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Correlated-emission laser: Nonlinear theory of the quantum-beat laser
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A nonlinear quantum theory of the quantum-beat laser is developed using a "dressed-
atom-dressed-mode" master-equation approach. The theory is valid under the detuning conditions
which led to correlated spontaneous emission in a linear theory. It is shown that the quenching of
the quantum noise remains valid in the nonlinear theory and this operation is stable above thresh-

old.

I. INTRODUCTION

In the optical detection of small changes of a given
physical quantity, the change is converted into a phase
shift (passive scheme) or frequency shift (active scheme)
of a laser field. This is accomplished by sending the laser
light through or generating it in a cavity whose optical
path length is sensitive to the physical effect to be mea-
sured. The shift is then detected by beating the output
light with that from a reference laser. The typical exam-
ples, we are bearing in mind, are gravitational wave
detection' and the laser gyroscope.

In the active detection scheme, the limiting noise
source is the Auctuation, caused by the independent
spontaneous-emission events in the relative phase be-
tween the two lasers. It was shown in a recent paper by
one of uss that the linewidth and the associated uncer-
tainty in the relative phase may be eliminated by prepar-
ing the laser medium in a coherent superposition of two
upper states either via microwave coupling, as in
quantum-beat experiments, ' or by coherent pumping, as
in the Hanle effect. The arguments of Ref. 5 were of a
very general nature. Explicit expressions for the various
laser parameters (e.g., gain and cross coupling
coefficients) of the quantum-beat laser were derived in a
subsequent publication. There the linear theory has
been elaborated using the Fokker-Planck approach. In
particular, an explicit expression for the diffusion con-
stant of the relative phase of the two modes has been ob-
tained, and physical conditions under which this diffusion

constant vanishes have been given. The main results of
that paper can be summarized as follows. Consider the
system of Fig. 1. If the atoms are prepared in a coherent
superposition of

i
a ) and

~

b ), then the difference (not
necessarily the sum) of the corresponding phases P, —Pb
is fixed.

The phase P, of the ground level
i c) is, however, a

true random variable. The spontaneously emitted fields
in the a-c and b-c transitions therefore average to zero.
However, from the beat signal of the two spontaneously
einitted fields, the random phase P, cancels, leading to a
nonAuctuating contribution to the beat note of the two
lasing modes. This is the idea of noise quenching, and
the physical condition under which it occurs is that the
field detunings from the corresponding atomic lines are

equal to half the Rabi frequency of the driving field that
coherently mixes the upper levels, and they are much
larger than the atomic decay constants.

In this paper we present the nonlinear theory of the
quantum-beat laser which is valid under the above condi-
tions of Ref. 9. The investigation of noise quenching in

the Hanle-effect laser, as well as the study of less restric-
tive detuning and coupling requirements, are left to
separate publications. ' The key feature of our approach
is that we take into account the strong coupling of the
upper states to all orders and, in this way, instead of the
strongly coupled upper states, we essentially have two un-

coupled dressed states. Under the conditions of Ref. 9
this picture lends itself quite naturally to a rotating-wave
approximation where only one of the two dressed upper
levels contributes to the laser transitions. Since now both
the upper and lower levels of the two laser transitions are
the same, noise quenching in this dressed-atom picture
turns out to be equivalent to one-mode operation.

The paper is organized as follows: In Sec. II we

present the Hamiltonian model of our system and in Sec.
III the solution of the corresponding Schrodinger equa-
tion. In Sec. IV we derive the master equation for the
quantum-beat laser where the deterministic part is de-
scribed by the model of Sec. II. %e show that, in terms
of the "dressed" modes, the steady-state photon statistics
is that of a one-mode laser. In Sec. V we show that the
beat signal between the two modes contains a part that

FIG. 1. In the three-level atom, the two upper levels a and b
are coupled via a strong microwave 6eld of frequency v3. The
emissions from the (b-c) and (a-c) transitions are strongly corre-
lated.
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does not vanish in steady state, i.e., quantum noise due to
spontaneous emission in the relative phase is quenched.
Thus, in this more general framework of the nonlinear
theory, the vanishing of the diffusion constant for the rel-
ative phase still persists. Finally, in Sec. VI, we briefly
summarize the main points of the paper and discuss their
connection with other coupled-two-mode laser theories,
as well as further implications of the results.

