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A calculational procedure is presented to study the effect of the configuration interaction on the

fine-structure-level splittings for a quasi-two-electron atom. A detailed application is carried out to
examine the anomaly in the fine-structure-level splittings of the Al II ' F series which are strongly

affected by the presence of the 3p3d 'F perturber. Our calculated level splittings are in close agree-

ment with the available experimental values. In particular, our study has identified a direct link be-

tween the experimentally observed fine-structure-level splittings and the probability densities of the

dominating configuration in the calculated state wave functions.

I. INTRODUCTION

When the nuclear charge Z is not too much larger than
the number of atomic electrons N, the spectra of a quasi-
tmo-electron atom with two electrons outside a 'S core are
often described by the LS coupling. The fine-structure-
level splitting between singlet and triplet states corre-
sponding to the same configuration is accounted for at
least qualitatively by the electrostatic exchange interaction
between the two outer electrons. In the absence of
significant configuration mixing, the splittings between
three different J levels within a manifold of triplet state of
given total orbital angular momentum L is usually
represented by the simple Lande interval rule, ' and can
be estimated by the first-order perturbation contribution
in energy from the spin-dependent magnetic fine-
structure interactions with a zeroth-order nonrelativistic
wave function.

In contrast, for states dominated by strong con-
figuration mixing, the fine-structure-level splittings for a
specific singlet-triplet complex often deviate significantly
from this simple theoretical interpretation. In particular,
the level splittings are found to vary substantially from
the usual (n*) dependence along a given configuration
series. One of the best known examples is the A1II
3snf F configuration series, which is strongly affected by
the presence of a "diluted" 3p3d F state between 3s6f F

and 3s7f F states. The effect of the configuration in-
teraction to the fine structure of this A1II F series was
examined qualitatively by Weiss and subsequently stud-
ied quantitatively by Froese Fischer. Table I summa-
rizes the experimentally observed splittings between
different levels within each ' F complex. The influence
of the configuration interaction due to the 3p 3d F state
is clearly illustrated by the presence of the maximum
splittings between three 3p3d F levels and the 'F- F level
inversion between 3s6f and 3s7f states. In addition, the
experimental ratio R between the level splittings, i.e.,
R =b, &/b, 2, for the 3s7f 'F state deviates significantly
from the expected value of 0.75 from the Lande interval
rule.

In this paper we will present a simple calculational
procedure which is computationally effective in the deter-
mination of the fine-structure-level split tings for a
configuration series strongly disturbed by the presence of
a perturber located in the midst of this series for a quasi-
two-electron atom. We will examine the numerical accu-
racy of this theoretical procedure by comparing the cal-
culated fine-structure-level splittings with the available
experimental data. In addition, our calculation has estab-
lished a direct link between the experimental level split-
ting and the calculated probability density from the dom-
inated contributing configuration. This link makes it
possible to extract from the experimental data the infor-

TABLE I. Experimental fine-structure-level splittings in cm ' for Al II "Fstates from Ref. 6.

State

3s4f
3s5f
3s6f
3p 3d
3s7f
3s8f
3s9f

5, =c('F3)—c( F3)

50.05
238.70
706.49

—668.81
—347.48
—222.29

5,=c('F4) —c('F, )

2.91
6.99

22.9
33.0
10.89
3.38
1.48

h3 ——c('F3 ) —c('F2 )

1.97
5.37

17.5
25.2
7.03
2.42
1.09

R =53/hp

0.677
0.768
0.764
0.764
0.646
0.716
0.736
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mation on the relative contribution (or relative spectral
purity ) of the dominating electronic configuration to the
multiconfiguration state wave functions between neigh-
boring states if the level splittings for each state in this
series are primarily determined by this dominating
configuration.

II. THEORY AND CALCULATIONAL PROCEDURE

N

H„= g
i,j =1 fs'j
(i&j )

3(s, r;, )(s, r;, )
S S.—j 2

tj

As we pointed out earlier, when the spectrum of a
quasi-two-electron atom is characterized by the LS cou-
pling, the singlet-triplet fine-structure splitting is dom-
inated by the electrostatic exchange interaction. Recent
works have shown that a nonrelativistic superposition of
the configuration wave function method ' ' (SCW} is
capable of estimating quantitatively the J-independent
term values of the singlet and triplet states to a fairly
high degree of accuracy. For the fine-structure splittings
between different J levels of a triplet state dominated by
strong configuration mixing, a detailed theoretical es-
timation would require an explicit calculation beyond the
lowest-order perturbation contribution from spin-
dependent magnetic fine-structure interactions.

