t

(8)

where X represents losses. In the derivation of this equa-
tion from Eq. (6), we have, as usual, assumed the follow-
ing.

(i) The Markov approximation in the second-order
term, i.e., at the time t of injection of an excited atom
into the laser cavity, the density operator can be written
as p=p, (t)pf(t)

(ii) The coarse-time-graining approximation. Here y is
the decay constant of the atom (assumed to be equal for
all three states) and r is the pump rate. The coarse-time-
graining approximation is valid if both y and r ~&y,
where y, is the cavity decay rate.

Although, in Eq. (8), we have a loss term (proportional
to y, ) due to the presence of a doubly resonant cavity
tuned to the two lasing modes, we do not have to specify
its explicit expression, since it does not inhuence the rela-
tive phase-diffusion constant. In the rest of the paper we
drop it from the equations. We also notice that in Eq. (8)
the first-order term is missing, which is due to the fact
that its trace is zero. Only even-order terms appear in
the expansion.

The key point in the solution of Eq. (8), i.e., in finding
an explicit equation for pf, is in the initial condition. We
assume that the atoms have initially been prepared in a
coherent superposition of the two upper states, as in
Hanle-effect experiments, namely,

p, (t)= ,'(e'~~ a)+—~b &)(e '~(a
~
+(b

~
),

where ]l) is some fixed relative phase between the two
states. It is now straightforward to show that the result-
ing master equation for the field-density operator p is
(with pf ——p, i.e., in the following we drop the subscript f
from the notation)

p= —,a&&(a &a&p+pa&a2 —a spa &
—a 3pa& )

+ +l l(Pa]a] a ]Pa] )+ +22(pa2a 2 a 2Pa2 )
1

+ 2+12(pa2a] a1Pa2)e1 ip

+ —,a2](pa]a 2
—a 2pa] )e +H.c. ,1

—ip

with

&z& =—

+33

rg ) rg2

y(y+i&]) ' " y(y+i&2)
'

rg fg

(y+ib])[y+i (b] —hp)]

rg )g2

(y+i 62)[y+i (52—6])]
rg

y(y+ ~3)

a;
~

U], U2) =U;
~

U], U2), i =1,2, (12)

where U,- is an arbitrary complex number and we
represent U; as

i8,.
U;=pe ', i =12 (13)

We can now convert this Liouville equation into a
Fokker-Planck equation by introducing a coherent-state
representation for a& and a2 and the diagonal or P repre-
sentation for p. A similar Liouville equation has been
converted into a Fokker-Planck equation in Ref. 4. Here,
instead of repeating the derivation, we simply borrow the
results. If we define the coherent state as
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azI'=D(8)
gz

Here

(14)

then we can introduce the relative phase between the two
laser fields 1 and 2 as 8=8,—8z. The Fokker-Planck
equation in terms of p;, p= —,'(8, +8z), and 8 will contain
a term which describes diffusion of the relative phase 8 as

tend the model of Sec. II to allow for atomic motion,
along the lines of Ref. 8. We consider a moving, three-
level atom coupled by a dipole interaction to two
standing-wave modes cos(K;z) (i =1,2) in the cavity.
Since the electric field has a spatial dependence only on z
we may consider one-dimensional atomic motion. The
Hamiltonian of the problem can be written as [cf. Eqs.
(1)—(3)]

1 11 22 12; 21D(8)= —
z + z

— e '~— +e'~ +c.c. ,
P1 Pz P 1PZ P 1PZ

(15)

with /=8 —P.
We are interested in finding conditions under which

the diffusion constant D(8) vanishes. A possible set of
conditions is the following (with pi ——pz

——p):

H =iri(00+ V),

where

Ho= Q ~;Ii&&i I+viaiai+vzazaz+
flak

i =a, b, e 2m
(19)

and

V=giai I
a &&c

I
cos(K, z)+gzaz I

b &&c
I
cos(Kzz)

gi =gz (-=g), &]—-&z (—:&) .

Under these conditions

(16)
+H. c. (20)

pg
2

D (8)= z (1—cosg) .
2( yz+ Qz }pz

When /=0 the vanishing of the diffusion constant takes
place. It can be shown, as was done in Ref. 1 for the
quantum-beat laser, that the relative phase (i.e., g) locks
to zero in the present case as well.