II. THE MODEL

We consider the model of Ref. 9, namely, a system of
three-level atoms, as shown in Fig. 1, which are being
pumped into the state

~

a ) at a rate r, . The double cavi-
ty resonantly contains the two lasing modes at frequen-
cies vl and v2. The

/

a)- [c) and
f

b)- [c) transitions
are assumed to be dipole allowed. The two upper levels
are strongly coupled by a (classical) external field, charac-
terized by a Rabi frequency Q. The transitions at v, and

v2 are treated quantum mechanically, whereas the
~

a )-
~

b ) transition is treated semiclassically.
The Hamiltonian for the system is

( Vl )'"=

( V )2n+)

2n 1 0 0
AQ

0 0 0
' 2n

(Vl),

we can explicitly calculate the transformation operation.
It is given by the expression

Here we introduced the detunings as 6, =—co, —co, —v,
and b2 —=cob —co, —v2 and assumed that the driving field

is resonant with the
~

a )-
~

b ) transition, i.e.,

v3 —co cob or h3 =0. Furthermore, we assume that

A, =62 —=6, as in Ref. 9. More general detuning condi-
tions will be investigated in a subsequent paper.

The key point of our approach is that we define a
second interaction picture, where V, is eliminated from
the equation of motion, as

(i /A) Vl t —(i /h) V) t
V» ——e '

2e

Using the following property of V, :

H =Ho+ V,

where

Ho= y r~;
l
i)(i I+tv)ala(+lrv2a2a2

i =a, b, t.

and

(2)

cos(Q/2)t
ki V& t/A

e ' = +i sin(Q/2)te'~

0
cos(Q/2)t

0
0

(9)

Wi sin(Q/2)te '~ 0

V fig((a)
~

a )(c
~
+a 1 ~

c )(a
~

)

+fig2(a2 ]
b)(c

(

+at2) c)(b
(

)

(e '
[

)a(b i+e ' ib)( ia). (3)

0 0 V„
V» ——R 0 0 Vb, (10)

Using (9) in Eq. (7), we find that the interaction Hamil-
tonian V» is of the form

Here a &,a, , a2, a 2 are the annihilation and creation
operators of photons in modes 1 and 2, g &

and g2 are the
coupling constants for the transitions

~

a )-
~

c ) and

~

b )-
~

c ), and v& is the frequency of the external field
driving the

~

a )-
~

b ) transition.
It is convenient to work in the interaction picture,

defined as

and the only nonvanishing matrix elements are given by
the expressions

V ) [et[~+(rt/2))t(g a g a e
—ik)

+ei[b (n/2)]t(g a —+g a —i(b))

(i /A) Ho t —(i /A)HO t
V( ——e Ve

It is simple to show that

V) ——V)+ V2,

where, in an obvious matrix notation,

0 —I tel 0
AQ

2
0 0 0

and

i hitg, a, e

(4)

(5)

(«)

Vb,
———,[ —e i [b, +(Q/2)]t (glale g2a2)

+ei[a (n/2))tt(g a eip+g a —
)]

The condition for correlated spontaneous emission was
found in Ref. 9 to be b =Q/2. In this case the first term
in the outer square brackets in Eq. (11) is a rapidly vary-
ing one, while the second term represents a dc contribu-
tion. It is, therefore, appealing to introduce an effective
rotating-wave approximation (RWA) at this point and re-
tain the dc term only. The conditions for the validity of
this RWA will be further discussed in Sec. III. Further-
more, we define the non-Hermitian operator for the com-
posite mode as

—i hit
—i 5,2t

i 6,2l
g2a2e (6b) gae' +gae

(g2+g2)1/2
(12a)
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in such a way that

(12b)

0 0

V„=ag 0 0
W'e'&" W e-'&"

—i $/2

i P/2 (13)

In Sec. III we shall deal with the solution of the associat-
ed Schrodinger equation.

