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Quantum traversal time
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The time spent by a quantum particle in a scattering event or a tunneling process (the traversal
time) through a rectangular barrier is calculated from the viewpoint of the stochastic formulation of
quantum mechanics. Comparison with previous results is also provided.

I. INTRODUCTION

The question of the duration of a quantum-mechanical
scattering event and a tunneling process of a particle
through a potential barrier has been of considerable in-
terest and debate in the literature. ' ' Of particular im-
portance in chemical and nuclear physics is the relation-
ship between properties of the collision partners and the
collisional time delay: experimental advances in nuclear
physics have allowed direct measurement of proton-
nuclei time delays, providing useful data for testing vari-
ous models of nuclear scattering. The interest in the
traversal time for tunneling in solid-state physics arises in
connection with the field emission of an electron out of a
metal surface into the vacuum or into a semiconductor. '

The ability of the image charge to spread out and
respond to the departing electron depends on the dura-
tion of the tunneling process.

Calculation of the traversal time by a variety of ap-
proaches has led to disparate answers. We allude now to
different earlier methods as some examples of the state of
the art. As shown by Eisenbud, Bohm, and Wigner,
one can calculate the time delay of a scattering event
from the energy derivative of the phase shift, which the
scattered wave exhibits relative to the incident wave.
This (so-called) stationary-phase method has been gen-
eralized to a considerable extent by many subsequent au-
thors, ' ' "' ' ' for multichannel scattering process-
es (including inelastic mechanisms ). (A cornprehen-
sive review of time-delay theories can be found in Ref.
12.) It has also been proposed' that the time-delay
theory is valid for any scattering event irrespective of
whether the underlying dynamics is classical or quantum
mechanical, " thus providing a method for defining a
universal phase-shift-like functional that is a characteris-
tic of both quantum and classical systems. This was
stressed by the fact that one can derive a classical analo-
gue to the quantum-mechanical Levinson theorem. ' '"
Despite fundamental conceptual dissimilarities to the
latter works, our approach exhibits a natural reciprocity
between the classical and quantum definitions of the
traversal time. In fact, by simply letting A~O, in Eq. (29)
below, we may recover classical results from quantum
ones. In the discussion of Sec. III, we draw some com-
parisons between our traversal time and the time delay of
the stationary-phase method.

Another approach given by Smith, and advanced by
others, ' ' ' determines the average dwell time of a
particle within the interaction region from a kinetic point
of view: the ratio of the number of particles in the bar-
rier to the incident flux determines such a time. Smith
has shown that the kinetic definition and the one given by
the generalization of the stationary-phase method are
essentially identical: the average time delay associated
with scattering out of the incident channel or initial state
is found from the diagonal elements of a collision opera-
tor. This formalism has been greatly advanced by several
authors. 8' ' ' ' ' ' ' Recently, Osborn and co-
workers have carried out formal studies of the relation-
ship between the collisional time delay and system densi-
ties of states in N body scatt-ering. (In particular, see Ref.
10 and references cited therein for a comprehensive
analysis of this subject. )

In another approach, Stevens has analyzed the propa-
gation of electromagnetic waves in dispersive and at-
tenuating media (as developed by Brillouin and Sommer-
feld) and applied it to the tunneling problem by following
the time evolution of a pulselike wave train. A different
approach has been given subsequently by Pollak and Mill-
er, who have shown that the collision time may be inter-
preted as the time average of a flux-flux correlation func-
tion. This interpretation leads to a complex traversal
time, whose real part is identical to the usual definition as
provided by Smith. The imaginary part is identical, in
the semiclassical limit, to the imaginary time associated
to tunneling. This is also related to what Stevens has
suggested to be the signal velocity of the wave packet.
For a rectangular barrier, the traversal time inferred
from this analysis is linearly proportional to the barrier
width.

Baz' and Rybachenko ' have proposed the use of the
Larmor precession as a clock to measure the time taken
by a particle to traverse a barrier, wherein an applied
magnetic field is confined. By comparing the spin orien-
tation of the transmitted particles with the incident-beam
orientation, Rybachenko finds that for an opaque rec-
tangular barrier the traversal time is independent on the
barrier width. However, Buttiker has demonstrated that
had Rybachenko considered that the polarization of the
transmitted and reflected particles also acquired a com-
ponent parallel to the magnetic field, the traversal time
would turn out to be linearly dependent on the barrier
width. In yet another recent approach given by Sokolo-

38 683 1988 The American Physical Society



684 ANTONIO B. NASSAR 38

viski and Baskin, the traversal time is obtained as a ma-
trix element of some classical functional in the Feynman
path-integral technique. In general, their main expres-
sions are complex, which led them to claim that the
quantum traversal time is not an observable in the usual
sense.

In this work, the problem of the traversal time for a
scattering event and a tunneling process through a poten-
tial barrier is approached from a new perspective: via a
stochastic formulation of quantum mechanics. We
attempt to show here that the concept of quantum traver-
sal time can be developed within a framework that does
not depart radically from a classical physical picture. We
feel that the method set forth here is an attempt to make
the physical picture of the problem more transparent.
The formulation of the problem and the calculation of
the traversal time is carried out in Sec. II. A compara-
tive discussion of our results with those of previous works
is provided in Sec. III.

