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Photon-number distributions for quantum fields generated in nonlinear optical processes
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We show that in a large class of nonlinear optical processes which are used to generate the
squeezed states of the radiation field, the quantum state of the generated radiation is given by a
Gaussian Wigner function. This is so even when losses in the medium are included. The photon-
number distributions for such fields are evaluated. The number distributions exhibit oscillatory
character for the range of parameters for which the field is squeezed.

Most processes in nonlinear optics can be described in
terms of an effective Hamiltonian involving the interac-
tion of either three modes or four modes. The three-wave
interaction co, ~~—co, +cob can be written as

0=gc~ab+H. c. ,

where the coupling constant g depends on the second-
order nonlinearity 7' ' of the medium. The four-wave in-

teraction co, +cod~~co, +co„ is given by

H=gc d ab+H. c. , (2)

0=Gab+ H. c. (3)

The dynamics' of the modes a and b can be studied in
terms of the solutions of (3). It turns out that if initially
the modes a and b are in the vacuum state, then the state
at time t can be described in terms of the Wigner distri-
bution function 4(z„zb ) of the form'

where g is now proportional to the third-order suscepti-
bility 7' ' of the medium. All parametric and four-wave-
mixing processes can be studied in terms of either (1) or
(2). In most cases the pumps are quite intense and the
pump modes can be treated as prescribed c-number fields.
The Hamiltonians (1) and (2) can be approximated by

are generated starting from no input fields at the frequen-
cies co, and cob.

It should be noted that in any realistic case the losses in
the medium must be accounted for. The effective-
Hamiltonian description is inadequate for this purpose.
However, we can use the master-equation techniques. '

Such methods show that the Wigner function for the
mode y is still given by (6), where the coefficients in the
quadratic form P depend upon losses. Note that such a
Wigner function corresponds to a mixed state of the radi-
ation field.

Thus from the foregoing it is clear that the state of the
generated field in a large class of nonlinear optical phe-
nomena can be characterized by a Wigner function of the
form (6), which also includes as a special case the
squeezed vacuum, as well as the output of an arbitrary
four-wave mixer. Even in a more complex problem of the
behavior of many atoms in a cavity, ' the fluctuation be-
havior of the transmitted field can be characterized in an
approximate manner by a Gaussian Wigner function.
Hence in this investigation we examine the number distri-
butions of the fields characterized by a Gaussian Wigner
function.

We thus consider a radiation field in the mode y,
characterized by the Wigner function given by"

4(z, zi, ) =exp[P(z„zb )], (4) 4(z)=
where P(z„zb) is a quadratic form involving the vari-
ables z„zb, z,*, and zb'. In the considerations of the
squeezed states of the radiation field, one examines the
dynamics of a mode y, which is a linear combination of a
and b, with

g exp

1

n(r —4 lit l
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I
z

I
']

~—4ll I' (7)

y=pa+vb with
l p l +

l

v
l

=1 . (5)

It is clear from (4) and (5) that the Wigner function corre-
sponding to the mode y will also be Gaussian, i.e.,

N(z )=exp[P(z )],
where P now is a quadratic form involving z and z*. In
most of the recent works on squeezing, the modes a and b

The parameters p and ~ are related to the nonlinearities
as well as the losses in the medium. For example, in cavi-
ty electrodynamics p and w will depend on the cavity
losses, spontaneous emission, and the coupling between
the atom and the field. ' These parameters are related
to the moment of y,
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(y&=0, (y'&= —2(M*, (y'y)=r ——,
' . (9) where L„ is the Laguerre polynomial defined by

p= —,'sinh(2~p~ )e ', r= ,'cos-h(2~p~ ), (10)

then the Wigner function (7) corresponds to the squeezed
vacuum state. We thus write

These moments can be calculated from the linearized
Fokker-Planck equation for the Wigner function, which
is eventually used to describe the dynamics starting from
microscopic considerations. If we set

n n
L„(x)= g ( —1)

' x
m=0 I!

It should be remembered that for x =0 and (M=O, (7)
represents the usual thermal field with average occupa-
tion number —,'(Q —1).

The photon-number fluctuations" can be obtained
from the Gaussian property of 4. Calculation shows that

p= —,'Q sinh(x)e ', r= —,'Q coshx .

