
PHYSICAL REVIE%' A UOLUME 38, NUMBER 2 JULY 15, 1988

Correlated-emission laser: Theory of the quantum-beat micromaser
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We show that if we inject three-level atoms, at a low rate, through a double cavity, with the two

upper levels strongly coupled, and if, in the theoretical analysis, one makes the rotating-wave ap-
proximation, this problem is formally equivalent to the ordinary two-level micromaser. We also ob-
tain the relevant master equation and the photon statistics.

I. INTRODUCTION

The possibility of having high-Q cavities has opened up
the new field of cavity electrodynamics, where one can
study the detailed behavior of one or very few atoms in-

teracting with the electromagnetic field inside the cavity.
In an ordinary micromaser, a monoenergetic beam of ex-
cited two-level atoms is injected into a high-Q resonator
at a very low Aux such that, at a given time, at most one
atom interacts with the electromagnetic radiation. Such
a system presents fascinating features such as the "Cum-
mings collapse, " multipeaked probability distributions
for the number of photons, and antibunching. ' ' In ad-
dition, we have the idea of correlated spontaneous emis-
sion, ' where the relative phase noise of the two signals
coexisting in a double cavity can be quenched and the rel-
ative phase-diffusion constant vanishes.

Here, we present a different physical scheme from the
two-level micromaser where we have a double cavity
through which we inject, at a low rate, an atomic beam of
three-level atoms, with the two upper levels strongly
pumped. We show in the present work that this system is
formally equivalent to the two-level micromaser if we

proceed as follows.
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It is simple to show that
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In Eq. (2), g, and g2 are the two coupling constants be-

tween the a-c and b-c transitions and their respective ra-
diation, and v3 is the external pump frequency.

It is convenient to go into the interaction picture.
Thus we define

(i /h)Hot —(i /h)HotV'=e Ve

(a) We perform the rotating-wave approximation.
(b) We formulate the problem in such a way that the

relevant field is a linear combination of the two fields gen-
erated as spontaneous emission from the two upper levels
to the lower one. —it'll —ith2

ithi
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If we perform this program, then the two problems are
formally equivalent.

II. THE HAMILTONIAN

Consider a three-level atom, whose levels are denoted
by a, b, and c, and assume that the two upper levels a and
b are strongly pumped by an external classical field,
characterized by a Rabi frequency Q. Denoting by a,
(frequency v, ) and az (frequency v2), the annihilation
operators of the emissions resulting from transitions
a ~c and b ~c respectively, we can write the Hamiltoni-
an of the system as

H =Ho+ V,
where

A3 ——0, (6)

Under the assumptions given by Eq. (6), we now perform
a second transformation,

iV)t —iVIt"=e &e

A little algebraic work shows that

and b ]
—= (to, —co, —v] ), hz —=(cot, —co, —vz), b3:(to cot,

—v3).
Now, we assume that the pump is exactly resonant

with the two upper levels and, furthermore, that the oth-
er two transitions have the same detunings, that is,
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cos(IIt /2)
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and that

V"=A

—i sin(Qt /2) 0
cos(Qt /2) 0

0 1
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where A is defined as

g/a) +g2a2A-=
( 2+g2 )1/2

in such a way that

[A, A']=1.

(12)

(13)

with

(V",, ) (V23) 0 III. MASTER-EQUATION —PHOTON
STATISTICS
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We are mainly concerned with the photon-density ma-
trix. In the coarse-grain time approximation, one can
write

ei t [5—(0/2) ]
+ (g 1 ul+g2~2 )
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it [5+(0/2) (10)

pzh(t) =&[Tr,p(t + T)—pzh(t)]+X, (14)
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For the sake of simplicity, let us assume that A=A/2
and neglect the rapid time varying terms e" +' ' as
compared to the continuous wave ones (rotating-wave ap-
proximation). This approximation should be an excellent
one for a strong classical pump. The final version of V"
is now

R( 2 2 )1/2 0 0 A
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Then it is a simple matter to prove that

where Tr, is the trace over the atoms, r is the atomic in-

jection rate, and p and p„h mean the total and photon-
density operators, respectively. T is the interaction time
between the three-level atom and the radiation fields and
it can be interpreted as an atomic decay time or flight
time, whichever is shorter. The specific form of the loss
term X will be specified later [Eq. (19)]. Let us define

'2n —1( A A t)n 2n —1( A A )n

&2n 2n —1( A A t)n 2n —1( A A )n 0, n=1, 2, . . . ,

(2A A)"

(16)

2n +1 0 0
2nAt(AA )" 2nAt(AA')"

2"A ( A A)"

2"A ( A A)", n =0, 1,2, . . . .

Now, since

pp„(t+ T) =Tr, U(T)p(t)U '(T)

=Tr, e 'g p(t)e'g (17)

p(t) is the initial density matrix and is taken to be

p 0 0
p(t)= 0 0 0

0 0 0

(18)

that is, the atom is initially in its upper state.
If we expand the right-hand side of Eq. (17) and use Eqs. (16), (18), and (14), we get the master equation for the pho-

tons,
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p z ———[cos(+2AA gT)p hcos(+2AA gT) p—»+A (AA )
' sin(+2AA gT)p hA(A A) '~ sin(+2A AgT)]

( a,a,p»+ p»a, a, —2a, p»a, ) — (a 2a 2p»+ p»a za z
—2a 2P»a 2 ), (19)

where we have also introduced the losses in the usual manner and Q, and Q2 are the cavity Q factor at the two frequen-
cies of the double cavity.

