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The forward peak resulting from electron capture to the continuum of bare projectiles is investi-
gated within the impulse approximation in both its prior and post form. It is found that the asym-
metry of the peak as well as the peak intensity increases if a larger number of interactions between
the electron and the projectile is included in the calculation. For strongly asymmetric systems with
light projectiles, a peaking approximation becomes valid which factorizes the capture cross section
into the ionization cross section times the projectile Coulomb normalization. Thus capture from ex-
cited states is easily included, and the factorization allows for a fast evaluation not only of the elec-
tron spectra but also of the impact-parameter distribution and the alignment. The theory is also ex-
tended to capture into Rydberg states. The collision systems He?* + He, p + He, and p + Ne are in-
vestigated, and comparison is made with available experimental data.

I. INTRODUCTION

The investigation of the forward peak in fast-ion—-atom
collisions has attracted great interest lately both experi-
mentally and theoretically.! For bare projectiles, the for-
ward peak consists of target electrons which are ejected
with the same velocity as the projectile and which thus
are captured into low-lying projectile continuum states.
At the exact velocity matching, the doubly differential
capture cross section is mathematically divergent (which
gives rise to the name “cusp”) and in addition has a step
discontinuity, leading to a strong enhancement of elec-
tron emission on the low-energy side of the peak. This
feature emerges from a numerical integration of the
Schrédinger equation,? and is also present in the second-
order Born approximation®* or in other high-order
theories, such as the impulse approximation® (IA) and
the continuum distorted-wave (CDW) approximation.’
However, as far as the prediction of the magnitude of the
peak skewness is concerned, the theories differ greatly
from each other.

Experimental information is veiled by the fact that the
detector resolution has a decisive influence on the peak
shape. However, an expansion of the doubly differential
cross section in terms of the electron velocity and emis-
sion angle in the projectile reference frame (with expan-
sion coefficients B,;), convoluted with the detector reso-
lution, has made possible a systematic extraction of B,,
from experimental spectra by means of a fitting pro-
cedure.®~!3 Together with the fact that the cross sec-
tions can now be measured even on an absolute
scale,”!1214 this allows for a detailed comparison be-
tween experiment and theory. The dipole asymmetry pa-
rameter =B, /By, with its strong dependence on pro-
jectile charge and collision velocity is especially suited for
the test of capture theories, because due to the vanishing
of B in a first-order theory, it makes higher-order effects
directly accessible.

Up to now systematic investigations have only been
carried out in a high-energy approximation of the
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second-order Born theory”!® and in the CDW approxi-

mation.” While the peaked second Born theory fails
completely, the CDW scheme compares well with experi-
mental data as far as absolute capture cross sections are
concerned, but underestimates the peak skewness.

This matter of fact calls for the investigation of anoth-
er capture theory, the impulse approximation.!®!” In
contrast to the second Born or CDW theory, which are
symmetric in both electron-nucleus potentials, the IA is
an asymmetric theory, including one of the potentials to
all orders in the on-shell approximation, while being a
first-order theory in the other field. Off-shell effects can
safely be neglected near the ionization threshold of the
projectile, as has been shown in the case of radiative cap-
ture.'® The post-prior discrepancy of the impulse ap-
proximation for near-symmetric systems is one subject of
this work: the prior IA for the capture into the continu-
um (CTC) is developed in Sec. II A within three different
peaking approximations, while the post IA is briefly re-
viewed in Sec. I B. An extraction of the parameters By,
and S from the calculations and a comparison with exper-
iment and with other theories for p and He’* on He is
performed in Sec. IIT A.

For systems with much heavier targets, capture from
higher shells comes into play. L-shell CTC has first been
measured by Sarkadi et al.,!” but is also inherent in other
CTC measurements at lower collision velocities.?’ In
such strongly asymmetric systems, the prior IA has to be
used: in Sec. III B it is applied to the calculation of K-
and L-shell CTC in p + Ne collisions, and the sum spec-
trum is compared to new experimental data. The
impact-parameter dependence and the L-subshell align-
ment is also investigated (Sec. III C).

The theory of capture to the continuum is easily refor-
mulated for the case of capture into Rydberg states of the
projectile. The continuity of the capture amplitudes
across the ionization threshold?' allows for a relation be-
tween the B,; and expectation values of the bound-state
statistical multipoles?? in the limit of high main quantum
numbers, n — co. This relation has been proved numeri-
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cally for By, and B within the CDW theory’*? and
demonstrates that bound-state calculations may be used
as substitute for the more complicated CTC calculations.
In Sec. IV the peaked prior IA is used to investigate the
continuity relation, and also the question to which extent
the target electrons are not captured into the continuum,
but into Rydberg states. A short conclusion follows (Sec.

V). Atomic units (i=m =e =1) are used unless other-
wise indicated.

II. THEORY

Let us restrict ourselves to the independent-electron
approximation, where only the target electron which is
transferred to the bare projectile is considered. The other
target electrons may be incorporated into an effective po-
tential. Simultaneous excitation of the target will then
also be neglected. For the description of the capture
cross section, the impulse approximation is used. We
give formulas for its prior form, which becomes the more
J
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In this expression, v is the collision velocity, <pff is the

Fourier transformed continuum projectile state, and e
and K}/Z is the electronic energy in its initial and final
state, respectively. The time integral is easily carried out
in the case of a straight-line trajectory, and by transform-
ing the coordinates q and s into q;=q—v—s and
$;=q;+S—K, respectively, one obtains
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Upon squaring and integrating over the impact parame-
ter, the doubly differential cross section for the emission
of electrons with energy E;=k}/2 (where k;=«;+V)
into the solid angle d() in the target frame of reference
emerges,
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where spherical coordinates have been used and the angle
cosﬁq1 = —@qmin /9, is determined by the § function. N; is

the number of electrons in the initial state.