In the Breit-Pauli approximation, the magnetic fine-

structure interactions responsible for the level splittings
for an ¹lectron atom of nuclear charge Z can be
separated into three terms, i.e., the spin-orbit interaction
H. .. the spin-spin interaction H„, and the spin —other-
orbit interaction H, , , All three interactions are pro-
portional to the square of the fine-structure constant, i.e.,
a, and the detailed expressions of these three terms in

rydbergs are given by'

H =a (H, , +H„+H... ),
where

N Z
H, , =$—(l, .s, ),

For the nonrelativistic spin-independent part of the Ham-
iltonian HN„[i.e., Eq. (1) in Ref. 8], the Hamiltonian ma-

trix constructed with 4 remains unchanged and is
given by the same expression derived from the LS
configuration wave function 0' [i.e., Eq. (6) in Ref. 8].
Consequently, the J-dependent state wave function

„ I, designated by its dominating configuration

(n „i„,n „l„},is calculated with the same nonrelati vistic
SCW procedure ' with +sL replaced by +smM i e

q)sLJM y ( sL( i n i )@sLJM
}tt |LC V V

n,. r, , n. I.
(6)

where
I C„„(n;1;,n(1 )

I
is the probability density (or

spectral purity} corresponding to the (n; I;, n l( )

configuration.
With this choice of zeroth order sta-te wa-ve function

in the J representation, the fine-structure-level

splittings can be evaluated with the following procedure.
First, we construct a new Hamiltonian matrix with
respect to the zeroth-order-state wave functions 4 by
including the spin-dependent magnetic interactions in the
total Hamiltonian H, i.e.,

H =HNR+H~ . (7)

In the present calculation, the configuration wave func-
tion 4„( „( in the LS representation [e.g., Eq. (3) of Ref.

t t J J
8] employed in our nonrelativistic SCW procedure will be
replaced by a composite configuration wave function

corresponding to total angular momentum J and
its magnetic component M. More specifically, 4 is
expressed as the sum of 4 over the magnetic quantum
numbers Ms and ML, i.e.,

ysLJM y ( 1 )L —s(2J + 1 )I /2
I t J J

MS, ML

S L J
M M M nrnI

N

H. ..= g (r,"xp;) (s, +2s(),
i j=1 ij
(i~j )

and r,"=r —r, .

(4)

Since the nonrelativistic part of the Hamiltonian, i.e.,
HNR, is already diagonalized with respect to the zeroth-
order-state wave functions, no additional calculation is
required. The Hamiltonian matrix element for H is
given by

I
c".(,(, &=fiJ JfiMM g ~'.('. (naia npi(()~gg(n, i, n.i.)&'P"(',. ( IHm I

P'"(,. ( &

a, P, p, v

where the sum includes all configuration combinations.
For each J value, the Hamiltonian matrix for the Hamil-
tonian H in the J representation is constructed by includ-
ing all (nl, n 'I')SLJ states which are mixed through
configuration interaction for all allowed (nl, n'1')SL com-
binations. Second, we calculate the energy eigenvalues
and their corresponding eigenvectors by diagonalizing
the new Hamiltonian matrix. This step is repeated for

each J state. Finally, we evaluate the level splittings by
taking the energy difference between the energy eigenval-
ues of different J states.

We now turn our attention to the calculation of matrix
elements with respect to the J-dependent configuration
wave functions 4 for the spin-dependent part of the
Hamiltonian, i.e., the spin-orbit interaction H. .. the
spin-spin interaction H„, and the spin-other-orbit in-
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teraction H, , , Similar to the nonrelativistic pro-
cedure, our derivation will be limited to the two outer-
most electrons in a frozen-core approximation.