The parameters Q and x must satisfy

Q coshx ) 1, cothx & cos8,

(~ ) =( ') —( ) =((y y) ) —(y y)

= —,'[Q cosh(2x) —I] . (17)

which follow from the positiveness of the photon number
and (8). The condition for the existence of squeezing can
be shown to be («)'& (n &((n &+1) . (18)

Using (17) we find that the number fiuctuations even
exceed that for a thermal field, i.e.,

Qe "&I if8=0. (13)

Note further that (7) must lead to a positive definite p.
This condition implies that

(r —4 ~(u
~

)'~ ——,
' &0, i.e. , Q) 1 . (14)

With (14), the conditions (12) are automatically satisfied.
The photon-number distribution p(n) is related to the

Wigner function by

p(n}=Id z 4(z) ( —1)"L„(4
~

z
~

) exp( —2
~

z
) ),

n!
(15)

Thus the field can be squeezed under the condition (13)
but it always shows super poissonian statistics as long as

(y &=0.
Note that if the field mode has nonzero (y ), then one

can subtract the coherent part by mixing the field pro-
duced by a local oscillator so that the counting distribu-
tions of the fluctuating part can be measured.

We next sketch the derivation of the explicit form of
p(n). It is clear that the integral cannot depend on the
phase 8. Writing z =re'r, the integral over (p can be
done by expanding exp(a cos (p) in a Taylor series, with

the result

p(n)=( —1)" 8 "
1

n(g st s

1

2
S

4sinhx 2, +I 2 2 eI dr r *+'L„(4r )exp 2r 1+—
Q o

(19)

The integral in (19) can be expressed in terms of hypergeometric functions as

p(n)= g ( —1) k k, F( —,', k+1, 1, —(sinhx)/ug}, u= —,'(1+e "/Q) .( —1)" " k" 1

k=0 U

(20)

An alternate expression for p (n) can also be obtained by writing (19) as

p(n}= L„
a

2n I
"
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FIG. 1. The photon-number distribution p(N))=—PN as a
function of N for a radiation field in a mixed state characterized

by a Gaussian Wigner function. The curves labeled A, 8, C, D,
and E are for x =0, 0.5, 1, 1.5, and 2, respectively. The actual

quantity plotted on the y axis is p(N)+0. 2x. This is done for
the clarity of the curves.

where the Pockhammer symbol

(2k —1)
(22)

For x =0, it is easily verified that (20) reduces to the
Bose-Einstein distribution, as it should. We show in Figs.
1 —4 the behavior of p(n) for different values of the pa-

FIG. 3. Same as in Fig. 1 with Q =2.0.

rameters Q and x. Figure 1 gives the photon number dis-
tribution for the squeezed' vacuum (Q =1). The vacu-
um becomes more and more squeezed as x increases. We
see that the increased squeezing in the field results in a
more and more oscillatory character ofp (n). With an in-
crease in Q the average occupation number in the field in-
creases. When there is no squeezing in the field, i.e.,
Qe "& 1, the number distribution is nonoscillatory.
However, when squeezing starts occuring then the distri-
bution starts acquiring oscillatory character. This is evi-
dent from Figs. 2-4.
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FIG. 2. Same as in Fig. I, but now Q = I.5. FIG. 4. Same as in Fig. I with Q =5.0.
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In conclusion, we would like to emphasize that our re-
sults for photon-number distributions have very wide ap-
plicability since the fluctuations in most of the problems
in quantum optics, particularly in the context of the
squeezing studies, are studied using linearized Fokker-
Planck equations for a suitable quasiprobability distribu-
tion such as the Wigner function. The parameters Q and
x will depend on the system at hand.

Note added in proof. Since this paper was submitted
for publication several other works have been submitted
for publication: %. Schleich, D. F. Walls, and J. A.
Wheeler (unpublished) have discussed the problem of in-
terference in phase space using signer distribution func-
tions; A. Vourdas and R. M. Weiner [Phys. Rev. A 36,
5866 (1987)] and G. J. Milburn and D. F. Walls (unpub-
lished) have also examined the effects of dissipation on in-
terference in phase space; and we have succeeded in get-
ting analytical and numerical results for the case when

2 Qe' —i

(Q +2Qcoshx+1)' Qe"+I

n

4Q sinhx
)&F —n, —,', 1;

Q +2Q sinhx —1
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isterium fiir Wissenschaft und Forschung (Grant No.
GZ-70530/29-13/86), Austria, for support during his
stay at the Technical Universitat Wien.

the mode y [Eq. (5)] has a coherent part, i.e., (y)~0.
We have also found that Eq. (21) can be written in a
much simplified form as
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