Since M (q;) implies a three-dimensional integral, an
exact evaluation of (2.4) hardly seems possible, especially
because the integrand is strongly oscillating in the region
of k =0, due to the behavior of the Fourier-transformed

Pf dtque (h /72—l +v /2): ia-VIR e (q
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accurate, the smaller the projectile charge Z, as com-
pared with the target charge Z;, and address also the
post form (for Zp > Z ).

A. Impulse approximation in the prior form

In the semiclassical theory where the internuclear
coordinate R is approximated by a time-dependent trajec-
tory with impact parameter b, the transition amplitude
for electron capture by light projectiles is given by!’

afior=—i [ dr [ dq(uZ Q)T Vs [0 ,

describing the electron transfer in terms of excitation
from the initial state ¥ via the projectile field ¥, into a
continuum target state ¢qT with momentum q. This is
weighted with the momentum distribution of the final
projectile state 1/1f, which has been transformed into the
target frame of reference. |q) denotes an electronic
plane wave. Introducing the Fourier representation of
the Coulomb field V', one has

(2.1
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Coulomb wave. We shall therefore perform the evalua-
tion by means of a peaking approximation, which is
based on the fact that ¢ff(s1+xf) is strongly peaked at
s;=0. Such an approximation is all the more justified,
the higher the collision velocity (v >>Zp) and the larger
the asymmetry (Zp << Z ), which is to be compared with
the criteria of validity of the IA itself (Zp <<Z; and
vRZrorZpSZyandv>>Zp).

The simplest of successively less restrictive approxima-
tions, the so-called full peaking (FP) approximation,'’
reduces M(q,) to an analytical expression by taking
everything but <pK outside the integral at s;=0. The
remaining 1ntegrat10n then yields (27)*/? times the coor-
dinate space wave function at the origin, 1/1” r=0).

If, in addition to (px , the Fourier transform of the po-

tential, (s;—q,+K,)~ : is kept inside the integral, M (q,)
can still be evaluated analytically for a Coulomb wave
function

1
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with 7,=2Z,/k; and e— +0. This approximation shall
be referred to as the full peaking 2 (FP2) approximation.

The difference to the full peaking approximation consists
in the appearance of the phase factor
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{lq} —(x;+ie)1/(q,—K[)?) —r

Since the phase is real (¢, > k), this factor does not enter
into the total cross section (2.4) for CTC, such that the
two peaking approximations become identical. It should
be noted that this identity does not hold for the impact-
parameter distribution (as will be discussed later on), and
also not for the capture into bound states.

Upon insertion of (2.5) into (2.4), the following factori-
zation is obtained:
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In this expression d’o!/dE +dQ, is the doubly
differential cross section for the ionization of a target
electron into a final state with momentum k. For
reasons of identification, we have introduced the new
variable qo=q;—kK;; an explicit evaluation of (2.6) is
given in the Appendix. The factorization of the CTC
cross section into the ionization cross section times the
squared Coulomb normalization factor has first been in-
troduced by Salin?* from a high-energy CDW-type for-
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where we have introduced x =cos0sl, and q;, are the

components of q, perpendicular to v. It is essential to
use spherical coordinates in (2.7) in order to obtain the

correct result for the integration of @y f” (sy).

In the limit k ,—0, cp;f”(sl) simplifies to
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A=sign(k,—v)=(k;—v)/k; . (2.8)

The step discontinuity of the doubly differential cross
section at k,=v is due to the appearance of the phase
factor exp( —2iAZpx /s, ), which switches sign when one
changes from k;=y —0 to k,=v +0. The dependence
on A survives not only in MTF(q,), but also in the square
of it, because (pff is folded with a complex integrand in

(2.7). In contrast, in the full peaking 2 approximation,
the factor multiplying cp,ff is real such that M¥?%(q,) de-

pends on A only via a phase which vanishes upon squar-
ing. For details of the numerical evaluation of the doubly

)2 ¢:fp(sl)<1/}s7;xez+y(r) | e

mulation, and it has also been considered as an approxi-
mation to the second-order Born theory for charge ex-
change.?> Note that it cannot be strictly derived from
the second Born approximation because there the target
field is not included to all orders.

This reduction of the impulse approximation has, how-
ever, the drawback that the cusp, when calculated from
(2.6), turns out to be spherically symmetric in the projec-
tile frame of reference at Kf=0, due to the inherent s-
wave character of the final state in the full peaking ap-
proximation. Unless in the extreme limit Zp, <<Z or
v >>Zr, this approximation therefore does not predict
the peak shape correctly.

In order to cope with this deficiency, the transverse
peaking approximation is applied to the evaluation of
M (q,). It consists of replacing s; in both the ionization
matrix element and the potential by its component paral-
lel to v, while the transverse components are set equal to
zero. This approximation relies on the assumption that
the momentum transfer proceeds mainly in the longitudi-
nal direction, and it has become quite common for charge
transfer into bound states.

However, the evaluation of the transverse-peaked (TP)
prior IA is quite complicated for the capture into the
continuum if k ; is not aligned with v. We shall therefore
restrict ourselves to the study of just one case, where k
is equal to v. This is sufficient to determine the region of
applicability of the full peaking approximation, but also
to calculate the dominant parameters By, and B,,. For
k, parallel to the z direction e,=¥V, the s, integrand in
(2.3) no longer depends on the azimuthal angle @s, and

M(q,) becomes

i(s;xe,—q,)r
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differential cross section (2.4) in the transverse peaking
approximation, the reader is referred to the Appendix.
Also, an explicit expression for M TP(q,) is given there.