As a conclusion, the present calculation shows that
CEL operation can also be obtained via coherent pump-
ing as in a Hanle laser, i.e., if one prepares the atoms in a
coherent superposition of the two upper states. The only
condition is that the detuning on the a-c transition must
be equal to the detuning on the b-c transition; otherwise,
the initial coherence is destroyed on a time scale y
much shorter than the time scale y, ' governing the time
evolution of the photon field in the cavity. In particular,
5=0 satisfies Eq. (17), in contrast with the quantum-beat
laser (I). Also, this condition is independent of g3, i.e.,
again in contrast with the quantum-beam laser, no
specific coherence-maintaining mechanism is necessary in
the Hanle laser to obtain CEL operation. Therefore, in
order to simplify the treatment of Sec. III, in the follow-
ing we set g3 ——0.

III. ATOMIC MOTION AND RKCOII.

k Ik&=k Ik&, Ik&&k
I
=1. (21)

With the help of the above representation of the unity
operator we can write the kinetic energy and the mode
eigenfunctions as

Ak
Ik&&k I,

cos(KZ)= —,
' y( I

k+K;&&k
I
+ I

k —It;&&k
I ),

k

(22)

i =1,2.

Here (irik )/2m is the kinetic energy operator of the c.m.
motion of the atom [k = —i(B/Bz) in the coordinate rep
resentation] and does not commute with the spatial part
of the interaction. The theory of Sec. II can be recovered
if we replace cos(E;z) in (20) by its (quadratic) spatial
average I /&2 and neglect the kinetic energy in (19).
Also, in (20) we have set g3 ——0.

To express the motional parts of H explicitly, we intro-
duce a complete set of momentum eigenfunctions

I
k &

satisfying periodic boundary conditions in the interval
0 (z (L (L is the length of the cavity),

In previous theoretical treatments of the CEL effect,
only systems with homogeneous broadening have been
considered. In order to investigate the possibility of CEL
operation in inhomogeneously broadened systems, we ex-

I

If we now transform Eq. (20) into the interaction picture
with respect to Ho, it is straightforward to show that the
interaction Hamiltonian, in an obvious matrix represen-
tation, is given by

—i hit —i 52t~
g1a1e ' p1 gzaze

ill t~
g1aze ' p,

ih2tg,
gzaze Ez (23)

Here we have introduced the notation

,F=y( Ik+cI, &&kI ~ ' +Ik sc, &&k I.' " —), i=1,2
k

(24}
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with

irt(k+K, )
A(k+K;, k) =

2m

Ak

2m
(25)

Otherwise, the notation is the same as that in Eq. (4). In
Eq. (23) we have also used the fact that I'; is self-adjoint.

The density operator of the complete system (three-
level atoms in motion plus two-mode field) satisfies, in the
interaction picture, a Liouville equation similar to Eq. (6)
with V given by Eq. (23). Next we introduce the reduced
density operator p& for the field only, as in Eq. (7), but
now the trace over atomic states includes both internal
(a, b, and c) and external (c.m. momentum) states of the

atom.
In order to obtain the coarse-time-grained equation of

motion for the field-density operator we again perform a
second-order expansion in the coupling constants. Upon
taking the trace over atomic states we can find the contri-
bution to the field-density operator due to one atom in-

jected into a coherent superposition of upper states
~

a )
and

~

b ) and into a momentum state
~

k ). We find the
total time rate of change of the field caused by an ensem-
ble of such atoms by multiplying the one-atom expression
with the pump rate rk of these states and summing over
the momentum states

~

k ). In doing this we assume that
the atoms are moving in a Maxwellian distribution at
some temperature T. We may then write

p= gr„( i)'f—dre "f dt'f dt"[V(t'), [V(t"),p, (t)pI(t)]
0

=r dk exp — a —i d~e '~' dt' dt" V t', V t",p, t p& t
0

(26)

Here r is the total number of atoms excited into the
coherent superposition of

~

a ) and
~

b ) per unit time
and ~ is the parameter of the Maxwellian distribution,

a.=mv lirt=(2mks T)'~ lfi . (27)

In solving Eq. (26) we assume the following initial con-
dition:

p. (t)=-,'«'~[&&+
)
b&)(e '~&tt [+&b ) ) Ik&&k

I

(28)

corresponding to an atom prepared initially in a coherent
superposition of internal states

~

a ) and
~

b ) and in an

arbitrary momentum state. This initial condition is an
obvious extension of (9) for the case when atomic motion
is included.