Now we introduce a new mode B,

B—=g2a] —g]a2

(g 2 +g 2 )1/2

such that

[A,B ]=[A,B]=[A,B]=[A,B )=0,
so that the modes A and B are independent. In terms of the A and B modes, one can write the master equation as

(20)

(21)

p h
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' sin(+2AA gT)p hA(A A) ' sin(+2A "AgT)]

—C[(A Ap, „+p,„A A+B Bp,„+p»BB —2Ap, „A 2Bp,—„B)], (22)

where, for simplicity, we have assumed that
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Qi
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(23)

Taking the matrix elements of Eq. (22), one obtains

p„„=——
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Since the two modes A and B commute, one could try

( 3) (8)
Pn A, ng Pn, npn, n
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as a solution for the steady-state and diagonal version of Eq. (24). Using Eq. (25), one gets

2C(n~+1)p'„+,„+,2Cnsp'„„'=—Kp'„„',

(25)

(26a)

——sin [+2(nn„+1)gT] 2Cn„p'„"„'—+ —sin (+2nzgT)p'„"'& „&+2C(n„+1)pn+'&„+&———Kp'„"„I, (26b)

where E is a separation constant. From Eq. (26a), one concludes that the only way that p'„„'is normalizable is if

pnn ~nO and K=0,
which is to be expected since the mode B only damps and has no gain.

Therefore, for the A mode, we have

(27)

(A)
Pn, n 2

——sin [+2(n„+1)gT]—2Cn„+—sin (+2n„gT)p'„"'&„,2+C( zn+1)p'„"+,„+,——0,
2

(28)

which, in the case of exact balance, reduces to

p„„= sin (&2ngT)p„
4Cn

(29)

In Eq. (29), we have dropped the index A, since from now on we will refer only to this mode. This result is identical to
the two-level micromaser, in resonance and with no thermal photons.

From Eq. (29), one readily gets



766 J. BERGOU AND M. ORSZAG 38

p„„=poo, II sin (&2JgT),
j=1

where

(30)
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One can also write Eq. (30) in the form
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po, o
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exp g ln[ sin (v'2jgT)]

nt j=1
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,

exp 2 f ln[ sin(v'2j gT)]djn! (31)

Performing the variable change j =&2j g T, in terms of the new variables, Eq. (31) becomes
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which, when normalized, becomes

(
—}5 82

with n=Pnn
(1 }/+] 1 g2

(37)

From Eq. (36), it is obvious that 8=1 is the first thresh-
old. If we assume that we are well below that threshold,
that is, 8&&1, then

X(nk+' —1)

where 82k are the Bernoulli numbers. Considering only
the first two terms of the expansion in k, one gets

Pn, n [x sin (&2ngT)]"
I

Po, o Pf .

Notice that the result given in Eq. (38) corresponds to a
Bose photon statistics.

Above the first threshold, we will use the result given
by Eq. (35). A little algebraic work shows that the pho-
ton distribution has only a single maximum, above the
first threshold, if 1&8&m./2. For 8 slightly above n. /2
the distribution will have a second peak, for 8=3m/2 a
third peak, etc. In general,

g
2 T2

&& exp — (n —1)— (n —1)
6

(33) 8=(2n+1)—,n =0, 1,2, . . .2' (39)

where ~o o is a normalization factor that included
sin ( &2g T ).

Now if we define

maximizes p„„.Therefore, for large values of 8,p„„is a
multipeaked distribution.

8:v'2x gT, — (34)
IV. DISCUSSION

we can finally write

Pn, n n"
82 sin(v 2ngT)

Po, o n! v'2n g T

g
2T2

X exp — (n —1)— (n —1)
6

(35)

sin[(k/x)'~ 8]
Pn n Po 0 II (k / )f j28 (36)

The first laser threshold can be easily obtained, if one
writes Eq. (30) in the following form:

We have formally proven that, if we inject three-level
atoms at a low rate, through a double cavity, under the
conditions specified above, the photon statistics of the A

mode is equivalent to that of the two-level micromaser.
However, we have to remember, that the A field is a
linear superposition of the two fields a, and a2, weighted
with two coupling constants g, and gz. So a novel
feature here will be, for example, mode competition and
of course, the quenching of the relative phase noise of the
two modes. Also, the experimental setup here is different
from the usual micromaser. A detailed analysis of the
new features in the three-level micromaser is planned to
be the subject of a forthcoming publication.

Finally, we would like to remark that in Ref. 3, a sto-
chastic average over the random spacing of the atoms is

performed in order to obtain an averaged photon number
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distribution. In the three-level micromaser, the same re-
sults are obtained for the A mode without such an
averaging procedure. A possible explanation of this
difference is that the atoms are injected, because of the
strong pump, in a coherent superposition of the two

upper levels, and this coherence is transferred to the
Selds, making the stochastic averaging unnecessary.
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