B. Impulse approximation in the post form

For heavy projectiles it is the projectile field which has
to be included to all orders. Therefore instead of (2.1)
one has!”26

ajkfstz-if_:dtqu(tllfl Vrlvg{al vl .

A detailed discussion of the evaluation of (2.9) is given in
Ref. 6 and shall not be repeated here. In contrast to the
case of bound-bound capture, the evaluation techniques
of (2.1) and (2.9) are not the same, because there is an
essential difference in the structure of the integrands.
Formula (2.1) contains the product of a bound-continuum
matrix element and a momentum space continuum state,
while in (2.9), which implies the scattering of an electron
by the target field, it enters a continuum-continuum ma-
trix element multiplied by a momentum-space bound
state. In particular, the continuum-continuum matrix

(2.9
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element [written in Eq. (A7) of the Appendix] is so singu-
lar near y=0 that the full peaking approximation
diverges and thus only the transverse peaking is possible.

III. CALCULATIONS

The calculations have been performed with (nonrela-
tivistic) hydrogenic wave functions (except for the post
IA) using a Slater-screened effective charge and experi-
mental binding energies for the target states. For He,
Z,;=1.7 and £f=—-24.98 eV was used. It had been
shown previously® that for the ejection into high-energy
continuum states, a Hartree-Fock-type approximation for
the He states does not introduce significant changes.

In order to compare with experiment, the doubly
differential cross section is transformed into the projectile
frame. Then an expansion in terms of Legendre polyno-
mials and in powers of «, is made, *?!

do Ky d¥o
= = ¥ B,k P/(cosf') ,
de,dQ, k; dE;dQ; E, Ak

cos6’=(kf’\7-v)/Kf , (3.1

where € /=K} /2, Qf is the electronic solid angle in the
projectile frame, and ¢’ is the angle between x and v. At
the peak position k=0, only coefficients By, enter. If
just the monopole and dipole terms are retained, their
coefficients can be found in the following way:

1 d’o d%o
Boo= |7 k=0 +0)+ =2 (k=0 —0) | ,
1 d’o d’o
By =— -——I—(kf=v+0)————-,—(kf=u—0) .
2 de,dQ} de,dQ;
(3.2)

It has been shown'?!3 that / <1 is sufficient for the light
collision systems p, He + He. Also, for protons colliding
with heavier targets, such as Ne, there is experimental
evidence that higher multipoles are of no significance.

A. CTC from helium targets

In Fig. 1, By, for electron capture from He by protons
and a particles, respectively, is shown as a function of
projectile energy Ep. Calculations are performed in three
different models; the transverse-peaked post IA, as well
as the prior IA in full peaking and transverse peaking, re-
spectively. For the prior IA the cross sections are calcu-
lated from (AS5) and from (2.4) with (A4), respectively,
while for the post IA the formulas are given in Ref. 6. It
is seen that for the symmetric system, post and prior TP-
IA give very close results for the higher velocities; at very
large velocities, numerical inaccuracies come into play.
For the nonsymmetric p + He system, the post form gives
a larger By than the prior IA, indicating that a strong
coupling to the heavier target reduces the cross section.
The full peaking approximation overestimates the cross
section by at least 20%, even at the highest velocities.
The main reason for this lies in the fact that the prior
FP-IA reduces asymptotically to the second-Born theory
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FIG. 1. Intensity parameter By, multiplied by v® (vin a.u.) as
a function of projectile energy for the systems He?* + He (upper
curves) and p +He (lower curves). Shown is the transverse-
peaked IA in its post form ( ) and its prior form
(—e—-—- ), as well as the full-peaked prior IA (—--—--—).
The dashed line is the high-energy second-Born approximation
and the dotted line is a CDW calculation (Ref. 7). Experimental
data are from Anderson et al. (Ref. 11) (§), Dahl (Ref. 9) (),
and Berényi (Ref. 14) ($).

(or the TP-IA) only up to errors'’ of the order of Z,/Z.
For energies above 1 MeV/amu (v>6.3 a.u.) the IA
agrees well with experimental data from the Aarhus
group;!! at much lower energies, the perturbative treat-
ment inherent in the IA is not expected to be valid any
more for these near-symmetry systems.

Comparison is also made with a CDW calculation,’
which agrees slightly better with the data®'* at low veloc-
ities. The second Born theory in its high-energy peaking
form? drastically overestimates the cross section and con-
verges only very slowly to the IA at high v.

A parameter more sensitive to the different theoretical
approaches than B, is provided by the asymmetry
B=B, /By, which is displayed in Figs. 2 and 3. Calcu-
lations within the post TP-IA give a much larger B than
the prior TP-IA, which demonstrates that a strong cou-
pling to the projectile field amplifies the skewness. That
on the other hand a strong coupling to the target field
weakens the asymmetry is supported by the fact that the
CDW calculation,’ which includes both potentials exact-
ly (on the expense of the kinetic energy), lies between the
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FIG. 2. Asymmetry parameter S=B,, /By as a function of
projectile energy for He?* +He. Shown are calculations within
the transverse-peaked post IA ( ), the prior IA (—. —. —. )y
and the peaked second-Born theory (— — —). The experimen-
tal data are from Andersen et al. (Ref. 11) (§) and Gulyas et al.
(Ref. 13) ($).

results from the post and prior IA.