The analytical expression of the matrix element for the

spin-orbit interaction H, , can be evaluated following a
straightforward application of the Wigner-Eckart
theorem to the scalar product of two tensor operators of
rank 1, i.e.,

()pS'L'J'M
~

~
~

)pSLJM
& g g ( 1) a+ ))+ + + +

(LES& LS J)

X[V(a,p, p, v}+(—1) V( p, ap, v) +( —1) V(a, p, v, p)+( —1) + V(p, a, v, p)),
where
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' 'S S
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V(a, P,p, v)=5, , 5, , [(21„+1)(1„+1)1„]''.L' L 1
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]/2

is the one-particle integral over the radial part of the
spin-orbit interaction. The radial part of the one-particle
orbit wave function 7 is generated with the one-electron
radial Hartree-Fock Hamiltonian h " constructed with
the ¹ like 'S frozen Hartree-Fock core of N —2 elec-
trons. [The detailed expression of h " is given by Eq. (7)
in Ref. 8.]

For the spin-spin and spin-other-orbit interactions, an
early attempt was made by Marvin' to derive a general
analytical expression for the matrix element between two
arbitrary two-electron configurations in a straightforward
application of the angular momentum algebra. The pro-
cedure employed by Marvin is extremely tedious and only
a limited number of matrix elements between con-
figurations of lower-I orbits are given explicitly. The ex-
tension to other configurations involving orbits of
higher-I values would require even more effort than that
of Marvin. In addition, a trivial error in the unsymmetri-
cal form of the spin —other-orbit term employed by Mar-
vin has led to incorrect results to his calculations, except
for matrix elements between configuration of two
equivalent electrons. In the present calculation, analyti-
cal expressions for the matrix elements of spin-spin and
spin-other-orbit interactions are derived with the help of
a more compact tensorial operator technique developed
by Judd. "

For the spin-spin interaction, in a very elegant applica-
tion of tensor algebra, Judd" has shown that the spin-
spin interaction can be expressed in terms of the sum of
scalar products of tensors of rank 2 which are in turn the
tensor products of spherical harmonics C' ' and spin an-
gular momentum operators s"'. More specifically, fol-
lowing the derivation of Judd, " the spin-spin interaction
can be written as

x [8(r2 r, )Q,2(k;—k, k +2)

+8(r) rq)Q)q(—k;k, +2,k)],

where

X [S(1)XS(1)](2)](0)
J (16)

and

l, /'( Qf.
8(r; r)= '0—0, p'] (fj

With the spin-spin interaction expressed as a scalar prod-
uct of tensor operators of rank 2, the matrix elements be-
tween configuration wave functions in J representation
can be derived analytically following a straightforward
application of the Wigner-Eckart theorem. The explicit
expression for this matrix elements will be given in the
Appendix.

To calculate the matrix elements of the spin —other-
orbit interaction between two arbitrary configuration
wave functions in the J representation, we re~rite the ex-
pression given in Eq. (4) into a sum of scalar products of
tensor operators following a procedure similar to the one
employed by Judd. " First, we separate the H. .. term
into two parts, i.e.,
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where

(1,2)=[h (1,2)+h (2, 1)], (18)
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The next step is to express r;, r, , and p, in terms of the
tensor operators of the spherical harmonic C' ', i.e.,

After a series of recoupling of tensor operators C' ', l"',
and s"), it can be shown eventually that the term h (i,j )

in Eq. (19) can be expressed as a sum of scalar products of
tensor operators, i.e.,
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1/2
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A similar, but less compact expression was also derived
by Blume and Watson. ' With the spin-other-orbit in-
teraction now expressed in terms of a sum of scalar prod-
ucts of tensor operators, again, the matrix elements cal-
culation becomes a simple application of the Wigner-
Eckart theorem and its explicit expression will also be
given in the Appendix.

III. APPLICATION AND DISCUSSIONS

To illustrate the effectiveness of the calculational pro-
cedure outlined in Sec. II and to examine the anomaly in
the fine-structure-level splittings due to the effect of the
configuration interaction in a quasi-two-electron atom,
we have carried out a detailed fine-structure calculation
for the Al II ' F states. Our numerical calculation starts
with the construction of the zeroth order state wave fun-c
tions following the nonrelativistic SCW procedure em-
ployed in our previous calculation.

Similar to our earlier calculations, ' ' we have limited
the configurations included in our study to those with

N

V = —QV(r, ), (26)

and

N

Vd ———2 g (r; r )[V (r;)V (r )]'~
i j =1
(i&j )

CX —(r!ro)6

V=—(1—e ),4

(27)

(28)

where +=0.265 a.u. is the static dipole polarizability. '

TABLE II. Configurations included in the diagonalization of
the Hamiltonian matrix at different stages of approximation in
the nonrelativistic SCW procedure for Al II "Fstates.