III. SOLUTION OF THE MODEL

The starting point of the nonlinear theory of the
quantum-beat laser is the interaction Hamiltonian, Eq.
(13). First we investigate the deterministic time evolution
of the coupled three-level —two-mode system as described
by this interaction Hamiltonian. The following con-
sideration will then help to fix the initial condition and to
carry out the averaging with respect to the atomic vari-
ables in the master equation for the field-density matrix
in the derivation of Sec. IV. The Schrodinger equation in
the second interaction picture can be written as

If g, =g2 then A (A ) is the annihilation (creation)
operator of the sum fields a

&
+a2. We also introduce the

notation g
—= —,'(g& +g2)' . With this notation, and in the

RWA, our interaction Hamiltonian reads as

other two equations, and its solution is g =const. In
the following, we set this constant equal to zero, implying
that the strong coupling of the upper two levels equalizes
the amplitudes of these two states on a time scale much
shorter than y '. Thus we just found that the validity
condition of our RWA is

(17)

Now, it is easy to solve Eq. (15). The solution, satisfying
the initial condition that the atom is injected into the ex-
cited level

~

a } at time t0 and g, (t0)=itiF(t0) is a func-
tion of the field variables only, is given by

—( y/2)( t —to )—e ' cos[ t0„(t t0)—]QF(t0),v'2
(18)

tt, = ie — ' A '(AA )'

ysin[ t0„(t —t 0)] ttiF(t 0) .

Here t0„—:g'(AA )'

In other words, the dynamics of the system is very
similar to the dynamics of a simple two-level system cou-
pled to one quantized mode of the radiation field. In Sec.
IV we shall use Eq. (18) to obtain the master equation for
the field-density operator and to determine the resulting
photon statistics.

itic= Vite . (14) IV. MASTER EQUATION AND PHOTON STATISTICS

Here g is a column vector with components g„gb, and
Besides the atomic variables, each component is still

a function of A and A, i.e., an operator acting on the
mode variables. When written in components, Eq. (14)
represents three coupled equations,

if, =gA i(i, i—

The density matrix of the coupled system three-level
atom plus two-mode field satisfies the following equation
of motion in the second interaction picture introduced
above:

(19)

igb —gAQ, i fb, —— (15)
where the bracket stands for the commutator.

The reduced density operator pF for the field itself is
defined as the trace of p over the atoms

gA ~ +g PF —TraP . (2O)

In Eq. (15), the phase (() has been eliminated by the simple
transformation p, e' ~ tr'j„/be ' ~fb. Here we
have introduced the phenomenological decay constant y
for the levels a, b, and c (for simplicity we have taken
them to be equal). If we make the substitution

/=exp — (t t0)——
2

=0,
i P+ =g'A P, , (16)

ig, =g'A '|('+ .

Here g'= v'2g. The equation for g is not coupled to the

then the components of 1P satisfy an equation similar to
(15), only the decay terms on the right-hand side (rhs) are
missing. Introducing the components i(i+ ——(l(i, +pb )I
v 2, Eq. (15) can be written as

1

Using the expression Eq. (13) for Vt, in (19) and carrying
out the trace operation, we find that PF satisfies the fol-
lowing equation of motion:

PF = —lg [ [ A, (P„+P,b ) ]+[ A, (P„+Pb, )] I +X, (21)

where L is a loss term, which we shall specify later. To
proceed further we need an expression for p„+pb, and
its Hermitian conjugate. We adopt the following pro-
cedure to obtain this expression. We first calculate the
contribution of one atom injected at time to into the
upper level

~

a ) and then sum the contribution of all
atoms which are injected at random times t —y

'
& to & t

at a rate r, . In this way one finds that

P +Pb «,dt0[4(t t0)+it'b(t t0)]4(t t0) .—l

(22)

We now substitute the expression for g„1ib, and g, from
Eq. (18) which yields
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t, —y(r —to)
p„+pb, ——v 2ir, , dtoe cos[co„(t —to)]—1

Xp F( t o)si n[ a)g ( t t p ) ]

X(AA )' (A ) '. (23)

manner as

V1
(a,a,pF+pFa, a, —2a)pFa)) —(1~2),

2Q,

(25)

(Pac+pbc }n,n' ag ~n+(, n' n+1, n' }PF„„,
+

where

(&n +&n')
y +2g (&n +&n')

(24a)

(24b)