At high collision energies the asymmetry tends to zero.
This behavior can, in the case of the prior IA, be under-
stood from inspection of (2.7) with (2.8): If the ionization
matrix element in (2.7) did not depend on s,x, the func-
tion q:,’:f(sl) would be folded with a real expression, such

that the A dependence would drop out of | M™(q,)]|.
That this actually is true in the limit v — oo is based on
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FIG. 3. Asymmetry parameter 3 as a function of projectile
energy for p + He. The curves have the same meaning as in Fig.
2, and a CDW calculation (Ref. 7) (- - . .) is included. Experi-
mental data are from Andersen et al. (Ref. 11) (§), Dahl (Ref.
9) (%), and Meckbach et al. (Ref. 8) (¥).

the fact that the main contribution to MT¥(q,) comes
from small s, and that ¢, > v /2, such that the x depen-
dence of the ionization matrix element gradually de-
creases with increasing v. In the post IA, the asymmetry
can be traced back® to a discontinuity of the argument in
the hypergeometric functions from (A7) entering into the
integrand, which varies like Zp/v. In this context it
should be noted that due to convergence problems of
these hypergeometric functions the post IA cannot be
evaluated sufficiently close to Kf=0; instead, we have
chosen a series of finite k; on both sides of the peak and
extrapolated to x,=0. This procedure becomes, howev-
er, rather inaccurate at high v, causing 8 to fall even
below the peaked second-order Born result (if, for exam-
ple, both post IA and second Born are calculated at the
rather large value Kf=v/\/ 1000, the IA approaches the
Born theory smoothly from above'"2¢). Also, the prior
IA suffers from inaccuracies for high v due to mutual
cancellations in M™(q,) as the x dependence of F(s,x)
[defined in (A4)] decreases, causing B to drop too strongly
with v. The parameter 8 is much more subject to the nu-
merical deficiencies than the absolute cross section (Fig.
1). Other theoretical results concern the increase of 8
with Z, [because the strength of the discontinuity is pro-
portional to Zp; see also (2.8)], but the lack of any scaling
property of B with Ep/Zp, which had been suggested
from experimental evidence. !!"12

The selection of one theory by means of comparison
with experiment is complicated by the fact that the data
from the different groups®%!"!* do not show a unique
dependence on the collision energy. The Aarhus data”!!
seem to give preference to the post IA. At low impact
energies, however, the asymmetry predicted by this
theory is too large'? for projectiles with Z, >2. On the
other hand, a weak coupling to the projectile field (prior
IA) substantially underestimates [, especially for the
p +He system. The complete breakdown of the prior IA
is reached around Ep=0.1 MeV/amu, where B even
changes sign. Evidently, it is a strong coupling to both
potentials (but not within the CDW scheme) which be-
comes important in slow collisions.

B. CTC from neon targets

For proton impact on heavier targets, we have only ap-
plied the prior IA. It is straightforward to generalize this
theory to include capture from higher shells because one
can use the matrix elements well-known from ionization
theories. In the special case of the L subshells, these ma-
trix elements are listed in the Appendix.

In Fig. 4, B, values for the Ne subshells are given as a
function of the collision velocity. The falloff with v due
to the increasing minimum momentum transfer q,;, is
much stronger for the L shell that it is for the K shell.
For collision velocities above the initial electronic orbit-
ing velocity, the full peaking approximation differs from
the transverse peaking approximation in general by less
than 20%, the only exception being for the 2p,m=1
state. For this state, transverse momentum transfer is
important and thus its partial neglect in the FP-IA is
justified to a much lesser extent.
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FIG. 4. By in the transverse-peaked prior IA (left-hand
scale) for p + Ne as a function of collision velocity v. The solid
lines are the contribution from the Ne 1s and 2s states, the
dashed lines are the 2p,m=0 and the 2p, |m | =1 contribu-
tions. Also shown is By, for the 1s state in the peaked second-
Born approximation (dot-dashed line). The dotted curves give
the ratio of By calculated in the full-peaked and the
transverse-peaked IA, respectively (right-hand scale).

The skewness parameter B is plotted in Fig. 5. In-
terestingly, for the higher collision velocities only the s

states exhibit a negative 3, while for the p states B is posi-
tive, indicating that electrons with velocity slightly above
the peak are ejected with more intensity than those with
k; <v. This feature is related to the structure of the p-

B
04
p—Ne
03} 2plml=1_ _
02t el
L //,/ 2p,m=9//
01t -~ - -
0 ‘\:>/._.===£—
-01 s L 1 1 n L
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FIG. 5. B for the p +Ne system as a function of collision ve-
locity in the transverse-peaked prior IA (solid lines, target ls
and 2s states; dashed lines, target 2p states) and in the peaked
second-Born theory (dotted line, target ls state).

state wave function. The strong increase of 8 in the posi-
tive regime for velocities below 10 a.u. again indicates the
breakdown of a first-order theory in ¥,. Comparison is
also made with the high-velocity second Born approxima-
tion® for the 1s state, which gives a quite reasonable S, al-
though the absolute cross section, i.e., By, is far too
high.