Approximation

F1
F2
F3
F4

Configuration

3s (4 14)f-
F1 + 3p (3—14)d
F2 + 3p (5—14)g
F3+ 132 other configurations

I

two outermost electrons in various two-electron orbitals
outside a 'S Erozen core of N —2 electrons shown in
Table II. This choice of configuration combinations
effectively leaves out the contribution from the core po-
larization interaction which, in principle, can be included
explicitly in the calculation if electronic configurations
corresponding to simultaneous excitation of one outer
electron and one inner-shell electron from the 'S core are
also present in the Hamiltonian matrix calculation. In-
stead, in our calculation, the core polarization interaction
is approximated by adding to the HNa term in Eq. (7) the
dipole polarization interaction V and the dielectronic po-
tential' Vd, i.e.,
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The empirical formula in Eq. (28) has been employed ex-
tensively in other calculations ' ' to represent the core
dipole polarization interaction. The cutoff radius
ro ——0.799 81ao is fitted so that the energy correction due
to V is equal to the energy difference between the calcu-
lated c3, and the observed threshold. ' This ro value is
smaller than the one used by Victor et aI. ,

' partly due
to the use of different one-particle Hamiltonians for the
orbital wave functions and partly due to the absence of
other short-range terms included in the fitted potential in
Ref. 14. The value of ro would be larger if the calculated
e„& for other higher orbits were also fitted to their respec-
tive observed thresholds. We should remark at this point
that although the calculated energy eigen values are
affected negligibly by the dielectric potential term, our
subsequent calculation will show that the influence of this
interaction to the state wave functions is one of the most
important factors in the correct determination of the
fine-structure splittings between different J levels in the
3F manifold.

We will first examine the effect of the configuration in-
teraction to the 'F- F term separation following our
zeroth-order state wave-function calculation. The calcu-
lated term separations for the 3sn ( =4 9)f confi—guration
series with selected configuration combinations listed in
Table II are plotted in Fig. 1, along with the experimental
data and the results from a very elaborate
multiconfiguration Hartree-Fock (MCHF) calculation by
Froese Fischer. From the F1 calculation, it is clear that
in the absence of the configuration interaction from 3p3d,
the calculated 'F Flevel sp-littings for the 3snf series fol-
lows the usual (n" ) dependence. When the configuration
interactions due to the 3pnd series are included (e.g., F2
in Table II), our calculation shows that all members in
the 3snf 'F series are subject to a net decrease in energy.
As for the 3snf F configuration series, the presence of
the 3p3d F perturber between the 3s6f F and 3s7f F
states has lowered the energies for the 3s(4—6)f F states

on the lower-energy side and at the same time raised the
energies of the 3sn( )7)f F states on the higher-energy
side. Therefore the 'F- F level inversion can be inter-
preted qualitatively as the result of the combined effect
due to the relatively large energy increase for those
neighboring F states immediately above the 3p3d F
state and the small energy decrease experienced by their
corresponding 'F states. The effect of configuration in-
teraction due to other configuration series is illustrated
by F3 and F4 in Fig. 1. Quantitatively, our calculated
'F- F term separations shown in Fig. 1 are in close agree-
ment with the experimentally observed values.

Before we present the numerical calculation of the
spin-dependent magnetic fine-structure interactions, we
will point out an important relationship between the ob-
served level splittings and the calculated zeroth-order
state wave functions. As we noted earlier that in the ab-
sence of significant configuration interaction, the ratio R
between level splittings 53 and Az for each F manifold
should equal an expected value of 0.75. At first sight, this
appears to be inconsistent with the fact that for states
(e.g., 3s6f F and 3p3d R which are affected most
strongly by the configuration interaction according to the
theoretical calculations, ' their observed ratios R are ac-
tually the closest to the value of 0.75. This inconsistency
is easily resolved when we examine the contributing radi-
al matrix elements [i.e., Eq. (14)] from the dominating
spin-orbit interaction. Our numerical calculation shows
that the radial matrix elements for the l =1 p orbitals are
at least one to two orders of magnitude larger than those
of the higher-1 orbitals. Consequently, the fact that the
value of R for a F state is close to 0.75 would merely in-
dicate that the fine-structure-level splitting is actually
dominated by the contribution from the 3p 3d component
alone, or more specifically, the radial matrix element
(3p