II. FORMULATION

Within the framework of the stochastic formulation of
quantum mechanics, we assume that the quantum parti-
cle is subject to an external and a stochastic force, this
last being generated by quantum fluctuations resulting
from the action of a stochastic invariant thermostat.
So, the particle's forward (backward) drift velocity
u+ (u ) can be written as the sum (difference) of a
current velocity v and a stochastic velocity u,

u+ D+x ( t) =u——+u .

2P'(x )S'(x }+S "(x)P(x ) =0,
i}}"(x)+q P(x) =[S'(x)] P(x),

where p(x) =—P (x}and q
—= 2m (E+ Vo)/fi .

Integration of (8) implies that

S'(x)= Ci /p(x),

which inserted into (9) gives

(8)

(9)

(10)

P"(x)+q $(x)=C, /P (x) .

Integration of (11)yields

( [p'(x) ] /4p(x ) ) +q p(x ) + [C, /p(x) ]=C2, (12a)

which upon a second integration reduces to

p(x)=(1/2q )t[Cz —4q C, ]' cos2q(x —xo)+Cz) .

(12b)

By matching the boundary conditions, we obtain, at
x=0,

transmitted wave function (x &L) is VR(x, t)
=Be'""exp( i—Et/iil). Here we denote k =2mE/fi

In the interaction region, one needs the total density p
and phase S to obtain the dynamics of the process (1):
the stationary solution to the set of equations [(2) and (3)]
can be found by first expressing the wave function as

ip(x, t) =[p(x)]' exp| i[S(x) (E—t Ik)] j .

Then, by using (5), (6), and (7} (and since u and u are gra-
dient functions), we can readily simplify (2) and (3):

D ( )—= [i}( )/Bt]+v [8( )/i}x]+(iri/2m)[B ( )/Bx ]
defines the substantial derivatives of the stochastic
motion in the forward and backward directions. ' The
dynamics of the process x (t) is equivalent to the pair of
hydrodynamical equations

1+ A =P(0) exp[iS(0)],

ik(1 —A)=[ t(0ii)+iS'(0}il}(0)]exp[iS(0)],

and at x =L,

(13}

(14)

Bu i} fi 8 v

dt Bx Zm
(2)

P(L)exp[iS(L)]=B exp(ikL),

[P'( L) +i S(L)$(L)]exp[i S( L)]=ikB exp(ikL) .

(15)

(16)
and

Bu 1 BV Bu i}u fi i}u—v +u +-
Qt m Bx Bx Bx 2m Qx2

such that for each quantum state with the wave function
2k sin[S(0}]=/'(0),

2k cos[S(0)]=/(0)[k+S'(0)] .

(17)

Eliminating A between (13) and (14), the real and
imaginary parts of the resulting expression are

%(x, t) = [p(x, t)]'~'exp[iS(x, t)],
we associate

v =(h/m )(as/ax )

(4)
Eliminating B between (15) and (16) and collecting the

real and imaginary parts of the resulting expression, one
has

and

u =(iil/2m )(i}1np/Bx ), (6)

P'(L) =0,
S'(L)=k .

(19)

(20)

which establish the equivalence with the Schrodinger
equation.

Consider now a steady flux of particles with energy F.
scattered by a static potential well of depth —Vo ( Vo & 0)
for 0 & x & L and 0 elsewhere. The wave function
describing the particles incident from the left (x &0) is
given by VL(x, t)=(e' + Ae ' ")exp( iEt/fi}. The—

xo ——L .

Combination of (10) with (20) gives

p(L)=C, /k .

(21)

(22)

The constants of integration C„Cz, and xo can deter-
mined as follows. Substitution of (12b) into (19) implies
that
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By inserting (22) into (12a), and with the help of (19), we

find that
which combined with (10), (12a), and (23) yields

[3+(q/k) ]C& ——k (4—p(0}[1—(q/k) ]) . (26)
Ci =kC, [1+(qlk ) ] . (23}

By substituting (23) into (12b), we are left with

p(x) =( C, Ik ) [ 1 —[1—(q Ik )']cos'q(x L)—( l(q Ik )~ .

Now, (23) and (26) determine C],

(C, /k ) =4(qlk ) /) [1+(qlk) ]
—[1—(q/k)'] cos qL ), (27a)

Squaring and adding (17) and (18), we obtain

4k '-= [P'(0 ) ] +P (0)[k +S'(0)]',

(24) which is the transmission coe{IIcient [see (15) and (22)]

T=
i
8

i
=(C, lk) . (27b)

(25) In turn, from (1), (5), (6), (10), (12b), and (27) we obtain

u+(x)=(film)([2k(qlk) +q[1 —(q/k) ]sin2q(x L))/—([I+(qlk) ]—[1—(qlk) ]cos2q(x L)]}—. (28)