For the calculation of the electron spectrum with arbi-
trary k., the transverse peaking approximation requires
much numerical effort. We therefore suggest correcting
the full peaking approximation for its deficiency of yield-
ing =0 by means of including a 3 which has been deter-
mined from the TP-IA, and also by adjusting B, to the
value from the TP-IA. This leads to the following formu-
la:

d20' — Ef_ng

—_—= (14+Bcosb")

+o 3 zB,ﬁPK;P,moso')]
00 n>1 1

k., BT 2 Fp
=K—f B—(:;—dd%+BoT§Bcos9’ .33
f 00 dEraily

Into (3.3) enters the assumption that the relative depen-
dence on « is to sufficient accuracy determined by the
full peaking approximation. This assumption may be
justified from the fact that even for finite « s> the function
¢ff(s,+xf) diverges strongly in s, =0 (like s73). Thus
the quality of the full peaking approximation depends
only weakly on k as long as «, is small compared to v.
Figure 6 shows the forward peak for all Ne subshells in

d’o barn
<dE,de> ( keV-sr )

p— Ne

1

1
100 104

1 03 | S S |
80O 84 88 92 96

k; (au)

FIG. 6. Doubly differential cross section for cusp electron
emission, averaged over the detector resolution 6,=0.75° for
2.5-MeV p +Ne (v=10.005 a.u.) collisions as a function of elec-
tron momentum k,. Shown are the contributions from the tar-
get 1s and 2s states ( ) and from the 2p states (— — —) cal-
culated in the asymmetry-corrected full-peaked prior IA, Eq.
(3.3).

i .
108 n.2




76 D. H. JAKUBASSA-AMUNDSEN 38

this approximation for an impact velocity of 10 a.u., aver-
aged over the angular resolution 6,. At this velocity the
subshell spectra are nearly symmetric at half maximum
(|B] £0.06), but it becomes clear that in the wings,
where higher powers of k, come into play, the L sub-
shells show a strong enhancement on the low-energy side.
This follows from the behavior of the ionization cross
section (2.6), which constitutes the slowly varying “back-
ground” in the cusp region. Furthermore, the contribu-
tion of the summed L shell is about as large as the contri-
bution from the K shell.

It should be noted that there is no cusp inversion for
the 2p,m=0 state for CTC, in contrast to the case for
electron loss to the continuum.?’ The reason lies in the
fact that for charge transfer the average momentum
transfer is always of the order of v, i.e., large, such that
small variations of x, around O hardly alter the relevant
electron momenta entering from the 2p,m=0 initial
state. Thus it is always the Coulomb normalization fac-
tor which dominates the cusp shape.

Experiments with a very high resolution are presently
under investigation for various projectile-target combina-
tions.?’ In Fig. 7 the experimental cusp spectrum for
4.2-MeV p colliding with Ne is compared with calcula-
tions where d’o /dE rdQ is averaged over the experi-

mental resolution (6,=0.75°, AE;/E;=0.5%). The de-
viation between experiment and the summed K + L shell
calculation is about 25% and lies within the experimental
accuracy of the absolute values. However, the experi-
ment shows a much larger asymmetry than theory even if
the TP-corrected formula (3.3) is used. This effect is still
more pronounced if the proton velocity is lowered. The
reason is not yet clear. Tentatively, the enhanced number
of electrons emerging with k, <v may be explained by
means of a double-scattering mechanism which would
lead to a redistribution of the CTC electrons. A
thorough experimental study of the peak shape is in pro-
gress.

C. Impact-parameter dependence and alignment

So far, no studies of the impact-parameter dependence
of cusp electrons have been performed. The b depen-
dence is obtained from the formula

iZP "”7j/2
—e

FP2
ar 4(b)=
fi ( ) Ty

. © 27
F(1~m7f)fqmi 41d41f0 do, e

X(t/Jka(r

iq,b sianlcoswq1 1

do barn
<dE, d§§,>(1¢ keV-sr )

p—Ne

1

10 ns 120 125 130 135 140 15
k¢lau)

FIG. 7. Doubly differential cross section for cusp electron
emission, averaged over the experimental angular resolution
(6o=0.75°) and energy resolution (AE;/E;=0.005) for 4.2-
MeV p +Ne (v=12.97 a.u.) collisions as a function of electron
momentum Kk,. The experimental data from Schramm et al.
(Ref. 20) (histogram) are compared with the full-peaked ( )

and the asymmetry-corrected full-peaked (- - . -) prior IA,
summed over all target shells. Also given is the 1s contribution
in the full-peaked prior IA (— — —).
d ZP N i 2T
— =k, — d (b)|?, 4
dE,;d0, 2n INCALID) G4

where N; is the number of electrons in the subshell i and
where the average is taken over the experimentally unob-
served azimuthal angle ¢,. In particular, the FP2 ap-
proximation gives

2 2 —in
91 —Ky 4

(ql—Kf )2

(ql—Kf)2

Y™ )y (3.5)

while in the FP approximation the phase factor in the first line of (3.5) is missing. In the limit k, — 0, the integral over
®q, leads to a Bessel function J |, |, where m is the magnetic quantum number of the initial state, and also the depen-

dence on @, drops out. With the transverse peaking approximation, one obtains in this case
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dPT? 32Z;

_ N ®© . ©
dE;dQ, «kpom ! fqmi,,dq'qul'"|(q'bsmﬁql)fo

In (3.6), use has been made of the fact that the ionization
matrix element depends on Pq, only via the phase

exp(im(pq‘ ), which has been included in the integration
over @, .

The impact-parameter dependence of the transition
probability at k,=v +0 for 2.5-MeV p colliding with Ne
is shown in Fig. 8. Comparison is made between the TP,
FP, and FP2 impulse approximation. For the s states,
the FP2-IA as well as the FP-IA are satisfactory, except
for very large b and in the dip resulting from the nodal
structure of the 2s state. The 2p states show an oscillato-
ry behavior with b and for these states the full peaking
and FP2 approximations are not so good. In particular,
these approximations lead to a spurious structure in the
2p,m=1 transition probability around b =0.1 a.u., which

4P,
K, dE, d9Y, (1/keV)

10

10k
0%

109

10'7 AL P S L N N .
02 04 06 08 10 12
bla.u.)