~
(1/r ) j 3p), when the 3p31 contribution to the

state wave function is significant. Quantitatively, this
link between the level splittings and the probability densi-
ty of the 3@3d component in the state wave functions is
shown by Table III. First, we list the ratios of the level
splittings b,3 and b, 2 for each of the 3snf F state to the
splittings of the 3p3d F state. These values are com-
pared with the relative probability densities p for the
3p3d coinponent in the F state wave functions. We
should note that the 3p3d probability density at a max-
imum value of 36% for the 3p3d F state is normalized

TABLE III. Comparison of the relative total probability den-
sities p from 3pnd components in the state wave functions with
the level splittings Lz and 53 for the 'F states. The values of all
entries for the 3p3d F state are normalized to 1.

F4 Expt ICHF

State %ith Vg %'ithout Vd

FIG. 1. Comparison between the calculated 'F- F electro-
static term separations 5& {in cm '}with diferent configuration
combinations {i.e., F1—F4 given in Table II) and the experimen-
tal 'F& 'F3 term separations f-or the 3s(4—9}fstates. h~ are
plotted from left to right for each set of data. The MCHF
values for the 3s(5 8)f states from Ref.-4 are also plotted from
left to right for comparison.

3s4f
3s5f
3s6f
3p 3d
3s7f
3s8f
3s9f

0.088
0.212
0.694
1.000
0.330
0.102
0.045

0.078
0.213
0.694
1.000
0.279
0.096
0.043

0.093
0.226
0.765
1.000
0.317
0.103
0.045

0.119
0.309
0.996
1.000
0.299
0.104
0.049



650 T. N. CHANG AND E. T. BRYAN

to 1. The close agreement between the relative probabili-

ty density p and the ratios for the level splittings strongly
suggests that the multiplet splittings between different J
levels are primarily determined by the contribution from
the 3p3d component in the state wave function.

Although the value of the cutoff radius ro does not
affect our numerical results noticeably, the need to in-

clude the dielectronic interaction Vd discussed earlier is

clearly illustrated by the significant difference between
the calculated p with and without Vd. For states in other
quasi-two-electron atoms where the fine-structure split-
tings are determined by the cancellation between opposite
contributions from more than one strongly mixed
configurations, the value of the cutoff radius ro would be-
come a more sensitive parameter in an accurate deter-
mination of the fine-structure splittings. In fact, in addi-
tion to the observed energy thresholds, the experimental
fine-structure splittings could, in turn, be employed to
determine the empirical parameters, such as ro, for the
core dipole polarization interaction. The result of such a
study currently in progress will be reported elsewhere.

The numerical calculations of the spin-dependent mag-
netic fine-structure interactions are carried out in two
stages. First, the Hamiltonian matrix is constructed with
states limited to the F symmetry. A more complete cal-
culation is carried out in the second stage by including
states which consist of at least a non-negligible 3pnd corn-
ponent in the state wave function from all other allowed
symmetries (i.e., G4, 'G4, and F4 for J =4; G3 F3,
'F3, and D3 for J=3; and F2, D2, 'D2, and P2 for
J =2) in the construction of the Hamiltonian matrix.

As noted by Blume and Watson, ' the contribution
from the electrons in the 'S core for the spin-orbit and
the spin-spin interactions vanishes in the present frozen-
core approximation. In addition, as shown by Elliott, ' '
the spin —other-orbit interaction between the outer elec-
tron in the unfilled shell and electrons in the closed core
is equivalent to an effective single-particle spin-orbit in-
teraction for the outer electron, and as a result effectively
reduces the nuclear charge Z experienced by the outer
electrons. Consequently, in practice, for the spin —other-
orbit interaction H. .., the sum over all i and j in Eq. (4)
may be replaced by a single term limited to two outer
electrons if the nuclear charge Z is replaced by an
effective charge Z,z in the spin-orbit interaction H, , in

Eq. (2). In the present calculation, values of Z, a
——11.4

for the p orbitals, Z,z ——7.4 for the d orbitals, and Z,z
——3

for all higher-l orbitals are selected for the best fit' to the
experimental level splittings.