Now, we specify the loss term in (21) in the usual

I

In this expression we can approximate pF(to) by p„(t),
since the dynamics of the photon field is governed by the
cavity lifetime y, ', which is much longer than y ', and
thus during the integration time pF does not change ap-
preciably. Then we can extend the lower limit of the in-

tegration to —~, since due to the exponential damping
factor in the integrand the contribution from to & t —

p
is negligible. Finally, when acting on the right (A )

can be replaced by ( A A )
' A. After performing these

—1

steps and taking the nn' matrix element of Eq. (23), it is

easy to carry out the time integration, giving

where Q, is the Q factor of the double cavity at frequency

v, (i =1,2). It is convenient, at this point, to introduce
the difference mode as

g2a1 —g1a2
B—=

( 2+ 2 )1/2
(26a)

which has the properties

[B,B ]=1, [A,B]=[A,B ]=0, (26b}

i.e., the modes A and 8 are independent. One can now
express a, and a2 in terms of A and 8 and use this ex-
pression in (25}. Finally, upon inserting (24) and its Her-
mitian conjugate and (25) into (21), we obtain the follow-
ing master equation for the matrix elements of the field-
density operator (for the sake of simplicity the subscript
F will henceforth be omitted from pF ):

png, nB
I I

ng, nB

nAnA

g/~ Png —), nn
n —1,n —1 I I

A ng —1,nB

(na+na+na+na }Pn„n2+, (no+1)(no+1)pn„+), n 2+(na+1}(na+1}Pn„,n (27)
I In„+1,nB

I I
n~, nB+ 1

Here, for simplicity, we have assumed that

V2

Q
—Yc (28a)

i.e., the cavity lifetime for both modes is the same, and in-
troduced the notations

I

ties resulting from this master equation. As is well
known, one obtains the steady-state photon statistics by
taking the diagonal elements (n „=n „', na =na ) and set-
ting d/cjt =0 in Eq. (27). Since A and B are independent
modes, by virtue of Eq. (26b), and there is no coupling be-
tween them, the general solution must be separable, i.e.,

2 2

, X=8 g
( A) (B)

P
A ' nB P

A 'n A nB' nB

n~, nB

(29)

,'(n +1+n'+1)+——,', (n n') 9/A- ,

JV'„„=,'(n +1+n—'+1)+—,'(n n') 8/A . —
(28b)

As usual, A has the meaning of the linear gain and 8 is
the self-saturation coefficient.

The central result of our paper is represented by Eq.
(27). The equation, in general, separates into two in-
dependent equations corresponding to the A and 8
modes. When written in the above form it is easy to see
that the part describing the A mode is identical with the
master equation of a one-mode laser with a two-level ac-
tive medium [see Eqs. (31) and (34a) below]. In fact, if
one has g1 ——g2=go then g =go/2 and the identity is
complete in terms of go.

First we briefly consider the question of photon statis-

This result could be anticipated, since there is no gain in
mode B and it is coupled to a loss reservoir only.

The equation for the steady-state photon distribution
p'„„' in mode A is then

nA (A) (n + 1)A
g/~ Pn —1,n —1

1 ~ +/+ P„„

y [np( +) (n + 1 )p( A) ] 0 (31)

When substituted into the diagonal and steady version of
Eq. (27) this ansatz gives two separate equations for
p'"' and p' '

~ From the condition of normalizability of
p' ' we find that the separation constant must equal zero,
and the solution for p' ' is

(30}
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This equation is identical with the one that describes the
photon statistics of a one-mode laser with a two-level ac-
tive medium. Therefore, in terms of the composite mode
A, the quantum-beat laser exhibits the same type of be-
havior (photon statistics, threshold, saturation) as the
one-mode laser. The detailed analysis of this equation
can be found in the literature (see, e.g. , Ref. 4) and we do
not pursue it here any further. %e shall in Sec. VI, how-
ever, return to the discussion and interpretation of this
result. In Sec. V we shall elaborate on another conse-
quence of Eq. (27), namely, the diffusion constant of and
noise quenching from the relative phase between modes
a, and a2.