FIG. 8. Impact-parameter dependence of the CTC probabili-
ty times x, (x, in a.u.) for p +Ne collisions. The electron
momentum k; equals v (v=10 a.u.). Solid and dashed lines,
transverse-peaked prior IA for target s and p states, respective-
ly. Also shown is the IA in full peaking (- - . -) and in the full
peaking 2 approximation ( —. —- —- ).

ds; —2iAZpx/
21 f dxe TN — l 2
sy T -1 g7 +(s1x —q,;)

2

19T()Ye

i(s;xe,—q)r

X(¢3;xez+v(r) I e

(3.6)

is smoothed in the TP approximation (3.6) due to the in-
clusion of more than one intermediate electronic continu-
um states.

The oscillation of the p-state transition probability be-
comes more evident if the alignment is considered,

1
P im=1—Pm=o

= , 3.7
% P|m|=l+Pm=0 ( )
where P stands for dZP/dEf dQ,(b). Figure 9 shows
that there are oscillations in A4,,(b) as a function of b.
From their period Ab the frequency can be derived via
k =2m/Ab, and it is about equal to the collision velocity
v (which in the case considered agrees with the electron
velocity k). These oscillations can be traced back to the
out-of-phase oscillations of the Bessel functions J;, and J,
entering into (3.6). Since from the ionization matrix ele-
ment it follows that ¢, =v at high v, this thus constitutes
the natural oscillation frequency. It is evident from (2.6)
that the alignment for ionization into a given final state
k, is identical to the one calculated in the FP approxima-
tion for capture. From Fig. 9 it follows that the oscilla-
tions are present not only for capture, but also for ioniza-
tion, although with somewhat shifted phase. If k, is
chosen to be much greater than v, the oscillations are

Ay 5 10 5 20 2 viau

T S

- N 4

0 02 04 06 08 10 12
blau)

FIG. 9. Alignment A,, for the Ne L shell in p +Ne col-
lisions as a function of impact parameter at fixed velocity v=10
a.u. (lower scale); solid line, transverse-peaked prior IA; dotted
line, full-peaked prior IA. Also shown is the total alignment as
a function of velocity (upper scale); dashed line, transverse-
peaked prior IA; dotted line, full-peaked prior IA. In all calcu-
lations, x,=0.
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damped, while for k ! much smaller than v, the oscillation
frequency is lowered correspondingly, but there is again a
strong damping at the higher b.

Also shown in Fig. 9 is the impact-parameter integrat-
ed alignment [where P in (3.7) is replaced by
d%c /dE +dQ,] as a function of the collision velocity.
The p states are less aligned when v is increased. This in-
crease in A, is related to the fact that for small v
(v=Zy), the main contribution to the g, integral in (2.4)
comes from gq,=gq,~v. Thus capture from the

| m | =1 states is suppressed, because these states relate
to the transverse momentum transfer sinza?q1 =q?—qi.,

(see Appendix), which results in A4,; being strongly nega-
tive. For high velocities, g, =v, but g ;. ~v /2, such that
the | m | =1 states are favored, which produces a small-
er alignment. It should be pointed out that A,, is ex-
clusively determined from the differential cross section at
the cusp (k,=v): The alignment does not change if one
averages over the angular resolution, or even if one ener-
gy integrates over the forward peak.

D. Capture into Rydberg states and comparison with CTC

The prior impulse approximation in the full peaking
and FP2 approximation is readily extended to capture
into high-lying Rydberg states. The only change in the
transition amplitude (2.3) is the replacement of the
momentum-space Coulomb wave <pf by the Fourier-
transformed Rydberg-state wave function @f,,,, of the en-
ergy k;/2 by ey =—2Zp/2n? and of x; by 0 in M(q,).
In the FP2 approximation, the cross section for capture
into the projectile state with quantum numbers nim is
given by

47
af,f’,,f———N [ dq,8(eF —el+q,v+v2/2)
X | Miig) | %,
Y e T yTin))

1
X [ ds;———= @2 (s)) . (3.8)
f Sl(s _q1)2¢’1 S

Mg =gyl

If one is interested in the total capture into a given shell
n, (3.8) has to be summed over / and m. This summation
can be directly performed on the squared M[F%(q,), and
one obtains

S I MEEq) | *=20% | (¢T(r) e " yTin) |2
ILm

n—1

X E 21+D]Gug)]?,

Gulgi)= [ “dr rR3(Pji(qir) . (3.9)

In this expression, R, is the radial part of the Rydberg-
state wave function and j; is a spherical Bessel function.
Due to the summation over m, only the radial integral
G,;(q,) enters, and there is no dependence on the direc-
tion of q, left. For hydrogenic wave functions, G,;(q,) is
given in the Appendix. It is nonzero for any /, but for

Zp << Zr, the s states largely dominate. In the full peak-
ing approximation, on the other hand, where (s, —q;) 2
in (3.8) is replaced by g%, M} (q,) becomes proportion-
al to the Rydberg function at the origin, which vanishes
for /> 0. Thus for capture into bound states, the FP2 ap-
proximation should be preferred.

For large n, the cross section 0,=73,, 0,, scales
very accurately with n ~>. From the continuity at the
projectile ionization threshold, a relation between o, and
By, can be derived,?' which reads, when generalized to
arbitrary projectile charges,?*?*
1 3

20',,’1 as n — oo .
41TZP

By = (3.10)

This parameter can be used to test the accuracy of the
calculations. In the full peaking approximation for cap-
ture from the K shell, we have found very good agree-
ment ( << 1%) between the By, from (3.10) and the one
from integration of (3.1) for a series of projectile-target
combinations. However, when the FP2 approximation is
used, the deviations are about 2% for the p + Ne system,
but considerably larger for greater projectile charges,
especially at low collision velocities. The difference is ex-
clusively due to the population of /540 bound states in
the FP2 theory. This is an example that the continuity
across threshold is not automatically fulfilled if approxi-
mations are introduced into the theory.