Next, we define for the stationary regime the quantum scattering traversal time by conceptually keeping reciprocity
with the classical physical picture, namely,

r, —:f d x/&(2/m)E = J dx/[(u++v )/2]' (29)
0 0

The key point here is that both the forward and backward velocities of the particle contribute equally to the traversal
kinetic motion: the kinetic energy K =(m/2)[(u++v )/2]=(m/2)(u +u ). Thus, with the help of Eq. (28), we
have

mk
2A' '

(r +1}+(r 1}cos—2q(x L)—
{1+t(r 1)[sin2—q(x L}]l2r)

—}'~~ (30a)

where r—:(qlk)=Q(E+ Vo)/E.
~hen the integral (30a) is carried out, we find that4s

r, =(m/2A'q ){F[ap]+in ( [ ~

r 1~ [s—in(2qL)]/2r )+[1+[(r —1)(sin2qL)/2r]i)'~~
( ),

where F[a;P] is the elliptic integral of first kind, P(r) =
~

r 1~ l(1+r ), an—d

a(r, qL)=—sin '([(r +1)[sin(2qL)]/2r]/[1+[(r —l)(sin2qL)/2r] ]' ) .

(30b}

The traversal time for tunneling (E & Vz) is obtained by simply replacing q by iq [where q
—=+2m( Vz E)/R] in-

(30a) and (30b).

III. DISCUSSION

We have shown in Sec. II that the concept of quantum
traversal time can be formulated within a framework that
does not depart radically from the classical physical pic-
ture. This constitutes the fundamental conceptual dis-
similarity with respect to previous approaches. Never-
theless, a comparative analysis of previous results and
ours is in order. To make a connection with the
stationary-phase method and our definition (29), we begin
by recalling that the time delay in a scattering event may
be considered intuitively to be the difference (hv. , ) be-
tween the time spent by the colliding particle in the in-
teraction region and the time it would have spent in the
same region had it moved freely. ' One of the most
essential features of this time delay is its strong energy
dependence in the vicinity of resonances. So, we find that
at the resonance qL =Nir (for which the barrier is trans-
parent} the time delay is given by

br', "=(2mL /MN)F [(ir/2);P(Nm lkL )]—(m lfik )L .

Due to the presence of the first term, no agreement can
be established with the result found via the stationary-
phase method. The energy sensitivity in the latter ap-
proach arises in the evolution of the colliding particle
through the phase shift of the wave packet (relative to the
incident one), whereas in ours it comes about through
both the local stationary wave-packet phase and the local
probability amplitude, which are related to the particle
current and stochastic velocities, respectively. Since the
two velocities v and u satisfy a system of coupled Eqs. (2)
and (3), they are not independent of each other. That can
also be seen in Eqs. (8) and (9), for the stationary-regime
case. The stochastic velocity can be interpreted as a
manisfestation of the mechanism responsible for the in-
teraction between the particle and the quantum medium
through which it moves. In the hydrodynamical formu-
lation of the Schrodinger equation, this interaction is
represented by Bohm's quantum potential.

For an opaque rectangular barrier, however, the
stationary-phase method yields a time delay that is in-
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dependent of the barrier width. '" This result depends
strongly on the form of the wave packet, and is sound if
the wave packet is characterized by a narrow momentum
distribution. If a wave packet with a wide momentum
distribution strikes a barrier, the transmitted wave packet
will exhibit a distribution displaced to higher momenta
(since the high-energy components of the wave-packet
tunnel more easily that the low-energy ones). Thus, the
transmitted wave packet moves faster and the reflected
wave packet moves slower than the incident one.
Such a wave packet has an envelope which can rise and
fall only slowly and thus the position of the maximum
may be diScult to measure accurately. In fact, Stevens
has illustrated magnificently this strong dependence on
the wave-packet form. In contrast, an important facet of
our traversal-time definition is that, while working in the
configuration space, we avoid the restricted condition on
the initial momentum-distribution width. In the Smith
kinetic approach (as also advanced by oth-
ers) ' "' ' ' ' the time delay for an opaque barrier
is independent of the barrier width. As remarked by
Buttiker and Landauer, ' ' this approach does not distin-
guish between particles, which at the end of their stay in
the interaction region have been reflected, and those that
were transmitted. This yields the average dwell time of a
particle in the barrier, and not the traversal time, if most
particles are reflected. In our approach, the traversal
time is defined in terms of both the stationary forward
and backward particle velocities, which compound the
traversal motion. The overall additional significance of

our reasoning is that it is possible to determine the quan-
tum traversal time through a barrier for particles corre-
sponding to a wave function for a stationary state of ener-

gy E and still maintain a conceptual reciprocity between
the classical and quantum definitions. Furthermore, it is
essential to point out the fact that we find a real
traversal-time expression, contrasting with the complex-
time expressions proposed in Refs. 1 and 5.

For the thin-barrier tunneling problem, we find that
the traversal time is given by

7, =(m Ifik )L (L ~0)

whereas, for the opaque-barrier case,

r, =(m /Aq )L (L ~ ac ) .

Hence, for both limiting cases above, ~, is linearly pro-
portional to L, in agreement with the results of Refs. 2, 3,
5, 6, 7, and 17, although our general expression for inter-
mediate values of L dift'ers from that obtained in these
works.
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