V. VANISHING OF DIFFUSION CONSTANT
FOR RELATIVE PHASE

The beat signal between two modes of an ordinary
laser or between two independent lasers decays to zero in
time because, due to the independent spontaneous-
emission events, the relative phase fluctuates freely. The
decay rate for the beat signal is, in principle, given by the

l

= —,'e 'Tr[(A A BB+—AB —A B)p], (32)

where, for simplicity, we assumed that g, =g2 and p
satisfies equation (27). The master equation (27) can be
factorized even in the time dependent case by the substi-
tution

I I
n&, n&

leading to two separate equations for p'"' and p' ',

(33)

Schawlow-Townes linewidth. Below we show that in the
quantum-beat laser the beat signal has a nonvanishing
part in the steady state, which means that the quantum
noise due to spontaneous emission is quenched from the
relative phase.

Our starting point is the observation that, by using the
inverse of (12a) and (26a), the beat signal can be expressed
as the real part of

((v) —v~)t
e ' ' Tr(a la2p)

~ (A)
P n, n'—

&nn'A (A) "" 1A)

1+~ g~~ Pn —l, n' —1
1 ~ g~~ Pnn',

')

[(n +n')p'„"„' 2&(n—+1)(n'+ l)p'„"+1 „+1],

(34a)

p'„„',= — [(n +n')p'„„'.—2&(n +1)(n'+ l)p'„+1 „+1]. (34b)

p„„(t)=g Pj(n)e
j=o

for the diagonal elements and

00 (P)f

p„„+ (t) = g P (n,p)e
j=0

(35a)

(35b)

for the off-diagonal elements. Furthermore, v )0 and

l

Looking for time-dependent solutions of Eqs. (34a) and
(34b) one can show that the general solution is of the
form

( l. 2) ( 1 ) (2) (36)

and the beat signal defined in (32) will be proportional to
the product of the off-diagonal elements of the type

the lowest eigenvalue is po ——0, allowing for a nonvanish-

ing stationary solution for the diagonal elements. Also,
)ug''& 0 for p&0, so that the off-diagonal elements decay
to zero for large times. In the case of an ordinary two-
mode laser (OL) or two separate lasers, the density matrix
factorizes in terms of the original a, and a2 modes,

Re&aia2)OL p pn', n+l(t)p'„. , )(t)&(n+1)(n')—+c.c.
n, n'

(37)

Vc

2( )n' (38)

which is the Schawlow-Townes linewidth.
The crucial difference between the quantum-beat laser

(QBL) and the ordinary two-mode laser is that the beat

According to Eq. (35b) these matrix elements will decay
at a rate po" (neglecting the more rapidly decaying
terms). This defines the phase-diffusion coefficient D as
)Mo

' =D /2, where from —Eq. (34a) it can be shown that

I

signal contains a part that is diagonal in the "true" eigen-
modes A and B of the system,

la2 ~QBL X P, ( )+ (39)

According to (35a) these matrix elements will decay at a
rate pa=0, i.e., there is always a nonvanishing part of the
beat signal. In fact, the beat signal is a measure of the
true eigenmodes of the system. If we maintain the
definition of the diffusion coeScient as twice the lowest



38 (.QRRELATED-EMISSION LASER: NONLINEAR THEORY. . . 759

decay rate in (32), then

D=0 (40)

VI. DISCUSSION AND SUMMARY

Starting from a Hamiltonian model of a three-level
atomic system, where there is a strong classical coupling
between the upper two levels and these levels are in turn
coupled to the lower level via interacting with two modes
of the quantized radiation field (see Fig. 1), we have
developed the nonlinear quantum theory of the
quantum-beat laser. The key feature of our theory is the
transformation given by Eq. (7). In this way, instead of
the two strongly coupled upper levels, we introduced two,
virtually uncoupled, "dressed" states. Under the special
detuning conditions for correlated spontaneous emission,
only one of these modes is coupled resonantly to the
ground state, while the other dressed state is coupled via
antiresonant terms only. This suggests a rotating-wave
approximation that reduces the problem to a two-level
system coupled resonantly to one quantized radiation
mode. This quantized mode is, however, a linear corn-
bination of the initial "bare" modes. The combination

g+ f, +gb
——of the dressed states is coupled to the

ground state and g =f, —gb is decoupled from the sys-
tem. Thus our approach is a "dressed-atom-dressed-
mode" description. The emerging physical picture is
shown in Fig. 2. It is worthwhile to mention at this point
that the condition 6, =0/2, found in Ref. 9 and elaborat-
ed here in detail, selects 1(+~/, as the laser transition
and the combination a, +a2 —A as the lasing mode. The
condition 5= —0/2 would select the f ~g, transition

for the quantum-beat laser and the beat signal will be
given by

Re(a, a2 )(t)=cos(v&t)n„.