A question of interest is the population of Rydberg
states as compared to low-lying continuum states, when
the projectiles has left the target. Due to the n ~* scaling,
the cross section for capture into Rydberg states with
n >ngy, where ng is some fixed shell number, can be writ-
ten in the following way:

ng—1
Ryd E o,=6B3)— 3 n3|{o.n% 0w,
n>ng n=1
(3.11)
where ¢ is the zeta function with £(3)=1.202..., and

nyxS. For p +Ne, (3.11) holds even for ny=1 within
5%. This is compared with the CTC cross section, in-
tegrated over energy and angle,

max

(3.12)

ocre=2r [, dE; foe"de sin6

d%o

dE dQ,
We have compared URyd and ocypc for K-shell capture
from Ne by protons. For the limits of integration we
have taken an electron energy which corresponds to the
momentum v +0.05v, and which covers most of the peak
region. The cross section (3.12) shows, however, a strong
dependence on the angular resolution 6,. While the an-
gular averaged cross section exhibits only a slight de-
crease with 90, there appears an additional factor of
1—cosf,~6%/2 from the 6 mtegratlon For p + Ne, one
has approximately ocrc~0)6 for 6,52°, independent of
the collision velocity v.

Table I shows the ratio R =0 cp¢/ O'Ryd

as a function of

ny. While at any velocity, most of the electrons are cap-
tured into the ground state, the capture to the continuum
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TABLE 1. Total capture cross sections from the Ne K shell into Rydberg states of hydrogen with

n>no, 050

ratio R (U)=UCTc/URyd

"o
powers of ten.

¥4 and into the continuum, o crc (With 6,=1°) in the FP2 approximation. Also shown is the
as a function of the collision velocity v. Numbers in square brackets denote

v (a.u) no a'}g" (barn) ocrc (barn) R (v) R()/R(v=T)

7 1 3.59[3] 1.42[ —2]
11 1.39[1] 5.09[1] 3.67 1
51 6.01[—1] 8.47[1]

10 1 3.03 2.27[1] 7.50 2.04

15 11 2.32[—1] 3.93 1.70[1] 4.62

20 11 2.29[ —2] 6.94[ —1] 3.03[1] 8.25

exceeds a',}gd for ny higher than 10 already by one order the capture to continuum in terms of a scaled doubly

of magnitude. Also given in Table I is the relative veloci-
ty dependence of R, which is a universal quantity, as it is
independent of n, and 6,. The population of continuum
states relative to the Rydberg states increases strongly
with velocity, because the available energy space in the
continuum gets larger. The proportionality of the in-
tegration interval E,,, —E ., to v’ thereby leads to an
approximate increase of R with v2.

IV. CONCLUSION

We have studied the intensity and the shape of the for-
ward peak within the prior and post forms of the peaked
impulse approximation. We have found that for the sym-
metric system He?* +He, the prior and post IA’s give
identical results at high velocity within the numerical ac-
curacy, although their evaluation schemes are completely
different. In both versions, the peak is skewed towards
the low-energy side, but considerably more in the post
version which includes the coupling to the projectile field
to all orders. Thus the post-prior agreement for the
skewness parameter 8 is only reached at a much larger
velocity than for the intensity parameter By,. At not too
low velocities, experimental data seem to favor the post
IA, but the large spread in the data does not allow for a
definite conclusion. Even for the weak asymmetric
p +He system, the post IA agrees somewhat better with
the data. From this it must be concluded that a single
coupling to the projectile field, as inherent in the prior
IA, underestimates the peak asymmetry even when
Zp<Zp.

For the strongly asymmetric p + Ne system, however,
the prior IA gives a very good agreement with experi-
mental data at the higher collision velocities. For this
system, capture from the target L shell becomes increas-
ingly important when v is lowered. While the 2s state
produces a peak which is likewise skewed towards the
low-energy side, the cusp originating from the 2p states is
in a large velocity region skewed towards the high-energy

side at half maximum. However, for this asymmetric sys-
tem the skewness is very small and the p-state behavior is
thus difficult to observe experimentally, especially be-
cause the s states (except at very low velocity) give the
dominant contribution to the total intensity. The small
skewness allows, however, for a simplified description of

differential target ionization cross section, where the elec-
tron is ejected with momentum k,. This model, which
emerges from the full peaked prior IA, provides only a
symmetric peak, but apart from that it shows all essential
features of CTC. In particular, it reproduces the oscilla-
tions of the impact-parameter-dependent transition prob-
ability for the 2p initial states, which become even more
pronounced in the b-dependent alignment. These oscilla-
tions show a resonantlike behavior for electron momenta
ks ~v, but are damped when k is much different from v.

The doubly differential CTC cross section in the pro-
jectile frame at the continuum threshold can be related to
the cross section for capture into high-n projectile Ryd-
berg states. When a comparison is made between the
angle- and energy-integrated CTC cross section and the
cross section for capture into arbitrary Rydberg states
with n >n,, it is found that for a collision system with
very light projectiles, such as p +Ne, only a very small
portion of electrons is captured into high-lying Rydberg
states with, say, ny > 20. The portion becomes still small-
er when v is increased. This result is in accord with the
experimental observation that for very energetic
Ne!®t 4 Ne collisions, the fraction of ECC electrons
detected behind the target exceeds by far the fraction of
electrons cagtured into a broad band of high-lying Ryd-
berg states.?
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APPENDIX

In this appendix we give explicit expressions for the
matrix elements and cross sections for capture from the
target K and L shell into the continuum and into Ryd-
berg states of the projectile, which relate to the prior im-
pulse approximation. Also, the continuum-continuum
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A,=(p—q)P—(k +iZ;/n)*,
B,=Z}/n*+(q—p+k)?,

M =(1—in )[(2+in)+(2—in)A4,/B,],
M,=(1—in)in +Q2+ig)1+in)B,/ A4, ,

scattering matrix element occurring in the post IA is
given.
Let us denote by I; the following integral:

1;(k,p,q)={¢y(r) | e"P~97 | yT(r)) .