In contrast to the positive Z,~ for the d orbits used in
the present study, Laughlin and Victor' had introduced
a negative Z,z so that the inverted fine-structure split-
tings for the D series in Mg II and the D series in Mg I

might be fitted simultaneously with the same negative
Z, z- for the d orbits. For the D series along the Na
isoelectronic sequence, instead of the use of a fitted result
in a lowest-order nonrelativistic central-field approxirna-
tion with a negative Z,&,

' more elaborate theoretical
studies' ' have concluded that the level inversion is
caused by a negative contribution due to the interference

between the spin-orbit interaction and the electrostatic
exchange interaction of the p and d electron and, to the
order of a, it is equivalent to a first-order calculation in
the relativistic central-field approximation including a
core polarization interaction, such as the one given by
Eq. (28), if the electrostatic exchange interaction is prop-
erly taken into account. ' As for the Mg D series, a neg-
ative contribution due to the (3p

~

(1/r
~

3p ) term from
the small but finite 3pnf components in the 3snd D state
wave function could be comparable in magnitude to the
positive contribution from the 3snd component when a
smaller positive Z,~ is used for the d orbits. A negative

3pnf contribution could conceivably lead to the level in-

version if its magnitude is larger than the positive 3snd
contribution. Moreover, the combined negative 3pnf
contribution and the negative 3snd contribution due to a
negative Z,& for the d orbits might have been responsible
for the consistently larger level splittings found in the cal-
culated values than that of the observed ones reported by
Laughlin and Victor. ' The cancellation between the
positive and negative contributions of similar magnitude
could also enhance the effect due to the small mixing with
other LS states as well as the spin-spin and spin —other-
orbit interactions. As a result, the ratio R deviates no-

ticeably from the Lande interval rule. Again, a negative

Z,& is not required to account for the inverted D series.
The calculated level splittings h2 and b3 following the

second diagonalization of the Hamiltonian matrices are
shown in Figs. 2 and 3. We should point out that in the
absence of any mixing with the 3p3d configuration, the
individual contribution from the 3snf configuration to
the 62 and 63 alone is about two to three orders of mag-

nitude smaller than those shown in Figs. 2 and 3. The
calculated ratios R between level splittings are shown in

Fig. 4. Again, the results from the present calculation
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Qs(Cm ')-

12
7f

4fi Sf

INCHF A B Expt

FIG. 2. Comparison between the calculated 'F4- F3 level

splittings 52 in cm ' and the experimental data. Data set A

denotes the calculation in that only states with 'F symmetry are
included and B denotes the calculation in that states with all al-

lowed symmetries (i.e., F3, 'F3, D3, and G, in J=3 and 'F4,
'64, and 64 in J =4) are included in the second diagonaliza-
tion. The MCHF results from Ref. 4 are also included for corn-
parison. The splittings for 3s4f, 3s5f, 3s6f, 3p3d, 3s7f, and
3sgf states are plotted from left to right for each data set.
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27

3p3d
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Oe8—

+3(ce '} 0+75

5f
7f

007

4q

ICllF A B Exit

FIG. 3. Comparison between the calculated 'F3-'F2 level

splittings 53 in cm ' and the experimental data. Data set A

denotes the calculation in that only states with 'F symmetry are
included and B denotes the calculation in that states with all al-
lowed symmetries (i.e., 'F3, 'F3, 'D3, and 'G3 in J=3 and 'F„
D&, 'D&, and P& in J=2) are included in the second diagonali-

zation. The MCHF results from Ref. 4 are also included for
comparison. The splittings for 3s4f, 3s5f, 3s6f, 3p3d, 3s7f,
and 3s Sf states are plotted from left to right for each data set.
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FIG. 4. The ratio between Ane-structure-level splittings, i.e.,
R =53/62. A value of 0.75 is expected from the Lande interval
rule. The values of R are given for experimental data (S), calcu-
lation including 'F states only (CI), calculation including states
with all allowed symmetries (0), and MCHF values from Ref. 4
(o).

are in close agreement with the experimental data. The
MCHF results are also shown for comparison. It is in-
teresting to note that whereas the absolute level splittings
are not affected noticeably by the addition of states from
other symmetries, the calculated ratios R between 63 and

hz are affected significantly. In particular, the calculated
value of R for 3s7f F state is found to be in much closer
agreement with the experimental value when additional
states of other symmetries are included. Finally, we note
that the contributions from the spin-other-orbit and the
spin-spin interactions are substantially smaller than the
spin-orbit interaction, except for the lowest 3s4f states,
in that the splittings due to the spin-orbit interaction are
relatively small compared with other states whereas the
spin-other-orbit interaction is at its maximum. In sum-
mary, the direct link between the fine-structure-level
splittings and the probability densities of the dominating
configuration in state wave functions identified in the