We can interpret this result in the following way. The
beat signal is nothing else but the beating of the signal in
the true eigenmodes of the system with itself. This ex-
plains why the fluctuating phase cancels and we obtain a
nonvanishing steady-state contribution.

and the combination a
&

—a2-8, and we still get the non-

vanishing beat signal in steady state. Summarizing the
conditions under which our approach is valid, we find
that the Rabi frequency of the coupling between the
upper levels, the atomic decay rate, and the cavity loss
rate have to satisfy the following inequality:

&»y»y, , (42)

a condition which is well fulfilled in most cases. If we
solve the equation A, =b, z

——0/2 for the frequencies we
find that

V) —V2 —V3

which is the usual beat condition, and

a+b 0
—,'(v&+v&)= +——ai, .

(43a)

(43b)
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This second condition states that the frequency of the las-
ing mode A (the average of the mode frequencies v& and
v2) is resonant with the transition frequency of the

P+ ~g, transition. This justifies the dressed-
atom-dressed-mode picture of Fig. 2. One should also
notice that the beat signal between modes 1 and 2 is
directly proportional to the intensity in the dressed mode
A, thus providing a direct way of measuring properties of
the dressed mode. Finally, normally a strong microwave
pump is a very classical object, the reason being that if we

compare, at equal powers, the input microwave field and
the output optical correlated-emission laser (CEL) signal,
the microwave photon number is four or five orders of
magnitude 1arger than the CEL photon number at optical
frequencies. Therefore the Schawlow-Townes linewidth
of the microwave pump, (a/2n ), is very small and we
need not be concerned about noisy input pumps.

For the sake of completeness, we have included a
derivation of the full nonlinear Fokker-Planck equation
in the Appendix.

APPENDIX

Equation (21) can be transformed into the Fokker-
Planck representation, if one writes

a&p~a&, P, pa &~a& P,

t ~ a a
a&p a', — P, pa, ~ a, — P,

Ba, Ba&

(A1)

FIG. 2. The strong microwave field splits the level a into two
levels. In the present dressed-atom —dressed-mode picture, A is
a true mode for the system.

where P is the usual Glauber representation. If we re-
place a, and a2 by the corresponding differential opera-
tors in Eq. (23), and then perform the integral, we obtain
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Pac +Pbc —2E"a
a&*+az [y'+g '(I3*'+0')]' 4—g '(PP*)'

(A2)

where
1/2

I ai+az I

' —(ai+az) +
Be, Be2

(A3)

The Fokker-Planck equation then reads

BP(ai,ai, az az ) 2g fa

r'
8 8+

&
(a&+az)—

Ba, Baz

8 8
Ba, Baz

8 8

Bai Baz

X i+ g
y

a a
(a, +az) +

Ba, Baz
* 8 8—(a&+az) +

Ba& Baz

1
+C.C. (A4)

where
'2

D =1+ g

r. 4
I a]+az I

—2(ai+az) +
g

2 a a

a, Baz
4 a a—2(ai+az ) +

Ba", Baz
+0 y.

4

(A5)

i0] i8~
Defining a& ——p,e, az ——pze, 0=0|—0z, p=(0&+0z)/2, then we have

8
Be&

B

Baz

B

a0,

B

B0z

—i8]—tel Q e

—0] ~ 2

B7"2 2l f i B02

1 a a=2 ap+a0
& B

2 Bp

(A6)

(A7)

(A8)

(A9)

If we expand the Fokker-Planck equation to fourth order in g and use the relations (A6) to (A9), after a rather tedious
calculation, we obtain the full Fokker-Planck equation,

P= dpP+d(p&) +d(pz) +d(ju) +d(8) +D(0) z +D(p) z +D(p, ) z +D(pz)
BP BP BP BP B'P B'P B'P B'P

~P| r)pz r)P ~0 &0 Bp ~P| ~pa

dP a'~ a'~ a'a
+D(0,p) +D(pl, pz)

~
+D(p„p) +D(pz, (u) +D(pt, 0)

&
+D(pz, 0)

&

where (with g& ——gz ——gp),
(A 10)