It is now straightforward to show that the resulting
master equation for the field-density operator pt (with

pI ——p, i.e., in the following we drop the subscripts f from
the notation) is

p= „, dk exp( —k /~ )[ —,a„(k)(pu, tt, —tt, pu, )+Ta»(k)(ptt, tt, —u, ptt, )
e) 2 2 ] ]

+ -,'a„(k)(p~, tt, —tt, ptt, )e' + -,'a»(k)(ptt, ~, —tt, pu, )e ' yH. c.], (29)

with

1 rg
aii(k)= ——

4 y

1 1+
y~ih~+(k) y~ib, , (k)

1 rgb
a»(k) =—

4 y

1 1

y ~id~+(k) y ~id~ (k)
(30)

1 rg &gz 1 1
a,~(k) = —— +

4 y+t'(&i —&~) y~ihi+(k) y ~id, (k)

1 rg lg2 1 1
aqi(k) = —— . + +4 y+i(&p —~i ) y

~iraq+(k)

y ~i 4i (k)

Here

b*, ~(k)=h, i+
RkI( ) 2 AK) 2

2

2' (3l)

is the detuning on the corresponding transition with the Doppler-shifted frequency and including recoil [cf. Eq. (5)].
The integrals in (29) involving a; (k) and the velocity distribution can be expressed in terms of the plasma dispersion
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function Z (see Ref. 8), but for our purposes we do not need the explicit expressions.

In a manner similar to the one described in Sec. II we can convert the Liouville equation (29) into a Fokker-Planck
equation. The term corresponding to the diffusion of the relative phase 8 will be of the form given by Eq. (14) with

a) a„(k) a~2(k) a]p(k) . a~](k)D(8)=, f dk exp( k —lir ) — + — e '~ — e'~ +c c. (32)

We, again, are interested in finding conditions under which the diffusion constant D(8) vanishes. A possible set of
conditions is

g] ——g2(—:g), b, ] ——b2(—:5), K] =E2(—:K) .

Under these conditions

2

D(8)= f dk exp( —k j]r ) + (1—cosg) .
8p2 y'+5+(k)' y'+6 (k)'

(33)

(34)

When /=0 the vanishing of the diffusion constant takes
place. It can quite generally be shown that the relative
phase g indeed locks to zero, i.e., the diffusion constant
vanishes.

As a conclusion, the present calculation shows that
CEL operation can be obtained in an inhomogeneously
broadened Hanle laser. Furthermore, the first two of the
conditions of Eqs. (33) are identical with the CEL operat-
ing conditions of a homogeneously broadened system, Eq.
(16). The last of the conditions imposes a much stricter
constraint than just the detuning conditions of Eq. (16).
The actual laser frequencies have to be equal. Otherwise,
the two modes experience different Doppler shifts and
phase coherence will be destroyed. Thus the two modes
in question can only differ in polarization.

on the two lasing transitions are equal. Furthermore, no
specific coherence-maintaining mechanism, other than
the initial preparation of the upper lasing levels in a
coherent superposition (coherent pumping via the Hanle
effect), was found necessary to achieve quenching of the
quantum noise from the relative phase.

The above conclusions are, essentially, maintained in
the inhomogeneously broadened systems (inclusion of
atomic motion) as well. The only difference is that, be-
sides the equality of the detunings and coupling con-
stants, one has to require the actual equality of the laser
frequencies. Thus, in an inhomogeneously broadened
Hanle laser, CEL operation is possible if the two modes
differ in polarization only. In another publication' we
show that inclusion of the atomic motion leads to some
spectacular dynamical effects in the quantum-beat laser.

IV. SUMMARY AND DISCUSSION

We have developed a quantum theory of the Hanle
laser and found physical conditions for CEL operation.
Namely, we have shown that the diffusion constant for
the relative phase vanishes in the homogeneously
broadened case if the detunings and coupling constants
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