With the appropriate choice of the variables k, p, and q,
I; appears in the integrands both for CTC and for cap-
ture into bound states, if the prior impulse approximation
is used.

Let us define

(A1) (A2)

No=(232/mZ§/% ™ *I(1—in,)

with 1, =Z/k. Then the integrals for the various initial
states are given by

1,,(k,p,Q)=No(A; ™ /BT ™ )\[(14in B, /A, +(1—in)],
Ly(k,p,q)=2""2Ny( A5 '™ /B3 ™) {(1 +in 2By / Ay +i /2)Zrk (2+in, B,/ A3]
+(1—ig N2—ZF2+in )/ Ay —(Z2/2)(2—in,)/B,1} ,
Ly m=o(k,p,q)= —-i2_5/2NOZT(Az_m"_l/Bz_mk )Mk cosdy +(M,+M,)(g cos?, —p cos?, )] @

Lp, w1 (P, @) =i273NoZ (A5 ™~ /By ™) Mk sinde ™ + (M, + M, )(q sind e * —p sind, e )] ,

where the z direction is taken along v. Q, Jy, and @, are
the spherical coordinates of any vector Q.

In the evaluation of the transverse peaked IA, Eq. (2.7)
with (2.8), the pole structure of the integrand has to be
considered carefully. There is a weak singularity at
(s;x —gy,)* 4¢3, =0, which can easily be dealt with if the
lower limit of the g, integration is chosen slightly above
Gmin- Furthermore, there is a square-root singularity in
the x integral at s;x 4+ v=0, for s, > v, which is due to the
normalization factor of the target Coulomb wave. It can

J

ds 2
TP _ © 1 1 2iAZpx/s
M (ql)—fo _s% f_ldxe 'F(s,x)

5 ds Yy .
=F(0)7T/(22P)+f0]‘71flldxe 2AZpx/
S -

175 —2i Xxs
+ [ Vs, [ dx e P (xssy)-F O]

with

™ /2 1
F(s,x)=(12Zp/me " T(1—in,)
! P s g} +(s;x —‘hz)z

xI;(s\xe,+V,5,x€,,q;) .

In addition, a logarithmic variable substitution y =Ins,
should be used, and the lower integration limits O should
be replaced by some small, but finite €.

In the full peaking approximation, there are no numer-
ical difficulties. From (2.6), it follows that

[
be handled by means of a logarithmic variable substitu-
tion in the regions —1<x < —v/s; and —v/s; <x <O.
A very strong, but integrable singularity appears in the s,
integral at s, =0. This singularity has to be extracted by
hand and its integral performed analytically. Coping
with the additional difficulty of a rather slow falloff for
s;— 0, the integral is split at some intermediate ¥,
(which was taken to be §;=v/2) and the substitution
s,=1/s, is made for s; >5,. Then M™¥(q,) can be writ-
ten in the following way:

'[F(s,x)—F(0)]

(A4)

f

d*o*? 87Zpk,n,
dE;dQ; 2

—2m
—e )

x [°

90 min

1 27
dqo—;fo do, | 1;(k;,0,q0) |2,
q0
(AS5)
with g¢ min =(kf2/2—e,-T) /v and cos0q0= —9qomin/90-

For the capture into a bound projectile state n,l/
(summed over m), one has from (3.8)
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16m°Z3

ou="—7N [y d0 a2 +1)|Gu(a))|*| L(v,0.a)|?,

l)

G (@)=Ng"Zp/n —ig)" ¥ ~UZp/n +iq) " F (I +1,—n +1 +1,21 +2, —[(4igZp /n)/(Zp /n —ig)*]) ,

Zl+3/2

n’+2F(1+%)

an D |
(n—1—1) ’

_Qmin/ql'

N=(—1)"—!-1

with Q= (€5 —e/ +v%/2)/v and cosd,
from (A6) by summing over / (0</<n — l)

The total capture cross section o,

(A6)

into the shell n is obtained

For the evaluation of the post IA, the scattering matrix element of continuum projectile states is needed, 6

‘elsr|¢P>__ 17'17[/2

(2 )2 F(1—in, Je

"/ZI‘(I—inq )ai'qq-—lyinj—inq—l(y+8)—inf—l

2F\(1—imng,ins, L;[(ad—By)/aly +8) D n (kv —q8)+Zp(y +8)]

+,F 1 (2—in,, 14+in,,2;[(ad— B‘y)/a(}/+8)])

X[g8la+pB)

—kpy(a+B+y+8)]

—ing)ymy
aly+96)

(A7)

where 0, =Zp /q, ,F,(a,b,c;z) is a hypergeometric function, and the following abbreviations are used:

a=(q+s—«k;)?/2, B=x;(q+s—K;)—iE,

(A8)

Y=q2/2—(s—xf)2/2+ie, 8=Kfq—xf(s—xf)+ie, e—+0.

Explicit formulas for the evaluation of the cross section are given in Ref. 6. Note that the singularities inherent in (A7)
are most conveniently handled by means of appropriate coordinate transformations. ¢
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