2
g OPa

do ——
y'

4

4 "a( pi pz 2plpzcos0)y' (Al 1)

d(p|)=—
2pi

1
p2 — +p&coso

2P2

4
g Ora 3 2 2(30—4aa" )(p, cos0+pz) — [pz+p, cos(20)+2p,pzcos0]+y" 2P2

2
g OPa 1

+P2COSO
4y2

4
go"a 3 2 2(30—4aa )(p, +pzcos0) — [p, +2p,pzcos0+pzcos(20)]+y'

. 2p&

2
g Ora

4y2

See*—8

2p&

5ee* —8

2P2

(A12)

(A13)
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d(p)=—go"a Pz Pi &o"a (30—4aa')
sinO-

Sy' Pi Pz y

p& pz . 3
sinO ——

Pz P& 2

2
p] Pz

Pi

2

sin(28)

2 4
gp a P2 P] go a

sinO—
4)' P& P2

P& Pz+2 ———sinO
Pz P]

2 2
Pl P2 . Pl P2 . Pl P2—(30—4aa* ) —+—sin8+ 6 —+—sin8+ 3 —2+ sin(28)
Pz Pi Pz Pi Pz Pi

(A14)

(A15)

go"a 1 1 2
2

D(8)=, —,+ —,—
8y' p', p', pipz

cosO

4
go"a

y'
3 p ) +2p )P2cos8+ p2cos( 28 ) p )cos( 28 ) +2p )ppcos8+ pp+
2 P& P2

2(pi cos8+ 2p&pz+ pzcos8)

P&pz

5aa* —8+
P] Pz

(A16)

g o"a 1 1 2D(p)=, —,+—,+
32y p& pz P~P2

cosO
gora

y'
3 p, +2p, p~cos8+pzcos(28) pfcos(28)+2p, pzcos8+p2

+
8 P& Pz

2(p )cos8+ 2p )pp+ p2cos8 }
+

P&pz

5aa* —8 1 1+
8 P, Pz

(A17)

'r 4rgo a go a
P& ==

sy' r'
2r 4

go a go a
Pz =

~ [p) ~2P)p2cos8+ p2cos(28)]+3 2 2 5aa* —8

3 2 Saa* —8
—,
' [p,cos( 28 }+2p,p2cos8+ p2]+

(A18}

(A19)

2 4
g pra g Ofa

D (p„p)= — sin8—
8 2 4

2 4
gora . gora

D(p~, p, ) = — sin8-
sy2 4

2 4
gofa . gofa

D (p&, 8)= sin8—
4 2 4

3 2. 3 z z, Saa* —8
[P2sin(28)+2P&p&sin8]+ (p& —p2)sin8+ sin8

2P& 2Pz 2Pz

3 2 3 2 2 . 5aa* —8
[p,sin(28)+2pipzsin8]+ (pi —p~)sin8 — sin8

2Pz 2P] 2P]

3 2 3, , Saa* —8 .
[2p&p2sin8+ p2sin(28)] ——

(p&
—p2)sin8 — sin8

P& Pz

(A20)

(A21)

(A22)

2 4
0 a . gpfa

D (pz, 8)= sin8—
4 2 4

3 2 2 3 2 ~ Saa* —8—(p, —pz)sin8 ——[p&sin(28)+2p~p2sin8] — sin8
P& P2 Pi

(A23)

go"a
D(pi S»)=

sy2
2

D(8,p)=
sy2

4
go a 2cos8 — [3(p,cos8+ 2p, p2+ p2cos8) + ( 5aa' —8)cos8],
y'

1 1

P& Pz

(A24)

where

4
gpfa 3 2 3 2 2 Saa —8 1 1

+ 2 [p,cos(28)+2p,p2cos8+p2] —
2 [p, +2p,p2cos8+p2cos(28)]+

2Pz 2P& Pi Pz

=P 1 +P2+ 2P IpzcosO

(A25)

(A26}

It is interesting to notice that if p, =p2 ( n, =n 2
= n ) then
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g op& 3g opa
2 4

D (8)= (1—cos8) — [ I —cos(28)],
4y'n y4

(A27)

and obviously D (8)=0 for 8=0, so that the quenching of the relative phase noise is still true for higher-order nonlinear
terms.
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