I

present study has added to the experimental determina-
tion of fine-structure-level splittings for states dominated
by configuration interaction, a potentially promising di-
mension in the understanding of the effect of
configuration interaction in a quasi-two-electron atom.
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APPENDIX

With the spin-spin interaction expressed as a scalar
product of tensor operators given by Eq. (15), the matrix
elements between configuration wave functions in J rep-
resentation can be derived analytically following a
straightforward application of the Wigner-Eckart
theorem, i.e.,

&q".I.', n, i, I &- I q'"„i„,. ( & =Ki~M M&s i&si(5'"i2)
' j/2

Xg( —1)" '
[X(aPpvL'LJ', k, k+2)+( —1) X(aPvpL'LJ;k, k+2)],

k

where the phase factor 6 is the same as the one given in Eq. (10) and

X(aPpvL'LJ;A, , r)=F(apk, ,Pvr;L'LJ)R z(aPpv)+F(ap~, PvA, ,L'LJ)R
&
(aPpv) .

The angular factor F is given by

(A 1)

(A2)

L'L2 I l

F(apA, ,Pvr;L'LJ)=( —1) + [(2L'+1)(2L+1)]' (I [[C'"'ill„)(l&iiC"ill„) '

1 1 J
'

~ l& l„
L' L 2

(A3)
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where the reduced matrix element of the spherical harmonic C ' is given by
'

I k l'
(l ~~C'"'~~l') = ( —1)'[(2l + 1)(21'+1)]' (A4)

The radial integrals R
&

and Rz are given by

and

R
&
(a,P,p, v) = ds X„ I (s)X„& (s) — dr r X„ I (r)X„& (r)

0 k+3 o /3 /3
(A5)

R 2 (a,P,p, v) = ds X„ I (s)X„& (s)s
'

dr „X„&(r)X„ I (r) .
0

aalu}M

k+3 Hp g H (A6)

A change of order of integration will immediately lead to a simple relationship between these two radial integrals, i.e.,

R", (a,P,p, v)=R~(P, a, v, p) . (A7)

Similarly, with the spin-other-orbit interaction expressed as the sum of scalar products of tensor operators given by
Eq. (23), the matrix elements can be evaluated with a lengthy but straightforward application of the Wigner-Eckart
theorem. Finally, we obtain the following analytical expression:

( gPS I'J'M' '~ 0
~

glsLJM ) g g ( 1)L +J[2+( 1 )s+s']~(L g L$' J )

X g [mk(a/3L', pvL;k +1)+(—1) col, (a13L', vpL;k +1)
A:=0

+( —1) col,. (PaL', pvL;k +1)+(—1) + co&(/3aL', vpL;k +1)

+rik (af3L ', pvL )+( —1) rik(aPL', vpL )], (A8)

where

~„(a/3L', pvL;A ) = T„(aPL',pvL; A )+g„(a/3L', pvL ),
T~(apL', pvL;A ) = f~(a/3L', pvL;k)[(k +1)R ";+'(a/Bpv) —(k +2)R &~ '(appv)],

g„(a/3L', pvL ) =(2k +1)f„(a/3L', pvL;k )R ", (appv) —(2k + g)f~(a/3L', pvL;k +2)R2 (appv),

l l„k+1k+1
fi, (a/3L', pvL;A, }=(—1)"(2k +3)(l„~ I"'~~t„)(1 ~~C' '~~l„)(l~ ~C' ~~l„) I t I

.
1& l, A,

L' L 1

g„(aPL', pvL }=g,(a13L',pvL ) [R.;'(a/3p v)+R 2 '(aPpv) —( —1) + [R ;'(/3avp)+R, ' '(/3avp)] I,
and

(A9)

(A 10)

(Al 1)

(A12)

(A13)

l l„k
gk(a/3L' pvL }=(—1}""[k(k+1)(2k+1)]'"(I.IIC'"'III„)(IpllC'" Ill. } Ip

L' L 1

(A14)

The expressions for the angular factor p and the phases 5 and 5' are the same as those given earlier. The bar on the top
of the arguments, e.g. , p, in the radial integrals R

&
and R2 in Eq. (A13) indicates that the radial wave functions X„ I (r)

)tt 1'

should be replaced by

[X„ I (r)lr]a
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